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ROCnReg: An R Package for Receiver
Operating Characteristic Curve Inference
With and Without Covariates
by María Xosé Rodríguez-Álvarez and Vanda Inácio

Abstract This paper introduces the package ROCnReg that allows estimating the pooled ROC
curve, the covariate-specific ROC curve, and the covariate-adjusted ROC curve by different methods,
both from (semi) parametric and nonparametric perspectives and within Bayesian and frequentist
paradigms. From the estimated ROC curve (pooled, covariate-specific, or covariate-adjusted), several
summary measures of discriminatory accuracy, such as the (partial) area under the ROC curve and the
Youden index, can be obtained. The package also provides functions to obtain ROC-based optimal
threshold values using several criteria, namely, the Youden index criterion and the criterion that
sets a target value for the false positive fraction. For the Bayesian methods, we provide tools for
assessing model fit via posterior predictive checks, while the model choice can be carried out via
several information criteria. Numerical and graphical outputs are provided for all methods. This is
the only package implementing Bayesian procedures for ROC curves.

1 Introduction

The receiver operating characteristic (ROC) curve (Metz, 1978) is, unarguably, the most popular tool
used for evaluating the discriminatory ability of continuous-outcome diagnostic tests. The ROC
curve displays the false positive fraction (FPF) against the true positive fraction (TPF) for all possible
threshold values that can be used to dichotomize the test result. The ROC curve thus provides a global
description of the trade-off between the FPF and the TPF of the test as the threshold changes. Plenty of
parametric and semi/nonparametric methods are available for estimating the ROC curve, either from
frequentist or Bayesian viewpoints, and we refer the interested reader to Pepe (1998, Chapter 5), Zhou
et al. (2011, Chapter 4), Inácio et al. (2020), and references therein.

It is known that in many situations, the outcome of a test and, possibly, its discriminatory capacity
can be affected by covariates. Two different ROC-based measures that incorporate covariate infor-
mation have been proposed: the covariate-specific or conditional ROC curve (see, e.g., Pepe, 2003,
Chapter 6) and the covariate-adjusted ROC curve (Janes and Pepe, 2009). The formal definition of both
curves is given in Section Notation and definitions. Succinctly, a covariate-specific ROC curve is an
ROC curve that conditions on a specific covariate value, thus describing the accuracy of the test in
the ‘subpopulation’ defined by that covariate value. On the other hand, the covariate-adjusted ROC
curve is a weighted average of covariate-specific ROC curves. Regarding estimation, since the seminal
paper of Pepe (1998), a plethora of methods have been proposed in the literature for the estimation
of the covariate-specific ROC curve and associated summary measures. Without being exhaustive,
we mention the work of Faraggi (2003), Rodríguez-Álvarez et al. (2011a,b), Inácio de Carvalho et al.
(2013), and Inácio de Carvalho et al. (2017). A detailed review can be found in Rodríguez-Álvarez et al.
(2011c), Pardo-Fernández et al. (2014), and Inácio et al. (2020). With respect to the covariate-adjusted
ROC curve, estimation has been discussed in Janes and Pepe (2009), Rodríguez-Álvarez et al. (2011a),
Guan et al. (2012), and Inácio de Carvalho and Rodríguez-Álvarez (2018).

A few R packages for ROC curve analysis are available on the Comprehensive R Archive Network
and, as far as we are aware, all of them implementing frequentist approaches. The package sROC
(Wang, 2012) contains functions to perform nonparametric, kernel-based, estimation of ROC curves.
pROC (Robin et al., 2011) offers a set of tools to visualize, smooth, and compare ROC curves, and
nsROC (Pérez Fernández et al., 2018) also allows estimating ROC curves, building confidence bands
as well as comparing several curves both for dependent and independent data (i.e., data arising
from paired and unpaired study designs, respectively). However, covariate information cannot be
explicitly taken into account in any of these packages. The packages ROCRegression (available at
https://bitbucket.org/mxrodriguez/rocregression) and npROCRegression (Rodriguez-Alvarez
and Roca-Pardinas, 2017) provide routines to estimate semiparametrically and nonparametrically,
under a frequentist framework, the covariate-specific ROC curve. We also mention OptimalCutpoints
(López-Ratón et al., 2014) and ThresholdROC (Perez Jaume et al., 2017) that provide a collection of
functions for point and interval estimation of optimal thresholds for continuous diagnostic tests. To
the best of our knowledge, there is no statistical software package implementing Bayesian inference
for ROC curves and associated summary indices and optimal thresholds.

To close this gap, in this paper we introduce the ROCnReg package that allows conducting
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Method Description
Pooled ROC curve
emp (Frequentist) empirical estimator (Hsieh and Turnbull, 1996).
kernel (Frequentist) kernel-based approach (Zou et al., 1997).
BB Bayesian bootstrap method (Gu et al., 2008).
dpm Nonparametric Bayesian approach based on a Dirichlet process

mixture of normal distributions (Erkanli et al., 2006).
Covariate-specific ROC curve
sp (Frequentist) parametric and semiparametric induced ROC regres-

sion approach (Pepe, 1998; Faraggi, 2003)
kernel Nonparametric (kernel-based) induced ROC regression approach

(Rodríguez-Álvarez et al., 2011a).
bnp Nonparametric Bayesian model based on a single-weights depen-

dent Dirichlet process mixture of normal distributions (Inácio de
Carvalho et al., 2013).

Covariate-adjusted ROC curve
sp (Frequentist) semiparametric method (Janes and Pepe, 2009).
kernel Nonparametric (kernel-based) induced ROC regression approach

(Rodríguez-Álvarez et al., 2011a).
bnp Nonparametric Bayesian model based on a single-weights depen-

dent Dirichlet process mixture of normal distributions and the
Bayesian bootstrap (Inácio de Carvalho and Rodríguez-Álvarez,
2018).

Table 1: Overview of ROC estimation methods included in the ROCnReg package.

Bayesian inference for the (pooled or marginal) ROC curve, the covariate-specific ROC curve, and
the covariate-adjusted ROC curve. For the sake of generality, frequentist approaches are also imple-
mented. Specifically, in what concerns estimation of the pooled ROC curve, ROCnReg implements
the frequentist empirical estimator described in Hsieh and Turnbull (1996), the kernel-based approach
proposed by Zou et al. (1997), the Bayesian Bootstrap method of Gu et al. (2008), and the Bayesian
nonparametric method based on a Dirichlet process mixture of normal distributions model proposed
by Erkanli et al. (2006). Regarding the covariate-specific ROC curve, ROCnReg implements the
frequentist normal method of Faraggi (2003) and its semiparametric counterpart as described in Pepe
(1998), the kernel-based approach of Rodríguez-Álvarez et al. (2011a), and the Bayesian nonparametric
model based on a single-weights dependent Dirichlet process mixture of normal distributions pro-
posed by Inácio de Carvalho et al. (2013). As for the covariate-adjusted ROC curve, the ROCnReg
package allows estimation using the frequentist semiparametric approach of Janes and Pepe (2009),
the frequentist nonparametric method discussed in Rodríguez-Álvarez et al. (2011a), and the recently
proposed Bayesian nonparametric estimator of Inácio de Carvalho and Rodríguez-Álvarez (2018).
Table 1 shows a summary of all methods implemented in the package. In addition, ROCnReg also
provides functions to obtain ROC-based optimal thresholds to perform the classification/diagnosis of
individuals as, say, diseased or nondiseased, using two different criteria, namely, the Youden index
and the criterion that sets a target value for the false positive fraction. These are implemented for both
the ROC curve, the covariate-specific, and the covariate-adjusted ROC curve.

The remainder of the paper is organized as follows. In Section Notation and definitions, we
formally introduce the (pooled or marginal) ROC curve, the covariate-specific ROC curve, and the
covariate-adjusted ROC curve. The description of the Bayesian estimation methods implemented in
the ROCnReg package is given in Section Methods. In Section Package presentation and illustration,
the usage of the main functions and capabilities of ROCnReg are described and illustrated using
a synthetic dataset mimicking endocrine data. The paper concludes with a discussion in Section
Summary and future plans.

2 Notation and definitions

This section sets out the formal definition of the pooled or marginal ROC curve, the covariate-specific
ROC curve, and the covariate-adjusted ROC curve. It also describes the most commonly used summary
measures of discriminatory accuracy, namely, the area under the ROC curve, the partial area under the
ROC curve, and the Youden Index. For conciseness, we intentionally avoid giving too many details
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and refer the interested reader to Pepe (2003) (and references therein) for an extensive account of many
aspects of ROC curves with and without covariates.

In what follows, we denote as Y the outcome of the diagnostic test and as D the binary variable
indicating the presence (D = 1) or absence (D = 0) of disease. We also assume that along with Y
and the true disease status D, a covariate vector X is also available and that it may encompass both
continuous and categorical covariates. For ease of notation, the covariate vector X is assumed to be the
same in both the diseased (D = 1) and nondiseased (D = 0) populations, although this is not always
necessarily the case in practice (e.g., disease stage is, obviously, a disease-specific covariate). By a
slight abuse of notation, we use the subscripts D and D̄ to denote (random) quantities conditional on,
respectively, D = 1 and D = 0. For example, YD and YD̄ denote the test outcomes in the diseased and
nondiseased populations, respectively.

Pooled ROC curve

In the case of a continuous-outcome diagnostic test, the classification is usually made by comparing
the test result Y against a threshold c. If the outcome is equal or above the threshold, Y ≥ c, the subject
will be diagnosed as diseased. On the other hand, if the test result is below the threshold, Y < c, he or
she will be classified as nondiseased. The ROC curve is then defined as the set of all possible pairs
of false positive fractions, FPF (c) = Pr(Y ≥ c | D = 0) = Pr(YD̄ ≥ c), and true positive fractions,
TPF (c) = Pr(Y ≥ c | D = 1) = Pr(YD ≥ c), that can be obtained by varying the threshold value c, i.e.,

{(FPF (c) , TPF (c)) : c ∈ R} .

