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stratamatch: Prognostic Score Stratification
Using a Pilot Design
by Rachael C. Aikens, Joseph Rigdon, Justin Lee, Michael Baiocchi, Andrew B. Goldstone, Peter Chiu,
Y. Joseph Woo, and Jonathan H. Chen

Abstract Optimal propensity score matching has emerged as one of the most ubiquitous approaches
for causal inference studies on observational data. However, outstanding critiques of the statistical
properties of propensity score matching have cast doubt on the statistical efficiency of this technique,
and the poor scalability of optimal matching to large data sets makes this approach inconvenient
if not infeasible for sample sizes that are increasingly commonplace in modern observational data.
The stratamatch package provides implementation support and diagnostics for ‘stratified matching
designs,’ an approach that addresses both of these issues with optimal propensity score matching for
large-sample observational studies. First, stratifying the data enables more computationally efficient
matching of large data sets. Second, stratamatch implements a ‘pilot design’ approach in order to
stratify by a prognostic score, which may increase the precision of the effect estimate and increase
power in sensitivity analyses of unmeasured confounding.

1 Introduction

To make causal inference from observational data, researchers must address concerns that effect
estimates may be biased due to confounding factors – baseline characteristics of the individuals in the
study that influence both their selection of treatment and their probable outcome. Matching methods
seek to account for this self-selection by grouping treated and control individuals with similar baseline
characteristics. One of the most common such methods, propensity score matching, pairs individuals
who appear to have had similar probabilities of receiving the treatment according to their baseline
characteristics (Rosenbaum and Rubin, 1983), with the goal of coercing the data set into a form that
resembles a fully-randomized controlled trial (King and Nielsen, 2019; Rosenbaum et al., 2010; Hernán
and Robins, 2016). However, propensity score matching can only address bias due to measured baseline
covariates, necessitating sensitivity analyses to interrogate the potential of bias due to unmeasured
confounding (Rosenbaum, 2005b; Rosenbaum et al., 2010).

In their provocative article “Why Propensity Should Not Be Used for Matching,” King and Nielson
argue that the fully randomized controlled trial – the design emulated by propensity score matching
– is less statistically efficient than the block-randomized controlled experiment (King and Nielsen,
2019). In block-randomized designs, individuals are stratified by prognostically important covariates
(e.g., for a clinical trial: sex, age group, smoking status) prior to randomization in order to reduce the
heterogeneity between the treatment and control groups. In the experimental context, these efforts to
reduce heterogeneity between compared groups help to increase the precision of the treatment effect
estimate. In observational settings, reducing this type of heterogeneity not only improves precision
but increases the robustness of the study’s conclusions to being explained away by the possibility of
unobserved confounding (Rosenbaum, 2005a; Aikens et al., 2020). The stratified matching design –
in which observations are stratified prior to matching within strata – attempts to emulate the block-
randomized controlled trial design in the observational context in order to secure these statistical
benefits over pure propensity score matching. In addition, since the computation required for optimal
matching can be quite time-consuming for studies of more than a few thousand observations, stratified
matching designs could greatly improve the scalability of optimal matching. While the worst-case
computational complexity of optimal matching is unfavorable, the process of matching a stratified
data set with a constant stratum size scales much more effectively with sample size (for a summary of
empirical run-times, see section 2.5.3).

While a variety of packages in R (R Core Team, 2019) exist for matching subjects in observational
studies, limited support exists for researchers seeking to implement a stratified matching design.
The popular MatchIt package (Ho et al., 2011) is a user-friendly option for common propensity
score matching designs and related approaches, optmatch (Hansen and Klopfer, 2006) and DOS2
(Rosenbaum, 2019) are a powerful combination for implementing a variety of more complicated
optimal matching schemes, and nearfar (Rigdon et al., 2018) implements a different form of matching
for the instrumental variable study. The primary goal of stratamatch is to make stratified matching
and prognostic score designs accessible to a wider variety of applied researchers and to suggest a suite
of diagnostic tools for the stratified observational study. In favorable settings, these designs could not
only increase the precision and robustness of inference but could facilitate the optimal matching of
sample sizes for which this technique was previously computationally impractical.
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This paper discusses the methodological contributions of stratamatch – in particular, the imple-
mentation of a novel pilot design approach suggested by Aikens et al. (2020) (section 2.2) – and
summarizes the package implementation (Section 2.3) with illustrative examples (Section 2.4). While
stratamatch may substantially improve the scalability of optimal matching for some large data sets,
the main objective of the package is not to implement a computationally complex task but to make
sophisticated study design tools and concepts accessible to a wide variety of researchers.