It is common to represent the ROC curve as {(p, ROC(p)) : p ∈ [0, 1]}, where

p = FPF(c) = 1 − FD̄(c), ROC(p) = 1 − FD

{
F−1

D̄ (1 − p)
}

, (1)

with FD̄ (y) = Pr(YD̄ ≤ y) and FD (y) = Pr(YD ≤ y) denoting the cumulative distribution function
(CDF) of Y in the nondiseased and diseased groups, respectively. Several indices can be used as global
summary measures of the accuracy of a test. The most widely used is the area under the ROC curve
(AUC), defined as

AUC =
∫ 1

0
ROC (p)dp. (2)

In addition to its geometric definition, the AUC has also a probabilistic interpretation (see, e.g., Pepe,
2003, p. 78)

AUC = Pr (YD ≥ YD̄) , (3)

that is, the AUC is the probability that a randomly selected diseased subject has a higher test outcome
than that of a randomly selected nondiseased subject. The AUC takes values between 0.5, in the case
of an uninformative test that classifies individuals no better than chance, and 1.0 for a perfect test.
We note that an AUC below 0.5 simply means that the classification rule should be reversed. As it is
clear from its definition, the AUC integrates the ROC curve over the whole range of FPFs. However,
depending on the clinical circumstances, interest might lie only on a relevant interval of FPFs or TPFs,
which leads to the notion of the partial area under the ROC curve (pAUC). The pAUC over a range of
FPFs (0, u1), where u1 is typically low and represents the largest acceptable FPF, is defined as

pAUC (u1) =
∫ u1

0
ROC (p)dp. (4)

On the other hand, the pAUC over a range of TPFs (v1, 1), where v1 is typically large and represents
the lowest acceptable TPF, is defined as

pAUCTPF (v1) =
∫ 1

v1

ROCTNF (p)dp, (5)

where ROCTNF is a 270◦ rotation of the ROC curve, which can be expressed as

ROCTNF(p) = FD̄{F−1
D (1 − p)}. (6)

The curve in (6) is referred to as the true negative fraction (TNF) ROC curve since TNF ( = 1 − FPF)
is plotted on the y-axis. We shall highlight that the argument p in the ROC curve stands for a false
positive fraction, whereas in the ROCTNF curve, it stands for a true positive fraction. In Figure 1, we
graphically illustrate the two partial areas.
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Figure 1: (a) Shaded area in blue represents the partial area under the ROC curve over the interval
(0, u1) of FPFs. (b) Shaded area in blue represents the partial area under the ROC curve over the
interval (v1, 1) of TPFs. (c) The same as in (b) but now represented as an area under the true negative
fraction ROC curve.

Another summary index of diagnostic accuracy is the Youden index (Shapiro, 1999; Youden, 1950)

YI = max
c

{TPF(c)− FPF(c)} (7)

= max
c

{FD̄ (c)− FD (c)} (8)

= max
p

{ROC(p)− p} . (9)

The YI ranges from 0 to 1, taking the value of 0 in the case of an uninformative test and 1 for a perfect
test. As for the AUC, a YI below 0 means that the classification rule should be reversed. The value c∗,
which maximizes Equation (7) (or, equivalently, Equation (8)), is frequently used in practice to classify
subjects as diseased or nondiseased. It should be noted that the Youden index is equivalent to the
Kolmogorov–Smirnov measure of distance between the distributions of YD and YD̄ (Pepe, 2003, p. 80).

Covariate-specific ROC curve

The conditional or covariate-specific ROC curve, given a covariate value x, is defined as

ROC(p | x) = 1 − FD{F−1
D̄ (1 − p | x) | x}, (10)

where FD̄(y | x) = Pr(YD̄ ≤ y | XD̄ = x) and FD(y | x) = Pr(YD ≤ y | XD = x) are the conditional
CDFs of the test in the nondiseased and diseased groups, respectively. In this case, a number of
possibly different ROC curves (and therefore discriminatory accuracies) may be obtained for different
values of x. Thus, the covariate-specific ROC curve is an important tool that helps to understand
and determine the optimal and suboptimal populations where to apply the tests on. That is, the
covariate-specific ROC curve allows determining the populations, defined by or homogeneous with
respect to x, where the diagnostic test has a ‘good’ or ‘poor’ discriminatory capacity. Similarly to the
unconditional case, the covariate-specific TNF-ROC curve is given by

ROCTNF(p | x) = FD̄{F−1
D (1 − p | x) | x}, (11)
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and the covariate-specific AUC, pAUC, and Youden index are

AUC(x) =
∫ 1

0
ROC(p | x)dp, (12)

pAUC(u1 | x) =
∫ u1

0
ROC(p | x)dp, (13)

pAUCTPF(v1 | x) =
∫ 1

v1

ROCTNF(p | x)dp, (14)

YI(x) = max
c

|TPF(c | x)− FPF(c | x)| (15)

= max
c

|FD̄(c | x)− FD(c | x)| (16)

= max
p

|ROC(p | x)− p|. (17)

The value c∗x that achieves the maximum in (15) (or (16)) is called the optimal covariate-specific YI
threshold and can be used to classify a subject, with covariate value x, as diseased or nondiseased.

Covariate-adjusted ROC curve

The covariate-specific ROC curve and associated AUC, pAUCs, and YI described in the previous
section depict the accuracy of the test for specific covariate values. However, it would be undoubtedly
useful to have a global summary measure that also takes covariate information into account. Such
summary measure was developed by Janes and Pepe (2009), who proposed the covariate-adjusted
ROC (AROC) curve, defined as

AROC(p) =
∫

ROC(p | x)dHD(x), (18)

where HD(x) = Pr(XD ≤ x) is the CDF of XD. That is, the AROC curve is a weighted average of
covariate-specific ROC curves, weighted according to the distribution of the covariates in the diseased
group. Equivalently, as shown by Janes and Pepe (2009), the AROC curve can also be expressed as

AROC(p) = Pr{YD > F−1
D̄ (1 − p | XD)}

= Pr{1 − FD̄(YD | XD) ≤ p}. (19)

As will be seen in Section Methods, Expression (19) is very convenient when it comes to estimating
the AROC curve. Also, it emphasizes that the AROC curve at an FPF of p is the overall TPF when the
thresholds used for defining a positive test result are covariate-specific and chosen to ensure that the
FPF is p in each subpopulation defined by the covariate values.

In contrast to the pooled ROC curve (see Expressions (1) and (6)) and the covariate-specific ROC
curve (see Expressions (10) and (11)), the AROC curve (and its 270◦ rotation) cannot be expressed
in terms of the (conditional) CDFs of the test in each group. This does not, however, preclude the
possibility of defining AROC-based summary accuracy measures, yet more care is needed. Thus, for
the AROC curve, the area under the AROC, as well as the partial areas and YI, are expressed as follows

AAUC =
∫ 1

0
AROC(p)dp, (20)

pAAUC(u1) =
∫ u1

0
AROC(p)dp, (21)

pAAUCTPF(v1) =
∫ 1

AROC−1(v1)
AROC(p)dp − {1 − AROC−1(v1)}v1, (22)

YIAROC = max
p

{AROC(p)− p} . (23)

Note, in particular, that the expressions for both the partial area under the AROC curve over a range
of TPFs (see also Figure 1b) and for the YI are defined in terms of the AROC curve. For the YI, once
the value that achieves the maximum in (23) is obtained, say p∗, covariate-specific threshold values
can be calculated as follows

c∗x = F−1
D̄ (1 − p∗ | XD = x).

Note that, by construction, these threshold values will ensure that the FPF is p∗ in each subpopulation
defined by the covariate values. However, the TPF may vary with the covariate values, i.e.,

TPF (c∗x) = 1 − FD (c∗x | XD = x) .
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To finish this part, we mention that when the accuracy of a test is not affected by covariates, this does
not necessarily mean that the covariate-specific ROC curve (which, in this case, is the same for all
covariate values) coincides with the pooled ROC curve. It does coincide, however, with the AROC
curve (see Janes and Pepe, 2009; Pardo-Fernández et al., 2014; Inácio de Carvalho and Rodríguez-
Álvarez, 2018, for more details). As such, in all cases where covariates affect the test results, even
though they might not affect its discriminatory capacity, inferences based on the pooled ROC curve
might be misleading. In such cases, the AROC curve should be used instead. This also applies to the
selection of (optimal) threshold values, which might be covariate-specific (i.e., possibly different for
different covariate values).

3 Methods

For space reasons, we focus ourselves here on the Bayesian methods for ROC curve inference (with
and without covariates) implemented in the ROCnReg package. A detailed description, as well as
usage examples, of the frequentist approaches are available as Supplementary Material at https:
//bitbucket.org/mxrodriguez/rocnreg.

Pooled ROC curve

In what follows, let {yD̄i}
nD̄
i=1 and {yDj}nD

j=1 be two independent random samples of test outcomes
from the nondiseased and diseased groups of size nD̄ and nD, respectively.

Bayesian bootstrap based estimator

The function pooledROC.bb implements the Bayesian bootstrap (BB) approach proposed by Gu et al.
(2008). Their estimator relies on the notion of placement value (Pepe, 2003, Chapter 5), which is simply
a standardization of the test outcomes with respect to a reference group. Specifically, UD = 1− FD̄(YD)
is to be interpreted as a standardization of a diseased test outcome with respect to the distribution of
test results in the nondiseased population. The ROC curve can be regarded as the CDF of UD

Pr(UD ≤ p) = Pr{1 − FD̄(YD) ≤ p} = 1 − FD{F−1
D̄ (1 − p)} = ROC(p), 0 ≤ p ≤ 1. (24)

The representation of the ROC given in (24) provides the rationale for the two-step algorithm of Gu
et al. (2008), which can be described as follows. Let S be the number of iterations.

Step 1: Computation of the placement value based on the BB.
For s = 1, . . . , S, let

U(s)
Dj =

nD̄

∑
i=1

q(s)1i I
(

yD̄i ≥ yDj

)
, j = 1, . . . , nD,

where
(

q(s)11 , . . . , q(s)1nD̄

)
∼ Dirichlet(nD̄; 1, . . . , 1).

Step 2: Generate a realization of the ROC curve. Based on (24), generate a realization of ROC(s)(p),
the cumulative distribution function of (U(s)

D1, . . . , U(s)
DnD

), where

ROC(s)(p) =
nD

∑
j=1

q(s)2j I
(

U(s)
Dj ≤ p

)
,
(

q(s)21 , . . . , q(s)2nD

)
∼ Dirichlet(nD; 1, . . . , 1).

The BB estimate of the ROC curve is obtained by averaging over the ensemble of ROC curves
{ROC(1)(p), . . . , ROC(S)(p)}, that is,

R̂OC
BB
(p) =

1
S

S

∑
s=1

ROC(s)(p),

and a (1 − α)× 100% pointwise credible band can be obtained from the α/2 × 100% and (1 − α/2)×
100% percentiles of the same ensemble (α ∈ (0, 1)). Note that these pointwise credible bands for the
ROC curve are to be interpreted as credible intervals for the corresponding constituents TPFs.