2 Study design

A prognostic score stratification pilot design

Stratifying a data set based on baseline variation prior to matching reduces the heterogeneity between
matched sets with respect to that baseline variation. But what baseline characteristics should be used?
One option is to select prognostically important covariates by hand, based on expert knowledge.
However, in practice, this “manual” stratification process often produces strata that vary wildly in size
and composition. Some strata may be so small or so imbalanced in their composition of treated and
control individuals that it is difficult to find high-quality matches, or many observations are thrown
away. Other strata may be so large that matching within them is still computationally infeasible.

The auto_stratify function in stratamatch divides subjects into strata using a prognostic score
(see Hansen (2008)), which summarizes the baseline variation most important to the outcome. In
addition to producing strata of more regular size and composition, balancing treatment and control
groups based on the prognostic score may confer several statistical benefits: increasing precision
(Aikens et al., 2020; Leacy and Stuart, 2014), providing some protection against mis-specification of
the propensity score (Leacy and Stuart, 2014; Antonelli et al., 2018), and decreasing the susceptibility
of an observed effect to being explained away by unobserved confounding (Rosenbaum and Rubin,
1983; Aikens et al., 2020). However, fitting the prognostic score on the same data set raises concerns of
overfitting and may lead to biased effect estimates (Hansen, 2008; Abadie et al., 2018). For this reason,
(Aikens et al., 2020) suggest using a pilot design for estimating the prognostic score.

Central to the pilot design concept is maintaining separation between the design and analysis
phases of a study (see table 1, or for more information Goodman et al. (2017) and Rubin (2008)).
Using an observational pilot design, the researchers partition their data set into an analysis set and
a held-aside pilot set . Outcome information in the pilot set can be observed (e.g. to fit a prognostic
score), and the information gained can be used to inform the study design. Subsequently, in order to
preserve the separation of the study design from the study analysis, the individuals from the pilot set
are omitted from the main analysis (i.e., they are not reused in the analysis set). The primary insight of
the pilot design is that reserving all of the observations in a study for the analysis phase (i.e., in the
analysis set) is not always better. Rather, clever use of data in the design phase (i.e., in the pilot set)
may facilitate the design of stronger studies.

In the stratamatch approach, a random subsample of controls is extracted as a pilot set to fit a
prognostic model, and that model is then used to estimate prognostic scores on the mix of control and
treated individuals in the analysis set. The observations in the analysis set can then be stratified based
on the quantiles of the estimated prognostic score and matched by propensity score or Mahalanobis
distance within strata (see section 2.3).

When to use this approach

Aikens et al. (2020) describe the scenarios in which a prognostic score matching pilot design is most
useful. Briefly, the stratamatch approach is best for large data sets (i.e., thousands to millions of
observations), especially when the number of control observations is plentiful. This technique may be
particularly useful when modeling a prognostic score with the measured covariates is straightforward,
and when propensity score alone is likely to exclude certain aspects of variation highly associated with
outcome but unassociated with treatment assignment. While computational gains vary, stratification
tends to noticeably accelerate matching for sample sizes of 5,000 or more (see section 2.5.3).

Conversely, this technique is not recommended for small data sets in which each control ob-
servation is precious, especially when prognostic scores are likely to be difficult to estimate from
the measured covariates (see Aikens et al. (2020) for a lengthy discussion). Ideally, there should
be ample control observations available to fit a usable prognostic model and still leave sufficient
controls remaining to select high-quality matches for the treated individuals in the data set. While
some stratamatch designs may be useful for the estimation of other causal estimands, the statistical
properties of prognostic pilot designs for estimands other than the average treatment effect among the
treated have not yet been characterized (Aikens et al., 2020).
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Term Description

Design phase Phase of a study in which the researcher considers what kinds of
data will provide the strongest information to address the question
at hand (e.g., randomization, sampling, matching, inverse probabil-
ity weighting). The goal of the design phase is to obtain data that
will provide strong inference.

Analysis phase Phase of a study in which the data that comes from the design phase
are summarized into statistics. Inference and sensitivity analyses
are performed.

Pilot Design An observational study approach in which some data is spent in the
design phase to improve the study design/preprocessing.

Pilot Set A subset of data extracted to be used in the design phase.
Analysis set The set of data reserved for inference in the analysis phase.
Propensity score Probability of assignment to the treatment group based on measured

baseline characteristics.
Prognostic score Expectation of the outcome in the absence of treatment based on

measured baseline characteristics.
Prognostic model A model (e.g., logistic regression) used to estimate prognostic scores.
Stratum A subset of observations in the analysis set to be matched together.

Table 1: Summary of relevant methodological terms as they apply to stratamatch.

3 Software

The stratamatch function, auto_stratify, implements the prognostic score stratification in the pilot
design described above. The most basic procedure does the following:

1. Partition the data set into a pilot data set and an analysis data set

2. Fit a model for the prognostic score from the observations in the pilot set

3. Estimate prognostic scores for the analysis set using the prognostic model

4. Stratify the analysis set based on prognostic score quantiles.

A call to auto_stratify produces an auto_strata object, which contains the analysis set, the pilot
set, and other information about the strata and prognostic scores. The stratamatch package implements
a set of diagnostic plots and tables that can be used to assess the quality of a stratification. Example
code, output, and diagnostics are provided in section 2.4. If the strata are satisfactory, the treatment
and control individuals within each stratum can then be matched. By default, the strata_match
function performs 1 : 1 propensity score matching within each stratum. Other matching scheme
possibilities are discussed in section 2.5.3).

4 Illustrations

Simulated example

This section demonstrates the basic functionality of stratamatch in simulated example. The function
make_sample_data generates a simple simulated data set so that users can explore the design options
implemented by stratamatch. Below, we generate a sample of 10,000 observations and print the first
few rows as an illustration.

library("stratamatch")
library("dplyr")
dat <- make_sample_data(n = 10000)
head(dat)

X1 X2 B1 B2 C1 treat outcome
1 0.93332697 1.0728339 1 0 a 1 0
2 -0.52503178 0.3449057 1 1 b 0 1
3 1.81443979 1.0361942 1 1 a 0 0
4 0.08304562 0.3017060 1 1 a 0 1
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5 0.39571880 0.5397257 0 0 c 0 0
6 -2.19366962 1.4523274 1 1 b 0 1

The user should suppose that the rows of dat are individuals in an observational study, and the
objective of the study is to estimate the effect of a binary treatment assignment (treat) on a binary
outcome (outcome). Columns 1-5 represent three types of measured baseline covariates: continuous
(X1 and X2), binary (B1 and B2), and categorical (C1). For this example, we assume strongly ignorable
treatment assignment - that is, roughly, there are no unmeasured confounding factors (Rosenbaum
and Rubin, 1983). (For sensitivity analyses for this assumption, see, for example, Rosenbaum (2005b)).

Automatic stratification

The command below uses auto_stratify to (1) partition 10% of the controls in dat into the pilot set
(2) fit a prognostic score model for outcome based on X1 and X2, (3) estimate prognostic scores on the
analysis set, and (4) return to us the analysis set, divided into strata of approximately 500 individuals,
based on prognostic score quantiles. All of these steps are completed automatically with this function
call, and the results are returned to us as a.strat.

a.strat <- auto_stratify(dat, treat = "treat", prognosis = outcome ~ X1 + X2,
+ pilot_fraction = 0.1, size = 500)

Constructing a pilot set by subsampling 10% of controls.
Fitting prognostic model via logistic regression: outcome ~ X1 + X2

The result returned by auto_stratify is an auto_strata object. Running print on this object
supplies basic information about how the stratification process has been completed.

print(a.strat)

auto_strata object from package stratamatch.

Function call:
auto_stratify(data = dat, treat = "treat", prognosis = outcome ~

X1 + X2, size = 500, pilot_fraction = 0.1)

Analysis set dimensions: 9234 X 8

Pilot set dimensions: 766 X 7

Prognostic Score Formula:
outcome ~ X1 + X2

Here, auto_stratify has partitioned away a pilot set of 766 control individuals to fit our desired
prognostic model, leaving 9,234 individuals in the analysis set. Using the prognostic model, prognostic
scores were estimated on the individuals in the analysis set, and these individuals were divided into
strata with a target size of 500. In order to record these stratification assignments, an eighth column,
stratum, has been appended to the analysis set. The number strata and range of strata sizes can be
obtained from summary(a.strat).

The analysis set and pilot set are accessible via a.strat$analysis_set and a.strat$pilot_set,
respectively. The strata_table (accessed via a.strat$strata_table) reports the strata sizes and the
prognostic score quantile bins that define each stratum.

Diagnostics

A major focus of the stratamatch package is suggesting diagnostics for the quality of stratification in
observational studies. The issue_table reports the total size and composition of each stratum.

a.strat$issue_table

# A tibble: 19 x 6
Stratum Treat Control Total Control_Proportion Potential_Issues
<int> <int> <int> <int> <dbl> <chr>

1 1 167 319 486 0.656 none
2 2 149 337 486 0.693 none
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3 3 160 326 486 0.671 none
4 4 132 354 486 0.728 none
5 5 123 363 486 0.747 none
6 6 122 364 486 0.749 none
7 7 146 340 486 0.700 none
8 8 109 377 486 0.776 none
9 9 131 355 486 0.730 none
10 10 132 354 486 0.728 none
11 11 111 375 486 0.772 none
12 12 108 378 486 0.778 none
13 13 112 374 486 0.770 none
14 14 122 364 486 0.749 none
15 15 100 386 486 0.794 none
16 16 109 377 486 0.776 none
17 17 114 372 486 0.765 none
18 18 107 379 486 0.780 none
19 19 85 401 486 0.825 Small treat:control ratio

The ‘Potential_Issues’ column is meant to quickly flag strata that may be problematically large,
small, or imbalanced in the ratio of treated and control samples. The "small treat:control ratio"
flag for stratum 19 indicates that the proportion of treated individuals is 0.2 or lower1. This is a
relatively common issue, which is often easily addressed (see section 2.6).