The Bayesian bootstrap estimator leads to closed-form expressions for the AUC and pAUC, which
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are, respectively, given by

AUC(s) =
∫ 1

0
ROC(s)(p)dp = 1 −

nD

∑
j=1

q(s)2j U(s)
Dj ,

pAUC(s)(u1) =
∫ u1

0
ROC(s)(p)dp = u1 −

nD

∑
j=1

q(s)2j min
{

u1, U(s)
Dj

}
.

It is easy to show that

pAUC(s)
TPF(v1) =

∫ 1

v1

ROC(s)
TNF (p)dp =

nD̄

∑
i=1

q(s)1i max
{

v1, U(s)
D̄i

}
− v1,

where

U(s)
D̄i =

nD

∑
j=1

q(s)2j I
(

yDj ≥ yD̄i

)
, i = 1, . . . , nD̄,

and it is also easy to demonstrate that the ROCTNF curve is the survival function of the placement
value UD̄ = 1 − FD(YD̄). With respect to the Youden index, it is obtained by maximising, over a grid
of possible threshold values, the following expression

YI(s) = max
c

{
F(s)

D̄ (c)− F(s)
D (c)

}
,

where

F(s)
D̄ (c) =

nD̄

∑
i=1

q(s)1i I (yD̄i ≤ c) and F(s)
D (c) =

nD

∑
j=1

q(s)2j I
(

yDj ≤ c
)

.

As for the ROC curve, point estimates for the AUC, pAUC, pAUCTPF, YI, and c∗ can be obtained
by averaging over the respective ensembles of S realizations, with credible bands derived from the
percentiles of such ensembles.

Dirichlet process mixture of normal distributions based estimator

The Bayesian nonparametric approach, based on a Dirichlet process mixture (DPM) of normal distribu-
tions, for estimating the pooled ROC curve (Erkanli et al., 2006) is implemented in the pooledROC.dpm
function. In this case, as implicit by the name, the CDFs of the test outcomes in each group are
estimated via a Dirichlet process mixture of normal distributions. That is, it is assumed that the CDF,
say in the diseased group (the one in the nondiseased group, D̄, follows analogously), is of the form

FD(y) =
∫

Φ(y | µ, σ2)dGD(µ, σ2), GD ∼ DP(αD, G∗
D(µ, σ2)), (25)

where Φ(y | µ, σ2) denotes the CDF of the normal distribution with mean µ and variance σ2 evaluated
at y. Here, GD ∼ DP(αD, G∗

D) is used to denote that the mixing distribution GD follows a Dirichlet
process (DP) (Ferguson, 1973) with centering distribution G∗

D, for which E(GD) = G∗
D, and precision

parameter αD. Usually, due to conjugacy reasons, G∗
D(µ, σ2) ≡ N(µ | mD0, SD0)Γ(σ−2 | aD, bD), and

this is the centering distribution used by the pooledROC.dpm function. Note that here, SD0 denotes the
variance of the normal distribution, and aD and bD are, respectively, the shape and rate parameters of
the gamma distribution. All hyperparameter values are fixed.

For ease of posterior simulation and because it provides a highly accurate approximation, we make
use of the truncated stick-breaking representation of the DP (Ishwaran and James, 2001), according to
which GD can be written as

GD(·) =
LD

∑
l=1

ωDlδ(µDl ,σ2
Dl)

(·),

where (µDl , σ2
Dl)

iid∼ G∗
D(µ, σ2), for l = 1, . . . , LD, and the weights follow the so-called (truncated) stick-

breaking construction: ωD1 = vD1, ωDl = vDl ∏r<l(1 − vDr), l = 2, . . . , LD, and vD1, . . . , vD,LD−1
iid∼

Beta(1, αD). Further, one must set vDLD = 1 in order to ensure that the weights add up to one. The
CDF in (25) can therefore be written as

FD(y) =
LD

∑
l=1

ωDlΦ(y | µDl , σ2
Dl),

where we shall note that LD is not the exact number of components expected to be observed, but
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rather an upper bound on it, as some of the components may be unoccupied. Some comments are
in order regarding the specification of the hyperparameters’ values. In what concerns the centering
distribution, mD0 represents the prior belief about the components’ means, and SD0 represents the
confidence in such prior belief. Similarly, the values of aD and bD can be chosen to represent the
prior belief about the components’ variance. Of course, when setting these parameters, it is crucial to
consider the measurement scale of the data. By default, test outcomes are standardized (so that the
resulting mean is zero and the variance is one) in the pooledROC.dpm function and the default values
are as follows

mD0 = 0, SD0 = 10, aD = 2, bD = 0.5.

Because test outcomes are standardized, we expect the means of the components to be near zero and
hence mD0 = 0. The parameter SD0 then controls where the drawn µDl can lie, and the value of 10
implies that approximately 95% of the values roughly lie within −6 and 6. Further, note that aD = 2
leads to a prior with an infinite variance that is centered around a finite mean (bD = 0.5) and therefore
favors variances less than one. Considering that the standardized data have a variance of one, it
is reasonable to expect the within component variance to be smaller than the overall variance. The
option of not standardizing the test outcomes is also available in pooledROC.dpm, and in such a case,
the defaults for the centering distribution hyperparameters’ values are as following

mD0 = ȳD, SD0 = 100s2
D/nD, aD = 2, bD = s2

D/2,

with ȳD = 1
nD

∑nD
j=1 yDj and s2

D = 1
nD−1 ∑nD

j=1(yDj − ȳD)
2. Regarding the precision parameter of the

DP, αD, it has a direct relationship with the number of occupied mixture components. One possible
strategy for specifying αD is to fix it to a small value to favor a small number of occupied components
relative to the sample size. In the pooledROC.dpm function, we set αD = 1, a commonly used default
value (Gelman et al., 2013, p. 553). Lastly, by default, LD = 10. Before proceeding, we shall emphasize
that these two configurations of hyperparameters values (for standardized and not standardized test
outcomes) have proved to work well for a different range of test outcomes distributions, but it is
certainly not our goal to encourage users to use it blindly and indeed thought should be dedicated to
this important task. Nevertheless, output from the function pooledROC.dpm may be post-processed,
and (informal) model fit diagnostics obtained; see more in Section Package presentation and illustration
and in the Supplementary Materials.

Because the full conditional distributions for all model parameters are available in closed-form,
posterior simulation can be easily conducted through Gibbs sampler (see the details, for instance, in
Ishwaran and James 2002). At iteration s of the Gibbs sampler procedure, the ROC curve is computed
as

ROC(s)(p) = 1 − F(s)
D

{
F−1(s)

D̄ (1 − p)
}

, s = 1, . . . , S,

with

F(s)
D (y) =

LD

∑
l=1

ω
(s)
Dl Φ

(
y | µ

(s)
Dl , σ

2(s)
Dl

)
, F(s)

D̄ (y) =
LD̄

∑
k=1

ω
(s)
D̄kΦ

(
y | µ

(s)
D̄k, σ

2(s)
D̄k

)
, (26)

and where the inversion is performed numerically. There is a closed-form expression for the AUC
(Erkanli et al., 2006) given by

AUC(s) =
LD̄

∑
k=1

LD

∑
l=1

ω
(s)
D̄kω

(s)
Dl Φ

 b(s)kl√
1 + a2(s)

kl

 , b(s)kl =
µ
(s)
Dl − µ

(s)
D̄k

σ
(s)
Dl

, a(s)kl =
σ
(s)
D̄k

σ
(s)
Dl

.

Also, when LD = LD̄ = 1, there are closed-form expressions for the pAUC and pAUCTPF which are
used in the package (see Hillis and Metz, 2012). For the pAUC/pAUCTPF, when LD > 1 or LD̄ > 1, the
integrals are approximated numerically using Simpson’s rule. The Youden index/optimal threshold is
computed as in the Bayesian bootstrap method, with the obvious difference that here the CDFs are
expressed as in (26). At the end of the sampling procedure, we have an ensemble of S ROC curves
and AUCs/pAUCs/pAUCTPFs/YIs/optimal thresholds, which, as before, allows obtaining point and
interval estimates.

Covariate-specific ROC curve

We now let {(xD̄i, yD̄i)}
nD̄
i=1 and {(xDj, yDj)}nD

j=1 be two independent random samples of test outcomes
and covariates from the nondiseased and diseased groups of size nD̄ and nD, respectively. Further,
for all i = 1, . . . , nD̄ and j = 1, . . . , nD, let xD̄i = (xD̄i,1, . . . , xD̄i,q)

⊤ and xDj = (xDj,1, . . . , xDj,q)
⊤ be

q-dimensional vectors of covariates, which can be either continuous or categorical.

The function cROC.bnp implements the Bayesian nonparametric approach for conducting inference
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about the covariate-specific ROC curve of Inácio de Carvalho et al. (2013), which is based on a single-
weights dependent Dirichlet process mixture of normal distributions (De Iorio et al., 2009). Specifically,
under this method, the conditional CDF in the diseased group is modeled as follows

FD(yDj | xDj) =
∫

Φ(yDj | µD(xDj, β), σ2)dGD(β, σ2), GD ∼ DP(αD, G∗
D(β, σ2)),

with the conditional CDF in the nondiseased group D̄ following in an analogous manner. As in the
no-covariate case, by making use of Sethuraman’s truncated representation of the DP, we can write the
conditional CDF as

FD(yDj | xDj) =
LD

∑
l=1

ωDlΦ(yDj | µD(xDj, βDl), σ2
Dl),

ωD1 = vD1, ωDl = vDl ∏
r<l

(1 − vDr), l = 2, . . . , LD,

vDl
iid∼ Beta(1, αD), l = 1, . . . , LD − 1, vDLD = 1.

It is worth mentioning that although the variance of each component does not depend on covariates,
the overall variance of the mixture does depend on covariates, as it can be written as

var(yDj | xDj) =
LD

∑
l=1

ωDlσ
2
Dl +

LD

∑
l=1

ωDl

µD(xDj, βDl)−
(

LD

∑
l=1

ωDlµD(xDj, βDl)

)2
 .

Note that by assuming that the weights, wDl , do not vary with covariates, the model might have
limited flexibility in practice (MacEachern, 2000). This issue can, however, be largely mitigated by
using a flexible formulation for µD(xDj, βDl), which is needed not only for the model to be able to
recover nonlinear trends but also to recover flexible shapes that might arise due to a dependence of
the weights on the covariates. As such, the function cROC.bnp in ROCnReg allows modeling the mean
function of each component using an additive smooth structure

µD(xDj, βDl) = βDl0 + fDl1(xDj,1) + . . . + fDlq(xDj,q), l = 1, . . . , LD, (27)

where the smooth functions, fDlm (m = 1, . . . , q), are approximated using a linear combination of
cubic B-splines basis functions. To avoid notational burden, we have assumed that all q covariates
are continuous and modeled in a flexible way. However, the function cROC.bnp can also deal with
categorical covariates, linear effects of continuous covariates, as well as interactions. For the reasons
mentioned before, we recommend that all continuous covariates are modeled as in (27). Nonetheless,
posterior predictive checks, as illustrated in Section Package presentation and illustration, can also be
used to informally validate the fitted model. We write

µD(xDj, βDl) = z⊤DjβDl , l = 1, . . . , LD, j = 1, . . . , nD, (28)

where z⊤Dj is the jth row of the design matrix that contains the intercept, the continuous covariates
that are modeled in a linear way (if any), the cubic B-splines basis representation for those modeled in
a flexible way, the categorical covariates (if any), and their interaction(s) (if believed to exist). Also,
βDl collects, for the lth component, the regression coefficients associated with the aforementioned
covariates. For the covariate effects modeled using cubic B-splines, an important issue is the selection
of the number and location of the knots at which to anchor the basis functions, as this has the potential
to impact inferences, more so for the former than the latter. The selection of the number of knots can
be assisted by a model selection criterion, for example, (the adaptation to the case of mixture models
of) the deviance information criterion (DIC) (Celeux et al., 2006), the log pseudo marginal likelihood
(LPML) (Geisser and Eddy, 1979), and the widely applicable information criterion (WAIC) (Gelman
et al., 2014). In turn, for the location of the interior knots themselves, we follow Rosenberg (1995) and
use the quantiles of the covariate values.

The regression coefficients and variances associated with each of the LD components are sampled

from the conjugate centering distribution (βDl , σ−2
Dl )

iid∼ NQD (mD, SD)Γ(aD, bD), with conjugate hyper-
priors mD ∼ N(mD0, SD0) and S−1

D ∼ Wishart(νD, (νDΨD)
−1) (a Wishart distribution with degrees of

freedom νD and expectation Ψ−1
D ), and where QD is the dimension of the vector zDj . Hyperparameters

mD0 and ΨD must be chosen to represent the prior belief about the regression coefficients associated
to each mixture component and about their covariance matrix, respectively, whereas SD0 and νD
are chosen to represent the confidence in the prior belief of mD0 and ΨD, respectively. As in the
no-covariate case, by default, in cROC.bnp, test outcomes and covariates are standardized, which not
only facilitates specification of the hyperparameter values but also improves the mixing of the Markov

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 534

chain Monte Carlo (MCMC) chains. The default values are as follows

mD0 = 0QD , SD0 = 10IQD , νD = QD + 2, ΨD = IQD , aD = 2, bD = 0.5.

When test outcomes and covariates are not standardized, the defaults are the following

mD0 = β̂D, SD0 = Σ̂D, νD = QD + 2, ΨD = 30Σ̂D, aD = 2, bD = σ̂2
D/2,

where β̂D and σ̂D are the least squares estimates from fitting the linear model yDj = zDjβD + σDεDj,
where E(εDj) = 0, var(εDj) = 1, and Σ̂D is the estimated covariance matrix of β̂D. With regard to the
specification of αD and LD, as in the DPM model (no-covariate case), we set them, respectively, to 1
and 10. The blocked Gibbs sampler is used to simulate draws from the posterior distribution, and
details about it can be found, for instance, in the Supplementary Materials of Inácio de Carvalho et al.
(2017).

Similarly to the analogous model for the no-covariate case, at iteration s of the Gibbs sampler
procedure, the covariate-specific ROC curve is computed as

ROC(s)(p | x) = 1 − F(s)
D

{
F−1(s)

D̄ (1 − p | x) | x
}

, s = 1, . . . , S,

with

F(s)
D (y | x) =

LD

∑
l=1

ω
(s)
Dl Φ

(
y | z⊤β

(s)
Dl , σ

2(s)
Dl

)
, F(s)

D̄ (y | x) =
LD̄

∑
k=1

ω
(s)
D̄kΦ

(
y | z⊤β

(s)
D̄k, σ

2(s)
D̄k

)
, (29)

and where the inversion is performed numerically. A point estimate for ROC(p | x) can be obtained
by computing the mean of the ensemble {ROC(1)(p | x), . . . , ROC(S)(p | x)}, with pointwise credible
bands derived from the percentiles of the ensemble. Although the results presented in Erkanli
et al. (2006) can be extended to derive a closed-form expression for the covariate-specific AUC, for
computational reasons, in ROCnReg, the integral in (12) is approximated using Simpson’s rule, and
the same applies for the partial areas. Conditionally on a specific covariate value, the computation of
the Youden index and of the optimal threshold proceeds in a similar way as in the DPM model (see
Inácio de Carvalho et al., 2017 for details). As for the covariate-specific ROC curve, point and interval
estimates can be obtained from the corresponding covariate-specific ensemble of each summary
measure.

We finish this section by noting that a particular case of the above estimator arises when the effect
of all continuous covariates is assumed to be linear and only one component is considered, i.e.,

F(s)
D (y | x) = Φ

(
y | x̃⊤β

(s)
D , σ

2(s)
D

)
, and F(s)

D̄ (y | x) = Φ
(

y | x̃⊤β
(s)
D̄ , σ

2(s)
D̄

)
, (30)

with x̃⊤ =
(

1, x⊤
)

. In this case, it is easy to show that

ROC(s)(p | x) = 1 − Φ
{

a(s)(x) + b(s)Φ−1(1 − p)
}

, (31)

where

a(s)(x) = x̃⊤

(
β
(s)
D̄ − β

(s)
D

)
σ
(s)
D

, and b(s) =
σ
(s)
D̄

σ
(s)
D

. (32)

With this configuration, the model for the covariate-specific ROC curve can be regarded as a Bayesian
counterpart of the induced ROC approach proposed by Faraggi (2003) (and detailed in the Supple-
mentary Material). We denote it as the Bayesian normal linear model (for the test outcomes).

Covariate-adjusted ROC curve

The estimation of the AROC curve rests on the following three steps:

1. Estimation of the conditional distribution of test outcomes in the nondiseased group, FD̄(yD̄i |
xD̄i).

2. Computation of the placement value UD = 1 − FD̄(YD | XD), where, by a slight abuse of
notation, we are designating it by the same letter used for the unconditional case.

3. Estimation of the cumulative distribution function of UD.

The approach proposed by Inácio de Carvalho and Rodríguez-Álvarez (2018) for estimating the AROC
curve is implemented in function AROC.bnp, and it combines a single-weights dependent Dirichlet
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process mixture of normal distributions in Step 1 and the Bayesian bootstrap in Step 3. Again, here, in
Step 1, we also recommend using cubic B-splines transformations of all continuous covariates. Using
the same notation as before, we model the conditional density as

FD̄(yD̄i | xD̄i) =
LD̄

∑
l=1

ωD̄lΦ(yD̄i | z⊤D̄iβD̄l , σ2
D̄l).

The same prior distributions and default values as in the cROC.bnp function are adopted for βD̄l and
σ2

D̄l . Once Step 1 has been completed, and given a posterior sample from the parameters of interest, the
corresponding realization of the placement value of a diseased subject in the nondiseased population
is easily computed as

U(s)
Dj = 1 − F(s)

D̄ (yDj | xDj) =
LD̄

∑
l=1

ω
(s)
D̄l Φ

(
yDj | z⊤Djβ

(s)
D̄l , σ

2(s)
D̄l

)
, j = 1, . . . , nD, s = 1, . . . , S.

Finally, in Step 3, the cumulative distribution function of
{

U(s)
Dj

}nD

j=1
is estimated through the Bayesian

bootstrap

AROC(s)(p) =
nD

∑
j=1

q(s)j I
(

U(s)
Dj ≤ p

)
, (q(s)1 , . . . , q(s)nD ) ∼ Dirichlet(nD; 1, . . . , 1).

As before, closed-form expressions do exist for the AAUC and pAAUC

AAUC(s) =
∫ 1

0
AROC(s)(p)dp = 1 −

nD

∑
j=1

q(s)j U(s)
Dj ,

pAAUC(s)(u1) =
∫ u1

0
AROC(s)(p)dp = u1 −

nD

∑
j=1

q(s)j min
{

u1, U(s)
Dj

}
,

and the pAAUCTNF (Equation (22)) is computed using numerical integration methods. With regards
to the YI, it is obtained by directly plugging in AROC(s)(p) in Expression (23).

A point estimate for AROC(p) can be obtained by computing the mean of the ensemble {AROC(1)(p), . . . , AROC(S)(p)},
that is,

ÂROC(p) =
1
S

S

∑
s=1

AROC(s)(p),

and the percentiles of the ensemble can be used to provide pointwise credible bands/credible intervals.
The same applies for the AAUC, pAAUC, and YI.

4 Package presentation and illustration

This section describes the main functions in the ROCnReg package and illustrates their usage using,
due to confidentiality reasons, a synthetic dataset mimicking endocrine data from a cross-sectional
study carried out by the Galician Endocrinology and Nutrition Foundation. A detailed description
of the original dataset can be found in Tomé Martínez de Rituerto et al. (2009). The original data
have also been previously analyzed in Rodríguez-Álvarez et al. (2011a,b) and Inácio de Carvalho and
Rodríguez-Álvarez (2018). The synthetic data can be found in the ROCnReg package under the name
endosyn, and a summary of it follows.

R> library("ROCnReg")
R> data("endosyn")
R> summary(endosyn)

cvd_idf age gender bmi
Min. :0.0000 Min. :18.25 Men :1317 Min. :12.60
1st Qu.:0.0000 1st Qu.:29.57 Women:1523 1st Qu.:23.19
Median :0.0000 Median :39.28 Median :26.24
Mean :0.2433 Mean :41.43 Mean :26.69
3rd Qu.:0.0000 3rd Qu.:50.84 3rd Qu.:29.74
Max. :1.0000 Max. :84.66 Max. :46.20

The dataset is comprised of 2840 individuals (1317 men and 1523 women, variable gender), with
an age range between 18 and 85 years old. Variable bmi contains the body mass index (BMI) values,
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and cvd_idf is the variable that indicates the presence (1) or absence (0) of two or more cardiovascular
disease (CVD) risk factors. Following previous studies, the CVD risk factors considered include raised
triglycerides, reduced HD-cholesterol, raised blood pressure, and raised fasting plasma glucose. Note
that from the 2840 individuals, about 24% present two or more CVD risk factors.