The stratamatch package implements four diagnostic plotting options:

1. Size-Ratio Plot: (Figure 1) Displays each stratum in the analysis set based on its size and the
percentage of control observations in order to identify potentially problematic strata.

2. Propensity Score Histogram: (Figure 1) Displays the distribution of estimated propensity scores
across the treatment and control groups within a single stratum or the entire analysis set. These
plots are used for assessing propensity score overlap.

3. Assignment-Control Plot: (Figure 2) Displays each individual based on estimated propensity
score and estimated prognostic score, based on visualizations from Aikens et al. (2020). As
above, these plots can display a single stratum or the entire analysis set. Assignment-control
plots are useful for checking the overlap and correlation of prognostic and propensity scores.

4. Residual Plots: (Not shown) Show the diagnostic plots for the prognostic model used to
estimate the prognostic scores. It is essentially a wrapper for plot.lm (see the documentation
for plot.lm in the base R package, stats). Note that since the pilot set alone is used to fit the
prognostic model, only the pilot set is used for these diagnostic plots.

The code below makes each of the plot types listed above, including two assignment-control plots:
one for the entire analysis set and one for a single stratum. The results are shown in figures 1 and 2, with
interpretation in the figure captions. For propensity score histograms and assignment-control plots, the
‘propensity’ argument is required, specifying how the propensity scores should be estimated. Below,
the propensity score is fit on the analysis set based on a regression of treatment assignment on ‘X1’, ‘X2’,
‘B1’, and ‘B2’ (for other input options, run help(plot.auto_strata) or help(plot.manual_strata)).

plot(a.strat, type = "SR")
plot(a.strat, type = "hist", propensity = treat ~ X2 + X1 + B1 + B2, stratum = 1)
plot(a.strat, type = "AC", propensity = treat ~ X2 + X1 + B1 + B2)
plot(a.strat, type = "AC", propensity = treat ~ X2 + X1 + B1 + B2, stratum = 1)
plot(a.strat, type = "residual")

In this example, the command a.strat$prognostic_model would supply the prognostic model (an
lm or glm object) for further diagnostics (e.g., with summary(a.strat$prognostic_model)). Assessment
of the prognostic model can indicate whether a sufficient number of observations has been partitioned
into the pilot set (see section 2.6). However, one benefit of a stratified matching design is that even an
imperfect prognostic model may yield robust inference if the resulting strata are of sufficient quality to
allow for a strong propensity match (see, for example, theory on stratified sampling (Lohr, 2019) or
commentary on doubly robust matching (Leacy and Stuart, 2014; Antonelli et al., 2018))

Matching

Once the data have been stratified, the user can optimally match individuals within each stratum.
The strata_match function supports optimal 1:1, 1:k, or full matching (Rosenbaum, 1991; Hansen and

1Note that the specific thresholds defining the potential issue flags (e.g., 20% treated individuals or fewer) are
not universal cutoffs but guidelines meant to draw researchers’ attention to possible irregularities.
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Figure 1: (A) A size-ratio plot, with each point representing a stratum. Yellow regions: treated to
control ratio is imbalanced. Orange: strata size is large enough that matching may be computationally
time-consuming. Red: strata are small enough that match quality may be poor. In a perfectly ideal
stratification, all strata would fall within the white rectangle. In practice, some stratification issues are
common and easily addressed; see section 2.6. (B) A histogram of estimated propensity scores for a
selected stratum. In an ideal scenario, there is ample overlap between treated and control individuals
within each stratum.
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(a) An assignment-control plot across all strata
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(b) An assignment-control plot for stratum 1

Figure 2: Assignment-control plots (Aikens et al., 2020) showing estimated propensity score versus
estimated prognostic score for each subject in the analysis set (A) or a selected stratum (B). In an ideal
scenario, there is ample overlap between treated and control individuals in terms of both prognosis
and propensity (for other cases, see section 2.6). Grey lines denote the prognostic score thresholds
defining the strata.
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Klopfer, 2006), based on a propensity score or Mahalanobis distance. The sample code below performs
1:1 propensity score matching. This function makes essential use of the optmatch package (Hansen
and Klopfer, 2006; Bertsekas and Tseng, 1988) to perform the matching within strata.

mymatch <- strata_match(a.strat, model = treat ~ X1 + X2 + B1 + B2)

Fitting propensity model: treat ~ X1 + X2 + B1 + B2

The result is an optimal 1 to 1 matching within prognostic score strata. Above, mymatch is an
optmatch class object, as described by the optmatch package (Hansen and Klopfer, 2006). For the
most part, mymatch can be treated as a factor giving match assignments for each row of the data
set. The command summary(mymatch) would display the number of pairs, the number of unmatched
individuals, and the effective sample size. For suggestions regarding other matching schemes for
stratified data, see 2.5.3.

A brief comment on estimation

The procedure for performing inference after matching – in particular the estimation of the standard
error of the effect estimate for the purposes of hypothesis tests and confidence intervals – is a topic
of some debate in the literature. We will not attempt to resolve this debate here, although interested
readers may find the commentary by Stuart (Stuart, 2010) to be an accessible starting place, and note
more recent work by Abadie and Speiss (Abadie and Spiess, 2021), and numerous other authors (for
example Abadie and Imbens (2006, 2011); Austin and Small (2014); Austin and Cafri (2020)). Below,
we describe two contrasting approaches that are most familiar to epidemiology and statistics, with
references to coding resources.

First, Rosenbuam (Rosenbaum, 2005b; Rosenbaum et al., 2010) motivates the use of permutation-
based tests followed by sensitivity analyses for unobserved confounding. Both of these are imple-
mented in sensitivitymw (Rosenbaum, 2014, 2015) for pairmatching and sensitivityfull (Rosenbaum,
2017, 2007) for full matching. In keeping with a randomization inference framework, these techniques
generally consider inference conditional on the matched sample and focus on uncertainty derived
from the randomization process emulated by the matching. Researchers with further information on
the sampling process that generated the observational data may thereafter combine this approach
with a sampling variation framework to estimate parameters and standard errors for a more general
target population (see the framework outlined by Tipton (2013) for the experimental setting).

A second common approach uses covariate adjustment. This framework is motivated importantly
by Ho et al. (2007), who make the case for matching as a preprocessing step to reduce the dependence
of parametric analyses on model selection. In keeping with the regression literature from the social
sciences, these approaches often begin by supposing that the complete observational data set is an
independent and identically distributed set of observations from some larger population, perhaps
according to some parametric data-generating model. Within this framework, there is still considerable
debate regarding correct standard error estimation. A thorough practical tutorial for the covariate
adjustment approach with code examples and some suggestions for standard error estimation is
featured in the recent MatchIt vignette, “Estimating Effects after Matching” (Greifer, 2020). Note that
the pilot design implemented by stratamatch removes control individuals at random from the data set
while retaining all treated individuals. Thus, while we recommend stratamatch for the estimation of
the average treatment effect among the treated, the characteristics of stratamatch designs for estimation
of other causal estimands (e.g., average treatment effect) have not yet been well characterized.

Real-data example: Life sustaining treatments for critical care patients

As an applied example, the stratamatch package contains a re-processed version of de-identified
medical data from Chavez et al. (2018). Briefly, the authors extracted demographic information,
common laboratory test results, comorbidity information, and treatment team assignments for 10,157
ICU patients from the Stanford University Hospital who met their inclusion criteria. During their stay,
each patient’s critical care preferences are summarized with a code status. The default – Full Code
status – indicates no limitations on resuscitative measures, while other codes (e.g. ‘Do not resuscitate’,
or ‘DNR’) indicate different limitations on the intensity and type of resuscitation the patient should
receive if they become pulseless or apneic (i.e., their heart stops or they stop breathing). This code
status is a product of complex dynamics between patient and provider. When a patient’s code status
does not reflect their goals of care, patients may have life-sustaining care inappropriately withheld, or
they may receive aggressive treatment that does not effectively increase their quality or quantity of
remaining life.
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In this example, suppose a researcher wants to study whether comparable patients under the
care of surgical teams vs. non-surgical teams are more likely to have their code status set to limit
resuscitation (i.e., any form of ‘DNR’). From this, we could infer tendencies that different treatment
teams have in counseling and decision-making about life-sustaining treatments for the critically ill.
However, the patient groups seen by surgical vs. non-surgical teams are necessarily different, because
patients are assigned to treatment teams based on their reason for being in the hospital and their
treatment history. Thus, a naive comparison of DNR order frequency between care team types would
be misleading. To better account for these potential differences, we employ a stratified pilot matching
design to compare “treated” (assigned to a surgical care team) individuals with “control” (assigned to
a non-surgical care team) ones that are similar in terms of their prognostic and propensity scores.