Using the ROCnReg package, in the subsequent sections, we will illustrate how to ascertain,
through the pooled ROC curve, the discriminatory capacity of the BMI (which acts as our diagnostic
test in this example) in differentiating individuals with two or more CVD risk factors (those belonging
to the diseased class D) from those having none or just one CVD risk factor (and that therefore belong
to the nondiseased group D̄). We will also show how to evaluate, through the covariate-specific ROC
curve, the possible modifying effect of age and gender on the discriminatory capacity of the BMI.
Finally, the last part of this section focuses on the covariate-adjusted ROC curve as a global summary
measure of the BMI discriminatory ability when taking the age and gender effects into account. In the
Supplementary Material, we show the usage of the package for those methods not described here in
the main text.

Pooled ROC curve

The ROCnReg package allows estimating the pooled ROC curve by means of the four methods
listed in Table 1. Here, we only present the syntax for the functions pooledROC.BB and pooledROC.dpm
that correspond, respectively, to the Bayesian bootstrap estimator and the approach based on a
Dirichlet process mixture (of normal distributions). The function pooledROC.emp, which implements
an empirical estimator, and the function pooledROC.kernel, which is based on kernel methods, are
illustrated in the Supplementary Material. The input arguments in the functions are method-specific
(details can be found in the manual accompanying the package), but in all cases, numerical and
graphical summaries can be obtained by calling the functions print.pooledROC, summary.pooledROC,
and plot.pooledROC, which can be abbreviated by print, summary, and plot. Recall that our aim
is to ascertain, using the endosyn dataset, the discriminatory capacity of the BMI in differentiating
individuals with two or more CVD risk factors from those having just one or none CVD risk factors.

R> set.seed(123, "L'Ecuyer-CMRG") # for reproducibility
R> pROC_dpm <- pooledROC.dpm(marker = "bmi", group = "cvd_idf", tag.h = 0,
+ data = endosyn, standardise = TRUE, p = seq(0, 1, l = 101), ci.level = 0.95,
+ compute.lpml = TRUE, compute.WAIC = TRUE, compute.DIC = TRUE,
+ pauc = pauccontrol(compute = TRUE, focus = "FPF", value = 0.1),
+ density = densitycontrol(compute = TRUE),
+ prior.h = priorcontrol.dpm(L = 10), prior.d = priorcontrol.dpm(L = 10),
+ mcmc = mcmccontrol(nsave = 8000, nburn = 2000, nskip = 1),
+ parallel = "snow", ncpus = 2, cl = NULL)

Before describing in detail the previous call, we first present the control functions that are used. In
particular,

pauccontrol(compute = FALSE, focus = c("FPF", "TPF"), value = 1)

can be used to indicate whether the pAUC should be computed (by default it is not computed), and
in case it is computed (i.e., compute = TRUE ), whether the focus should be placed on restricted FPFs
(pAUC; see (4)) or on restricted TPFs (pAUCTPF; see (5)). In both cases, the upper bound u1 (if focus
is the FPF) or the lower bound v1 (if focus is the TPF) should be indicated in the argument value. In
addition to the pooled ROC curve, AUC, and pAUC (if required), the function pooledROC.dpm also
allows computing the probability density function (PDF) of the test outcomes in both the diseased and
nondiseased groups. In order to do so, we use

densitycontrol(compute = FALSE, grid.h = NA, grid.d = NA)

By default, PDFs are not returned by the function pooledROC.dpm, but this can be changed by setting
compute = TRUE, and through grid.h and grid.d, the user can specify a grid of test results where
the PDFs are to be evaluated in, respectively, the nondiseased and diseased groups. Value NA signals
auto initialization, with default a vector of length 200 in the range of the test results. Regarding the
hyperparameters for the Dirichlet process mixture of normals model (used for the estimation of the
PDFs/CDFs of the test outcomes in each group), they can be controlled using

priorcontrol.dpm(m0 = NA, S0 = NA, a = 2, b = NA, alpha = 1, L = 10)

A detailed description of these hyperparameters is found in Section Methods. Finally, to set the various
parameters controlling the MCMC procedure (which in our case is simply a Gibbs sampler), we use

mcmccontrol(nsave = 8000, nburn = 2000, nskip = 1)
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Here, nsave is an integer value with the total number of scans to be saved, nburn is the number of
burn-in scans, and nskip is the thinning interval. Unless due to memory usage reasons, we recommend
not thinning and instead monitoring the effective sample size of the MCMC chain.

Coming back to the pooledROC.dpm function, through marker, the user specifies the name of the
variable containing the test results. In our case, these are the values of the BMI. The name of the
variable that distinguishes diseased (two or more CVD risk factors, D) from nondiseased individuals
(none or one CVD risk factor, D̄) is represented by the argument group, and the value codifying
nondiseased individuals in group is specified by tag.h. The data argument is a data frame containing
the data and all needed variables. Setting standardise = TRUE (the default) will standardize (i.e.,
subtract the mean and divide by the standard deviation) the test outcomes. The set of FPFs at which
to estimate the pooled ROC curve is specified in the argument p, and argument ci.level allows
specifying the level for the credible intervals (by default: 0.95). The LPML, WAIC, and DIC are
computed by setting, respectively, the arguments compute.lpml, compute.WAIC, and compute.DIC to
TRUE. Argument pauc is an (optional) list of values to replace the default values returned by the
function pauccontrol. Here, we ask for the pAUC to be computed, with the focus on restricted FPFs
and upper bound u1 = 0.1. Similarly, the argument density is an (optional) list of values to replace the
default values returned by the function densitycontrol, as it is the argument mcmc. Through prior.h
and prior.d arguments, we specify the hyperparameters in the nondiseased and diseased groups,
respectively. Again, both arguments are (optional) lists of values to replace the default values returned
by the function priorcontrol.dpm. We shall remember that different hyperparameters’ default values
are set depending on whether test outcomes are standardized or not. Finally, arguments parallel,
ncpus and cl allow performing parallel computations (based on the R-package parallel). In particular,
through parallel, the user specifies the type of parallel operation: either "no" (default), "multicore"
(not available on Microsoft Windows operating systems), or "snow". Argument ncpus is used to
indicate the number of processes to be used in a parallel operation (when parallel = "multicore",
or parallel = "snow"), and cl is an optional parallel or snow cluster to be used when parallel =
"snow". If cl is not supplied (as in our example), a cluster on the local machine is created for the
duration of the call.

A numerical summary of the fitted model can be obtained by calling the function summary, which
provides, among other information, the estimated AUC (posterior mean) and 95% credible interval
(recall that we set in the call to the function ci.level = 0.95) and, if required, the LPML, WAIC, and
DIC, separately, in the nondiseased (denoted here as Group H) and diseased (Group D) groups.

R> summary(pROC_dpm)

Call:
pooledROC.dpm(marker = "bmi", group = "cvd_idf", tag.h = 0, data = endosyn,

standardise = TRUE, p = seq(0, 1, l = 101), ci.level = 0.95,
compute.lpml = TRUE, compute.WAIC = TRUE, compute.DIC = TRUE,
pauc = pauccontrol(compute = TRUE, focus = "FPF", value = 0.1),
density = densitycontrol(compute = TRUE), prior.h = priorcontrol.dpm(L = 10),
prior.d = priorcontrol.dpm(L = 10), mcmc = mcmccontrol(nsave = 8000,

nburn = 2000, nskip = 1), parallel = "snow", ncpus = 2, cl = NULL)

Approach: Pooled ROC curve - Bayesian DPM
----------------------------------------------
Area under the pooled ROC curve: 0.759 (0.74, 0.777)*
Partial area under the pooled ROC curve (FPF = 0.1): 0.168 (0.139, 0.199)*
* Credible level: 0.95

Model selection criteria:
Group H Group D

WAIC 12490.485 4017.063
WAIC (Penalty) 8.431 5.468
LPML -6245.247 -2008.541
DIC 12490.276 4016.920
DIC (Penalty) 8.326 5.396

Sample sizes:
Group H Group D

Number of observations 2149 691
Number of missing data 0 0

To complement these numerical results, the ROCnReg package also provides graphical results that
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can be used to further explore the fitted model. Specifically, the function plot depicts the estimated
pooled ROC curve and AUC (posterior means), jointly with ci.level×100% (pointwise) credible
intervals (here 95%)

R> plot(pROC_dpm, cex.main = 1.5, cex.lab = 1.5, cex.axis = 1.5, cex = 1.5)

The result of the above code is shown in Figure 2.
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Figure 2: Graphical results as provided by the plot.pooledROC function for an object of class
pooledROC.dpm. Posterior mean and 95% pointwise credible band for the pooled ROC curve and
corresponding posterior mean and 95% credible interval for the AUC.

By means of density = densitycontrol(compute = TRUE) in the call to the function, the estimates
of the PDFs of the BMI in both groups are to be returned. This information can be accessed through
component dens in the object pROC_dpm (i.e., pROC_dpm$dens), which is a list with elements h and d
associated with the nondiseased and diseased groups, respectively. Each of the two elements is itself
another list of two components: (1) grid, a vector that contains the grid of test results at which the
PDFs have been evaluated (estimated); and (2) dens, a matrix with the PDFs at each iteration of the
MCMC procedure. We can use these results to plot, e.g., the posterior mean (and 95% pointwise
credible bands) of the PDF of the BMI in the healthy and diseased populations (see Figure 3a obtained
using the R package ggplot2 by Wickham, 2016). As can be observed, the estimated densities obtained
under the DPM method follow very closely the histograms of the data. Further, the estimated densities
available in dens can be used, as advised by Gelman et al. (2013, p. 553), to monitor convergence of the
MCMC chains. The well-known label switching problem often leads to poor mixing of the chains of
the component-specific parameters, but this may not impact convergence and mixing of the induced
density/distribution of interest. For instance, Figure 4 shows the trace plots of the MCMC iterations
(after burn-in) of the PDFs of the BMI in the two groups for different (and randomly selected) values of
the BMI, and Figure 5 depicts the corresponding effective sample sizes and Geweke statistics (obtained
using the R package coda by Plummer et al., 2006). Note that all plots give evidence of a good mixing
and do not suggest a lack of convergence. For conciseness, the R code for reproducing Figures 3a, 4,
and 5 is not provided here but in the replication code that accompanies the paper.

It is worth noting that the function pooledROC.dpm also allows fitting a normal distribution in each
group. This is just a particular case (for which LD = LD̄ = 1) of the more general DPM model. In
order to fit such model, one simply needs to set L = 1 in the prior.d and prior.h arguments. The
code follows.

R> set.seed(123, "L'Ecuyer-CMRG") # for reproducibility
R> pROC_normal <- pooledROC.dpm(marker = "bmi", group = "cvd_idf", tag.h = 0,
+ data = endosyn, standardise = TRUE, p = seq(0, 1, l = 101), ci.level = 0.95,
+ compute.lpml = TRUE, compute.WAIC = TRUE, compute.DIC = TRUE,
+ pauc = pauccontrol(compute = TRUE, focus = "FPF", value = 0.1),
+ density = densitycontrol(compute = TRUE),
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(a) DPM model with 10 mixture components in each group
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(b) Normal model in each group

Figure 3: Histogram of the (observed) BMI and posterior mean jointly along with 95% pointwise
credible bands (red lines) of the PDF of the BMI obtained using (a) a Dirichlet process mixture of
normals model (object pROC_dpm); and (b) a normal model (object pROC_normal). Left: Nondiseased
individuals (none or one CVD risk factor). Right: Diseased individuals (two or more CVD risk factors).

+ prior.h = priorcontrol.dpm(L = 1), prior.d = priorcontrol.dpm(L = 1),
+ mcmc = mcmccontrol(nsave = 8000, nburn = 2000, nskip = 1),
+ parallel = "snow", ncpus = 2)

For the sake of space, we omit from the summary the call to the function

R> summary(pROC_normal)

Call: [...]

Approach: Pooled ROC curve - Bayesian DPM
----------------------------------------------
Area under the pooled ROC curve: 0.748 (0.728, 0.768)*
Partial area under the pooled ROC curve (FPF = 0.1): 0.224 (0.194, 0.253)*
* Credible level: 0.95

Model selection criteria:
Group H Group D

WAIC 12639.952 4049.004
WAIC (Penalty) 2.431 2.267
LPML -6319.976 -2024.502
DIC 12639.505 4048.714
DIC (Penalty) 1.986 1.987

Sample sizes:
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Figure 4: Trace plots of the MCMC draws (after burn-in) of the PDFs of the BMI based on the model
pROC_dpm. Results are shown separately for the nondiseased and diseased populations and for different
values of the BMI.

Group H Group D
Number of observations 2149 691
Number of missing data 0 0

The fit of the DPM and normal models in each group can be compared on the basis of the WAIC, DIC,
and/or the LPML. Remember that for the LPML, the higher its value, the better the model fit, while for
the WAIC and DIC, it is the other way around. By comparing these values, provided in the summary
of each fitted model, we can conclude that the three criteria favor, in both the diseased and (especially
in the) nondiseased groups, the more general DPM model. This is also corroborated by the plot of the
fitted densities in each group shown in Figure 3b.

We now estimate the pooled ROC curve using the Bayesian bootstrap estimator (function pooledROC.BB),
and comparisons with the results obtained using the DPM approach are provided.

R> set.seed(123, "L'Ecuyer-CMRG") # for reproducibility
R> pROC_BB <- pooledROC.BB(marker = "bmi", group = "cvd_idf", tag.h = 0, data = endosyn,
+ p = seq(0, 1, l = 101), pauc = pauccontrol(compute = TRUE, focus = "TPF", value = 0.8),
+ B = 5000, ci.level = 0.95, parallel = "snow", ncpus = 2)

R> summary(pROC_BB)

Call: [...]

Approach: Pooled ROC curve - Bayesian bootstrap
----------------------------------------------
Area under the pooled ROC curve: 0.76 (0.74, 0.779)*
Partial area under the pooled ROC curve (FPF = 0.1): 0.17 (0.14, 0.201)*
* Credible level: 0.95

Sample sizes:
Group H Group D

Number of observations 2149 691
Number of missing data 0 0

Note that the posterior means for the AUC and pAUC obtained using the DPM method (0.759 and
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Figure 5: Effective sample size and Geweke statistic of the MCMC chains (after burn-in) and of the
PDFs of the BMI based on model pROC_dpm in the nondiseased and diseased populations. In both
cases, results are shown along BMI values.

0.168, respectively) and the Bayesian bootstrap approach (0.760 and 0.170) are almost identical. This
can also be observed when plotting the estimated ROC curves under the two methods (Figure 6).

We finish this section by showing how to use ROCnReg to obtain an (optimal) threshold value
which could be further used to ‘diagnose’ an individual as diseased (two or more CVD risk factors)
or healthy/nondiseased (none or only one CVD risk factor). To that aim, and for pooledROC objects (i.e.,
those obtained using functions pooledROC.dpm, pooledROC.BB, pooledROC.emp, and pooledROC.kernel),
we use the function compute.threshold.pooledROC, which allows obtaining (optimal) threshold val-
ues using two criteria: the YI and the one that sets a target value for the FPF. For illustration, we show
here the results using the YI criterion.

R> th_pROC_dmp <- compute.threshold.pooledROC(pROC_dpm, criterion = "YI",
+ ci.level = 0.95, parallel = "snow", ncpus = 2)
R> th_pROC_dmp

$call
compute.threshold.pooledROC(object = pROC_dpm, criterion = "YI",

ci.level = 0.95, parallel = "snow", ncpus = 2)

$thresholds
est ql qh

26.46877 26.07129 26.85029

$YI
est ql qh

0.4045776 0.3721684 0.4366298

$FPF
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Figure 6: Estimated ROC curve using the Bayesian bootstrap approach (in black) and the DPM method
(in red). Solid lines represent the posterior means and dashed lines the 95% pointwise credible bands.

est ql qh
0.3808336 0.3469580 0.4159478

$TPF
est ql qh

0.7854112 0.7528575 0.8161865

The function returns the posterior mean (est) and ci.level×100% (here 95% since ci.level =
0.95) credible interval (lower bound: ql, upper bound: qh) for the YI and associated threshold value,
as well as for the FPF and TPF associated with this cutoff value. For our example, the (posterior mean
of the) YI is 0.40, and the YI-based threshold value is a BMI value of 26.5, which falls in the nutritional
status defined as pre-obesity by the World Health Organization. By using this YI-based threshold
value, we would have an FPF of 0.38 and a TPF of 0.79.

Covariate-specific ROC curve

We now turn our attention to the inclusion of covariates in ROC analysis. As shown in Table 1, with
ROCnReg, the user can estimate the covariate-specific ROC curve by means of three approaches.
As for the functions in ROCnReg for estimating the pooled ROC curve, the input arguments are
method-specific, and we refer the reader to the manual for details. For all methods, numerical and
graphical summaries are obtained using functions print.cROC, summary.cROC, and plot.cROC. Here,
we describe how to use the function cROC.bnp that implements the Bayesian nonparametric approach
for estimating the covariate-specific ROC curve detailed in Section Methods. Also, for objects of this
class, ROCnReg provides the function predictive.checks, which implements tools for assessing
model fit via posterior predictive checks.

Recall that, when including covariate information in ROC analysis, interest resides in evaluating
if and how the discriminatory capacity of the test varies with such covariates. In particular, in our
endocrine study, we aim at evaluating the possible effect of both age and gender in the discriminatory
capacity of the BMI. In what follows, with this aim in mind, two different models are fitted using the
function cROC.bnp. One which considers a normal distribution in each group and that incorporates the
age effect in a linear way and a second one which caps the maximum number of mixture components
in each group at 10 (i.e., LD = LD̄ = 10) and that models the age effect using cubic B-splines (and
thus allows for a nonlinear effect of age). Following Rodríguez-Álvarez et al. (2011a,b), both models
consider the interaction between age and gender. For clarity, we first focus on the code that models
the age effect in a linear way and use it to describe in detail the different arguments of the cROC.bnp
function.

R> # Dataframe for predictions
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R> agep <- seq(22, 80, l = 30)
R> endopred <- data.frame(age = rep(agep,2), gender = factor(rep(c("Women", "Men"),
+ each = length(agep))))

R> set.seed(123, "L'Ecuyer-CMRG") # for reproducibility
R> cROC_bp <- cROC.bnp(formula.h = bmi ~ gender*age, formula.d = bmi ~ gender*age,
+ group = "cvd_idf", tag.h = 0, data = endosyn, newdata = endopred,
+ standardise = TRUE, p = seq(0, 1, l = 101), ci.level = 0.95, compute.lpml = TRUE,
+ compute.WAIC = TRUE, compute.DIC = TRUE, pauc = pauccontrol(compute = FALSE),
+ prior.h = priorcontrol.bnp(L = 1), prior.d = priorcontrol.bnp(L = 1),
+ density = densitycontrol(compute = TRUE),
+ mcmc = mcmccontrol(nsave = 8000, nburn = 2000, nskip = 1),
+ parallel = "snow", ncpus = 2)

As can be seen, many arguments coincide with those of the function pooledROC.dpm (described
in the previous section). We thus focus here on those that are specific to cROC.bnp. The arguments
formula.h and formula.d are formula objects specifying the model for the regression function (see
Equation (28)) in, respectively, the nondiseased and diseased groups. They are similar to the formula
used with the glm function, except that nonlinear functions (modeled by means of cubic B-splines) can
be added using function f (an example will follow later in this section). Note that in both cases, the
left-hand side of the formulas should include the name of the test/marker (in our case bmi). In our
application, and for both groups, the model for the component’s means includes, in addition to the
linear effect of age and gender, the (linear) interaction between these two covariates (i.e., gender*age
≡ gender + age + gender:age). Through the newdata argument, the user can specify a new data
frame containing the values of the covariates at which the covariate-specific ROC curve and AUC (and
also pAUC and PDFs, if required) are to be computed. Finally, prior.h (the same holds for prior.d) is
a (optional) list of values to replace the defaults returned by priorcontrol.bnp, which allows setting
the hyperparameters for the single-weights dependent Dirichlet process mixture of normals model
(see Section Methods and the manual accompanying the package for more details)

priorcontrol.bnp(m0 = NA, S0 = NA, nu = NA, Psi = NA, a = 2, b = NA,
alpha = 1, L = 10)

In our example, we only modified the upper bound for the number of components in the mixture
model, which by default is 10, and set it to 1.

In this case, the summary of the fitted model provides the following information.

R> summary(cROC_bp)

Call: [...]