Automatic stratification

Patients must be first stratified by a prognostic score (i.e., their estimated probability of receiving a
DNR order if they are not assigned to a surgical care team) before being matched on a propensity
score (i.e., their estimated probability of assignment to a surgical care team). In the example below,
we use auto_stratify on the ICU_data to (1) partition 10% of controls into a pilot set, (2) build a
prognostic score model on that pilot set based on age (‘Birth.preTimeDays’), sex, and race/ethnicity
(3) estimate prognostic scores on the analysis set and (4) return a stratified data set with approximately
500 individuals per stratum.

ICU_astrat <- auto_stratify(data = ICU_data, treat = "surgicalTeam",
prognosis = DNR ~ Birth.preTimeDays + Female.pre + RaceAsian.pre +
RaceUnknown.pre + RaceOther.pre + RacePacificIslander.pre +
RaceBlack.pre + RaceNativeAmerican.pre + all_latinos,

pilot_fraction = 0.1, size = 500)

Constructing a pilot set by subsampling 10% of controls.
Fitting prognostic model via logistic regression: DNR ~ Birth.preTimeDays +

Female.pre + RaceAsian.pre + RaceUnknown.pre + RaceOther.pre +
RaceBlack.pre + RacePacificIslander.pre + RaceNativeAmerican.pre +
all_latinos

Next, we print the results.

print(ICU_astrat)

auto_strata object from package stratamatch.

Function call:
auto_stratify(data = ICU_data, treat = "surgicalTeam",

prognosis = DNR ~ Birth.preTimeDays + Female.pre + RaceAsian.pre +
RaceUnknown.pre + RaceOther.pre + RaceBlack.pre +
RacePacificIslander.pre + RaceNativeAmerican.pre + all_latinos,
size = 500, pilot_fraction = 0.1)

Analysis set dimensions: 9364 X 14

Pilot set dimensions: 793 X 13

Prognostic Score Formula:
DNR ~ Birth.preTimeDays + Female.pre + RaceAsian.pre + RaceUnknown.pre +

RaceOther.pre + RaceBlack.pre + RacePacificIslander.pre +
RaceNativeAmerican.pre + all_latinos

summary(ICU_astrat)

Number of strata: 19

Min size: 492 Max size: 494

Strata with Potential Issues: 2

We see here that auto_stratify partitioned the data into a pilot set of 793 “controls” (i.e., patients
not assigned to a surgical treatment team) and an analysis set of the 9,364 remaining individuals. The
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prognostic model was fit on the pilot set according to the formula we provided, regressing DNR code
assignment on age, sex, and race. This model was used to estimate the prognostic score (probability of
DNR code assignment based on demographics) for each of the 9,364 individuals in the analysis set.
Finally, each individual in the analysis set was assigned to a stratum based on this score. 19 strata,
each containing between 492 and 494 patients, were created. This stratum assignment information
was appended to the analysis set by adding a new 14th column, stratum.

Manual stratification

Rather than using a pilot design to build a prognostic score, researchers may wish to stratify the data
set based on discrete covariates (e.g., chosen by a domain expert). The manual_stratify function
supports these study designs. For example, the code below bins the 10,157 patients in the data set
purely based on race/ethnicity and sex. In contrast, the size-ratio plots for the automatic stratification
show a much smaller range of sizes and control proportions, with fewer – and more easily addressed –
potential issues.

ICU_mstrat <- manual_stratify(data = ICU_data,
strata_formula = surgicalTeam ~ Female.pre + RaceAsian.pre +
RaceUnknown.pre + RaceOther.pre + RaceBlack.pre +
RacePacificIslander.pre + RaceNativeAmerican.pre + all_latinos)

summary(ICU_mstrat)

Number of strata: 16

Min size: 17 Max size: 3314

Strata with Potential Issues: 9

The resulting manual_strata object has many of the same properties as an auto_strata object from
auto_stratify and can be matched in the same way with strata_match. However, manual_strata
objects do not have a pilot set prognostic score information, and accordingly assignment-control and
residual plots are not supported for these inputs.

This more traditional manual approach may be preferred in some cases for its simplicity and
because it obviates the need to sacrifice observations to fit a prognostic model. However, selecting a
binning scheme that results in favorable strata may be a time-consuming iterative process, as high-
lighted by the diagnostics in the following section. These issues underscore the potential usefulness of
the prognostic score stratification implemented by auto_stratify.