Approach: Conditional ROC curve - Bayesian nonparametric
----------------------------------------------------------

Parametric coefficients
Group H:

Post. mean Post. quantile 2.5% Post. quantile 97.5%
(Intercept) 26.1459 25.8765 26.4096
genderWomen -0.9160 -1.2726 -0.5680
age 1.1949 0.9180 1.4690
genderWomen:age 1.1948 0.8455 1.5394

Group D:
Post. mean Post. quantile 2.5% Post. quantile 97.5%

(Intercept) 29.1865 28.7625 29.6115
genderWomen 2.0826 1.3705 2.7665
age 0.6578 0.2162 1.0904
genderWomen:age -0.7711 -1.4655 -0.0956

ROC curve:
Post. mean Post. quantile 2.5% Post. quantile 97.5%

(Intercept) -0.6959 -0.8177 -0.5776
genderWomen -0.6863 -0.8695 -0.5046
age 0.1229 0.0045 0.2415
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genderWomen:age 0.4499 0.2745 0.6245
b 0.9391 0.8824 0.9975

Model selection criteria:
Group H Group D

WAIC 12174.986 4007.980
WAIC (Penalty) 6.283 5.646
LPML -6087.492 -2003.990
DIC 12173.664 4007.329
DIC (Penalty) 4.994 5.053

Sample sizes:
Group H Group D

Number of observations 2149 691
Number of missing data 0 0

The first aspect to note is that, in this case, the summary function does not provide the estimated AUC
as there is one (possibly different) AUC for each combination of covariate values. Also, given that:
(1) only one component has been considered for modeling the CDFs of test results in the diseased
and nondiseased groups, and (2) covariate effects have been modeled in a linear way, the summary
function provides the posterior mean (and quantiles) of the (parametric) coefficients associated with
the regression functions (Equation (30)) and with the covariate-specific ROC curve (Equation (32)). We
note that since in the call to the function we have specified standardise = TRUE (and consequently
both the test outcomes and covariates are standardized), the regression coefficients are on the scale of
the standardized covariates. If we focus on the coefficients for the covariate-specific ROC curve, it
seems that the discriminatory capacity of the BMI decreases with age, with the decrease being more
pronounced in women (note that the expression of the covariate-specific ROC curve in Equation (31)
implies that positive coefficients correspond to a decrease in discriminatory capacity). These results are
possibly better judged by plotting the estimated covariate-specific ROC curves and associated AUCs.
This can be done using the plot function. For the covariate-specific ROC curve, the depicted graphics
will depend on the number and nature of the covariates included in the analyses. In particular, for our
application, we obtain, separately for men and women, the covariate-specific ROC curves (and AUCs)
along age. These are shown in Figure 7, obtained using the code

R> op <- par(mfrow = c(2,2))
R> plot(cROC_sp, ask = FALSE)
R> par(op)

Although in this example we have modeled the age effect linearly and only one mixture component
was considered, ROCnReg also allows for modeling the effect of continuous covariates in a nonlinear
way, either using cubic B-spline basis expansions (through the function cROC.bnp) or kernel-based
smoothers (via the function cROC.kernel which is described in the Supplementary Material). Also, as
noted before, using only one mixture component for the single-weights dependent Dirichlet process
mixture of normals model (function cROC.bnp) is equivalent to considering a (Bayesian) normal model,
which might be too restrictive for most data applications. In what follows, we provide more flexibility
to the model for the covariate-specific ROC curve by means of (1) increasing the number of mixture
components and (2) modeling the age effect in a nonlinear way (recall our considerations in Section
Covariate-specific ROC curve about the lack of flexibility of the single-weights dependent Dirichlet
process mixture of normals model when covariates effects on the components’ means are modeled
linearly). The former is done by modifying the value of L in the arguments prior.h and prior.d, with
10 being the default value. Regarding the latter, this is done by making use of the function f when
specifying the component’s mean functions through formula.h and formula.d. In particular, in our
application we are interested in modeling the factor-by-curve interaction between age and gender (i.e.,
we model the age effect ‘separately’ for men and women). This is done using, e.g., bmi ˜ gender +
f(age,by = gender,K = c(3,5)). Through argument K, we indicate the number of internal knots
used for constructing the cubic B-spline basis used to approximate the nonlinear effect of age (with the
quantiles of age used to anchor the knots). Note that we can specify a different number of internal
knots for men and women (K = c(3,5)), where the order of vector K should match the ordering of the
levels of the factor gender. We also note that to assist in the selection of the number of interior knots
(in ROCnReg, the location is always based on the quantiles of the corresponding covariates), the user
can make use of the WAIC, DIC, and/or LPML. For instance, for this application, we fitted different
models with a different number of internal knots, and we have chosen the model that provided the
lowest WAIC (this was done in both the nondiseased and diseased populations, and we remark that
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Figure 7: Graphical results as provided by the plot.cROC function for an object of class cROC.bnp.
Results for the model that includes the linear interaction between age and gender and one mixture
component. Top row: Posterior mean of the covariate-specific ROC curve along age, separately for men
and women. Bottom row: Posterior mean and 95% pointwise credible band for the covariate-specific
AUC along age, separately for men and women.

the number of knots does not need to be the same in the two populations). The final model is shown
below.

R> # Levels of gender, and its ordering.
R> # Needed if we want to specify different
R> # number of knots for men and women
R> levels(endosyn$gender)

[1] "Men" "Women"

R> set.seed(123, "L'Ecuyer-CMRG") # for reproducibility
R> cROC_bnp <- cROC.bnp(
+ formula.h = bmi ~ gender + f(age, by = gender, K = c(0,0))
+ formula.d = bmi ~ gender + f(age, by = gender, K = c(4,4)),
+ group = "cvd_idf", tag.h = 0, data = endosyn, newdata = endopred,
+ standardise = TRUE, p = seq(0, 1, l = 101), ci.level = 0.95, compute.lpml = TRUE,
+ compute.WAIC = TRUE, compute.DIC = TRUE, pauc = pauccontrol(compute = FALSE),
+ prior.h = priorcontrol.bnp(L = 10), prior.d = priorcontrol.bnp(L = 10),
+ density = densitycontrol(compute = TRUE),
+ mcmc = mcmccontrol(nsave = 8000, nburn = 2000, nskip = 1),
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+ parallel = "snow", ncpus = 2)

R> summary(cROC_bnp)

Call: [...]

Approach: Conditional ROC curve - Bayesian nonparametric
----------------------------------------------------------

Model selection criteria:
Group H Group D

WAIC 11833.000 3909.828
WAIC (Penalty) 31.236 38.583
LPML -5916.766 -1955.449
DIC 11829.750 3904.532
DIC (Penalty) 29.611 35.934

Sample sizes:
Group H Group D

Number of observations 2149 691
Number of missing data 0 0

R> op <- par(mfrow = c(2,2))
R> plot(cROC_sp, ask = FALSE)
R> par(op)

The graphical results are shown in Figure 8. Note that, especially for women, age displays a
marked nonlinear effect. Recall that for objects of class cROC.bnp, and if required in the call to the
function, the summary function provides, separately for the diseased and nondiseased/healthy groups,
the WAIC, LPML, and DIC. Note that, in both cases, the three criteria support the use of the more
flexible model that uses cubic B-splines and 10 mixture components for modeling the distribution of
the BMI (model cROC_bnp) over the more restrictive Bayesian normal linear model (model cROC_bp).
Because the WAIC, LPML, and DIC are relative criteria, posterior predictive checks are also available
in ROCnReg through the function predictive.checks. Specifically, the function generates replicated
datasets from the posterior predictive distribution in the two groups D and D̄ and compares them to
the test values (BMI values in our application) using specific statistics. For the choice of such statistics,
we follow Gabry et al. (2019), who suggest choosing statistics that are ‘orthogonal’ to the model
parameters. Since we are using a location-scale mixture of normals model for the test outcomes, we
use the skewness and kurtosis here and check how well the posterior predictive distribution captures
these two quantities.

R> op <- par(mfrow = c(2,3))
R> pc_cROC_bp <- predictive.checks(cROC_bp,
+ statistics = c("kurtosis", "skewness"), devnew = FALSE)
R> par(op)

R> op <- par(mfrow = c(2,3))
R> pc_cROC_bnp <- predictive.checks(cROC_bnp,
+ statistics = c("kurtosis", "skewness"), devnew = FALSE)
R> par(op)

Results are shown in Figure 9. As can be seen, the model that includes the factor-by-curve interaction
between age and gender and 10 mixture components performs quite well in capturing both quantities,
while the Bayesian normal linear model fails to do so. Also shown in Figure 9 (and provided by
function predictive.checks) are the kernel density estimates of 500 randomly selected datasets drawn
from the posterior predictive distribution, in each group, compared to the kernel density estimate of
the observed BMI (in each group). Again, the more flexible model, as opposed to the Bayesian normal
linear model, is able to simulate data that are very much similar to the observed BMI values.

As for the pooled ROC curve, ROCnReg also provides a function that allows obtaining (optimal)
threshold values for the covariate-specific ROC curve. For illustration, instead of the threshold values
based on the Youden index, we now use the criterion that sets a target value for the FPF. The code for
model cROC_bnp, when setting the FPF = 0.3, is as follows.

R> th_fpf_cROC_bnp <- compute.threshold.cROC(cROC_bnp, criterion = "FPF", FPF = 0.3,
+ newdata = endopred, ci.level = 0.95, parallel = "snow", ncpus = 2)
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Figure 8: Graphical results as provided by the plot.cROC function for an object of class cROC.bnp.
Results for the model that includes the factor-by-curve interaction between age and gender and
10 mixture components. Top row: Posterior mean of the covariate-specific ROC curve along age,
separately for men and women. Bottom row: Posterior mean and 95% pointwise credible band for the
covariate-specific AUC along age, separately for men and women.

R> names(th_fpf_cROC_bnp)

[1] "newdata" "thresholds" "TPF" "FPF" "call"

In addition to the data frame newdata containing the covariate values at which the thresholds are
computed, the function compute.threshold.cROC also returns the covariate-specific thresholds corre-
sponding to the specified FPF as well as the covariate-specific TPF attached to these thresholds. In both
cases, the function returns the posterior mean and the ci.level×100% (here 95%) pointwise credible
intervals. Although ROCnReg does not provide a function for plotting the results obtained using
compute.threshold.cROC, graphical results can be easily obtained. For simplicity, we only show here
the code for the covariate-specific threshold values (thresholds), but a similar code can be used to plot
the covariate-specific TPFs. Both plots are shown in Figure 10. As can be observed, for an FPF of 0.3,
the BMI age-specific thresholds tend to increase with age both for men and women, although for the
latter, there is a slight decrease after the age of about 70 years old. The age-specific TPFs corresponding
to the thresholds for which the FPF is 0.3 show a nonlinear behavior, and these are in general higher
for women than for men (of the same age).