Diagnostics

Size-ratio plots for the manual and automatic stratification illustrate a common issue with manual
stratification: it is often difficult to select discrete covariates that result in appropriately sized and
balanced strata (Figure 3). This also is reflected by the number of strata with potential issues in
the manual stratification issue table below. For example, stratum 1 below (white males) contains
3,314 patients, while stratum 3 (Native American males) contains only 18 patients, only one of
whom was assigned to a surgical team. In exceedingly large strata, matching becomes increasingly
computationally intensive, while in exceedingly small and/or highly imbalanced strata, finding
high-quality matches can be difficult or infeasible (see section 2.5.3).

ICU_mstrat$issue_table

# A tibble: 16 x 6
Stratum Treat Control Total Control_Proportion Potential_Issues
<int> <int> <int> <int> <dbl> <chr>

1 1 761 2553 3314 0.770 none
2 2 212 672 884 0.760 none
3 3 1 17 18 0.944 Too few samples; Small treat:con...
4 4 13 67 80 0.838 Small treat:control ratio
5 5 56 205 261 0.785 none
6 6 65 286 351 0.815 Small treat:control ratio
7 7 29 226 255 0.886 Small treat:control ratio
8 8 174 563 737 0.764 none
9 9 508 1842 2350 0.784 none
10 10 158 470 628 0.748 none
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(a) Size-ratio plot for manual stratification
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(b) Size-ratio plot for automatic stratification

Figure 3: Size-ratio plots for (A) manual stratification on sex and race/ethnicity and (B) automatic
stratifications of the same data set of ICU patients. Manual stratification often results in highly variable
size and treat:control balance between strata, as reflected by the number of strata points in the shaded
zones.

11 11 4 13 17 0.765 Too few samples
12 12 15 54 69 0.783 Too few samples
13 13 37 194 231 0.840 Small treat:control ratio
14 14 46 195 241 0.809 Small treat:control ratio
15 15 16 173 189 0.915 Small treat:control ratio
16 16 131 401 532 0.754 none

The code below displays the assignment-control plot for one of the strata in the automatically
stratified data set (Figure 4).

plot(ICU_astrat, type = "AC",
propensity = surgicalTeam ~ Female.pre + Birth.preTimeDays +
RaceAsian.pre + RaceUnknown.pre + RaceOther.pre + RaceBlack.pre +
RacePacificIslander.pre + RaceNativeAmerican.pre + all_latinos,

stratum = 2)

The striae in this assignment-control plot appear when discrete characteristics (e.g. sex and
race/ethnicity) are highly weighted in the propensity or prognostic score, causing observations to
cluster together. Since this is relatively common, ‘jitter’ arguments can be used to add small amounts
of random noise to the coordinates of each point in order to avoid stacking.

Matching

After a suitable stratification is selected, observations can be matched within strata using strata_match.
Since every stratum from the automatic stratification in this example contains at least a 1:2 ratio of
patients who were assigned to surgical teams and those who were not, we can match 2 “control” (i.e.,
non-surgical team) patients to each “treated” (i.e., surgical team) subject in each stratum. In this step,
we match individuals who, based on their baseline covariates, appear equally likely to have been
assigned to a surgical team vs. not. The following performs the matching.

ICU_match <- strata_match(ICU_astrat,
model = surgicalTeam ~ Birth.preTimeDays + Female.pre +
RaceAsian.pre + RaceUnknown.pre + RaceOther.pre + RaceBlack.pre +
RacePacificIslander.pre + RaceNativeAmerican.pre + all_latinos,

k = 2)

Fitting propensity model: surgicalTeam ~ Birth.preTimeDays + Female.pre +
RaceAsian.pre + RaceUnknown.pre + RaceOther.pre + RaceBlack.pre +
RacePacificIslander.pre + RaceNativeAmerican.pre + all_latinos

Below, we print a summary.

summary(ICU_match)
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Figure 4: Assignment-control plot for automatic stratification of ICU data. The vertical striations are
caused by heavily weighted discrete features in the propensity model, which cause points to align
together.

Structure of matched sets:
1:2 0:1
2226 2686
Effective Sample Size: 2968
(equivalent number of matched pairs).

At this point, the researcher can compare matched treated and control individuals to infer whether
patients assigned to surgical treatment teams are more or less likely to be assigned a DNR code status,
following up with sensitivity analyses (see, for example, sensitivitymw (Rosenbaum, 2014))

5 Key design choices and advanced functionality

The selection of the pilot set

The previous illustrations demonstrated the simplest method of extracting the pilot set: a random
subsampling of all controls. Prior work by Aikens et al. (2020) contains a more thorough discussion of
the considerations that might inform the selection of a pilot set.