R> df <- data.frame(age = th_fpf_cROC_bnp$newdata$age,
+ gender = th_fpf_cROC_bnp$newdata$gender, y = th_fpf_cROC_bnp$thresholds[[1]][,"est"],
+ ql = th_fpf_cROC_bnp$thresholds[[1]][,"ql"],
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(a) Model including the linear interaction between age and gender and one component
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(b) Model including the factor-by-curve interaction between age and gender and 10 mixture components

Figure 9: Graphical results as provided by the predictive.checks function for an object of class
cROC.bnp. Histograms of the statistics skewness and kurtosis computed from 8000 draws from the
posterior predictive distribution in the diseased and nondiseased groups. The red line is the estimated
statistic from the observed BMI values. The right-hand side plots show the kernel density estimate of
the observed BMI (solid black line), jointly with the kernel density estimates for 500 simulated datasets
drawn from the posterior predictive distributions.

+ qh = th_fpf_cROC_bnp$thresholds[[1]][,"qh"])

R> g0 <- ggplot(df, aes(x = age, y = y, ymin = ql, ymax = qh)) + geom_line() +
+ geom_ribbon(alpha = 0.2) +
+ labs(title = "Covariate-specific thresholds for an FPF = 0.3",
+ x = "Age (years)", y = "BMI") +
+ theme(strip.text.x = element_text(size = 20),
+ plot.title = element_text(hjust = 0.5, size = 20),
+ axis.text = element_text(size = 20),
+ axis.title = element_text(size = 20)) + facet_wrap(~gender)
R> print(g0)

For conciseness, we have not shown here how to perform convergence diagnostics of the MCMC

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 549

Men Women

20 40 60 8020 40 60 80

25.0

27.5

30.0

32.5

35.0

Age (years)

B
M

I

Covariate−specific thresholds for a FPF = 0.3

(a) BMI threshold values

Men Women

20 40 60 8020 40 60 80
0.00

0.25

0.50

0.75

1.00

Age (years)

T
P

F

TPF attached to the thresholds for a FPF = 0.3

(b) True positive fractions

Figure 10: Top row: Posterior mean (solid black line) and 95% pointwise credible band for the BMI
threshold values, along age, corresponding to an FPF of 0.3. Bottom row: Posterior mean (solid black
line) and 95% pointwise credible band of the TPFs, along age, corresponding to the BMI threshold
values for which FPF = 0.3.

chains for models fitted using the function cROC.bnp. In very much the same way as shown in the
previous section for the object pROC_dpm, using the information contained in component dens in the
list of returned values (if required), one can produce trace plots of the conditional densities at some
sampled values, as well as obtain the corresponding effective sample sizes and Geweke statistics.
Some results are provided in the Supplementary Material, and the associated code can be found in the
replication code that accompanies this paper.

Covariate-adjusted ROC curve

In this section, we illustrate how to conduct inference about the covariate-adjusted ROC curve using
ROCnReg. Similar to the covariate-specific ROC curve, three approaches are available for estimating
the AROC curve. The function AROC.bnp is illustrated below, while AROC.sp and AROC.kernel are
exemplified in the Supplementary Material.

Recall that the AROC curve is a global summary measure of diagnostic accuracy that takes
covariate information into account. In the context of our endocrine application, we seek to study
the overall discriminatory capacity of the BMI for detecting the presence of CVD risk factors when
adjusting for age and gender. Here, we focus on how to estimate the AROC curve using the AROC.bnp
function. The function syntax is exactly similar to the one of cROC.bnp, with the only difference being
that we only need to specify the arguments related to the nondiseased population. The code and
respective summary follow.

R> set.seed(123, "L'Ecuyer-CMRG") # for reproducibility
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R> AROC_bnp <- AROC.bnp(
+ formula.h = bmi ~ gender + f(age, by = gender, K = c(0,0))
+ group = "cvd_idf", tag.h = 0, data = endosyn, standardise = TRUE,
+ p = seq(0, 1, l = 101), ci.level = 0.95, compute.lpml = TRUE, compute.WAIC = TRUE,
+ compute.DIC = TRUE, pauc = pauccontrol(compute = FALSE),
+ prior.h = priorcontrol.bnp(L = 10), density = densitycontrol(compute = TRUE),
+ mcmc = mcmccontrol(nsave = 8000, nburn = 2000, nskip = 1),
+ parallel = "snow", ncpus = 2)

R> summary(AROC_bnp)

Call: [...]

Approach: AROC Bayesian nonparametric
----------------------------------------------
Area under the covariate-adjusted ROC curve: 0.656 (0.629, 0.684)*
* Credible level: 0.95

Model selection criteria:
Group H

WAIC 11833.000
WAIC (Penalty) 31.236
LPML -5916.766
DIC 11829.750
DIC (Penalty) 29.611

Sample sizes:
Group H Group D

Number of observations 2149 691
Number of missing data 0 0

The area under the AROC curve is 0.656 (95% credible interval: (0.629, 0.684)) thus revealing a
reasonable good ability of the BMI to detect the presence of CVD risk factors when teasing out the
age and gender effects. As for the pooled ROC curve and the covariate-specific ROC curve, a plot
function is also available (result in Figure 11a).

R> plot(AROC_bnp, cex.main = 1.5, cex.lab = 1.5, cex.axis = 1.5, cex = 1.3)

Finally, we compare the AROC curve with the pooled ROC curve that was obtained earlier by using a
DPM model with 10 components in each group. In Figure 11b, we show the plots of the two curves,
and, as can be noticed, the pooled ROC curve lies well above the AROC curve, thus evidencing the
need for incorporating covariate information into the analysis.

R> plot(AROC_bnp$p, AROC_bnp$ROC[,1], type = "l", xlim = c(0,1), ylim = c(0,1),
+ xlab = "FPF", ylab = "TPF", main = "Pooled ROC curve vs AROC curve", cex.main = 1.5,
+ cex.lab = 1.5, cex.axis = 1.5, cex = 1.5)
R> lines(AROC_bnp$p, AROC_bnp$ROC[,2], col = 1, lty = 2)
R> lines(AROC_bnp$p, AROC_bnp$ROC[,3], col = 1, lty = 2)
R> lines(pROC_dpm$p, pROC_dpm$ROC[,1], col = 2)
R> lines(pROC_dpm$p, pROC_dpm$ROC[,2], col = 2, lty = 2)
R> lines(pROC_dpm$p, pROC_dpm$ROC[,3], col = 2, lty = 2)
R> abline(0, 1, col = "grey", lty = 2)

Computational aspects

We finish this section with some comments on computational aspects. In our experience, the methods
with the largest computing times are those implemented in cROC.bnp when LD̄ > 1 and in cROC.kernel
when confidence bands are to be constructed. In the first case, the main reason behind the computa-
tional burden is the need to invert FD̄ (· | x) in order to obtain the covariate-specific ROC curve (see
equation (10)). Note that when LD̄ > 1, the conditional distribution function in the nondiseased group
is given by a mixture of normal distributions, and the corresponding quantile function needs to be
computed for each covariate(s) value we might be interested in and for each iteration of the Gibbs
sampler procedure. Regarding the cROC.kernel function, the computing time is mainly driven by the
number of bootstrap samples used for constructing the confidence bands. In Table 2, we show the
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Figure 11: (a) Age and gender-adjusted ROC curve: posterior mean and 95% pointwise credible band.
(b) Age and gender-adjusted ROC curve (in black) and pooled ROC curve (estimated using a DPM of
normals model) (in red). Solid lines represent the posterior means and dashed lines the 95% pointwise
credible bands.

time, in seconds, needed for fitting the pooled, the covariate-specific, and the covariate-adjusted ROC
curve using the Bayesian nonparametric and the kernel approaches for the synthetic endocrine data
and when both parallel (with 2 and 4 processes) and no parallel options are used. We note that for
the Bayesian approaches, we also computed the densities/conditional densities, as well as the WAIC,
LPML, and DIC, which further increase the computing time (in the case of the AROC curve, these
were only computed in the nondiseased population). With respect to the kernel-based approach (in
this case, the fit is done separately for men and women and the corresponding results are presented
in the Supplementary Material), we have used 500 bootstrap samples to construct the confidence
bands. As it can be appreciated, for these two intense tasks, using 4 processes drastically improves
the computation time. All computations were performed in a iMac with 3.6GHz quad core Intel i7
processor and 32GB RAM running under a macOS Catalina 10.15.5 operating system.

No parallel Snow (2 cores) Snow (4 cores)
pooledROC.dpm 138 118 111

pooledROC.kernel 376 196 105
cROC.bnp 2052 1117 680

cROC.kernel
Men: 1159 Men: 528 Men: 279

Women: 1885 Women: 916 Women: 466
AROC.bnp 126 115 112

AROC.kernel
Men: 847 Men: 404 Men: 214

Women: 1707 Women: 833 Women: 438

Table 2: Time in seconds (rounded to the nearest second) needed to fit the pooled, the covariate-
specific, and the covariate-adjusted ROC curve for the Bayesian nonparametric and kernel approaches.

5 Summary and future plans

In this paper, we have introduced the capabilities of the R package ROCnReg for conducting in-
ference about the pooled ROC curve, the covariate-specific ROC curve, and the covariate-adjusted
ROC curve and their associated summary indices. As we have illustrated, the current version of the
package provides several options for estimating ROC curves, both under frequentist and Bayesian
paradigms, either parametrically, semiparametrically, or nonparametrically. To the best of our knowl-
edge, this is the first software package implementing Bayesian inference for ROC curves. Several
additions/extensions are planned in the future, and these, among others, include:
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• Implement the most time-consuming parts in C or C++.

• Incorporate methods for non-binary disease status (e.g., no disease, mild disease, severe disease).
That is, implement ROC surface models.

• Implement new (optimal) threshold criteria (e.g., YI including costs).

6 Computational details

The results in this paper were obtained using R 4.0.3 with the ROCnReg 1.0-5 package. The ROCnReg
package has several dependencies: graphics, grDevices, parallel, splines, stats, moments (Komsta and
Novomestky, 2015), nor1mix (Maechler, 2019), Matrix (Bates and Maechler, 2019), spatstat (Baddeley
and Turner, 2005), np (Hayfield and Racine, 2008), lattice (Sarkar, 2008), MASS (Venables and Ripley,
2002), and pbivnorm (Genz and Kenkel, 2015). R itself and all packages used are available from the
Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/.
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