A first consideration is the pilot set size. In general, the researcher should create a pilot set
large enough to build a reliable prognostic model and retain enough remaining controls to select
high-quality matches to the treatment group. This depends on the quality and number of available
controls and the relative difficultly of fitting a prognostic model on the measured covariates. When
high-quality controls (i.e., those resembling the treatment group) are scarce, the researcher should
consider a smaller pilot set or a different study design altogether.

Another consideration is composition. Ideally, the individuals in the pilot set should be similar
to the individuals in the treatment group, so a prognostic model built on this pilot set will not be
extrapolating heavily when estimating prognostic scores on the analysis set. This approach can be
especially important when there is some category of observations in the data that is relatively rare, and
the researcher would like to ensure that some observations in this category end up in both the pilot
and analysis sets. When discrete covariates are specified with the ‘group_by_covariates’ argument to
auto_stratify the pilot set will be split proportionally based on these covariates so that the pilot set
will be representative of the total control sample in terms of these covariates. This option can be used
directly with auto_stratify. However, the split_pilot_set function is supplied as a convenience
for users who prefer to split the pilot set themselves before stratification, as demonstrated below.

ICU_split <- split_pilot_set(ICU_data, treat = "surgicalTeam",
pilot_fraction = 0.1, group_by_covariates = c("Female.pre", "self_pay"))

Constructing a pilot set by subsampling 10% of controls.
Subsampling while balancing on:
Female.pre self_pay
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ICU_split, above, is a list containing a pilot_set and an analysis_set, partitioned while balanc-
ing sex and payment method (i.e., insurance or self-pay). Once this is done, the results can be passed
to auto_stratify such as with the code below.

ICU_astrat2 <- auto_stratify(data = ICU_split$analysis_set,
treat = "surgicalTeam",
prognosis = DNR ~ Birth.preTimeDays + Female.pre + RaceAsian.pre +

RaceUnknown.pre + RaceOther.pre + RacePacificIslander.pre +
RaceBlack.pre + RaceNativeAmerican.pre + all_latinos,

pilot_sample = ICU_split$pilot_set, size = 500)

Fitting the prognostic model

To fit the prognostic model, auto_stratify uses either linear (continuous outcome) or logistic regres-
sion (binary outcome). To accommodate a wider variety of modeling choices, auto_stratify can also
be run using a vector of analysis set prognostic scores or prognostic model object2.

The example below uses the glmnet package (Friedman et al., 2010) to fit a cross-validated lasso
on the pilot set that was extracted in the previous section.

library("glmnet")
x_pilot <- ICU_split$pilot_set %>%

dplyr::select(Birth.preTimeDays, Female.pre, RaceAsian.pre,
RaceUnknown.pre, RaceOther.pre, RaceBlack.pre,
RacePacificIslander.pre, RaceNativeAmerican.pre, all_latinos) %>%

as.matrix()
y_pilot <- ICU_split$pilot_set %>%

dplyr::select(DNR) %>%
as.matrix()

cvfit <- cv.glmnet(x_pilot, y_pilot, family = "binomial")

The prognostic scores can then be estimated on the analysis set.

x_analysis <- ICU_split$analysis_set %>%
dplyr::select(Birth.preTimeDays, Female.pre, RaceAsian.pre,
RaceUnknown.pre, RaceOther.pre, RaceBlack.pre,
RacePacificIslander.pre, RaceNativeAmerican.pre, all_latinos) %>%

as.matrix()

lasso_scores <- predict(cvfit, newx = x_analysis, s = "lambda.min",
type = "response")

Finally, these scores can be passed to auto_stratify with the ‘prognosis’ argument, producing a
stratified data set that can be examined further with stratamatch diagnostic tools.

ICU_astrat3 <- auto_stratify(data = ICU_split$analysis_set,
treat = "surgicalTeam", outcome = "DNR", prognosis = lasso_scores,
pilot_sample = ICU_split$pilot_set, size = 500)

Other examples of prognostic score modeling options can be found in the stratamatch "Advanced
Functionality" vignette.

Matching

Section 2.4 demonstrates how the stratamatch package can be used for optimal 1 : k matching on a
propensity score. The strata_match function also supports full matching (Hansen and Klopfer, 2006;
Rosenbaum, 1991), and the use of Mahalanobis distance instead of a propensity score. If desired,
a data set stratified with stratamatch can instead be matched within strata using other matching
software (e.g., optmatch (Hansen and Klopfer, 2006) or MatchIt (Ho et al., 2011)). For example, users
proficient with optmatch will note that adding + strata(stratum) to the matching formula supplied
to optmatch::pairmatch and other matching functions will match within stratum assignments in the
analysis set.

2Model objects must have a method associated with the predict generic function
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More nuanced matching schemes may also help address imbalances in the number of treated and
control units within strata. For example, the researcher could perform 1 : k matching within each
stratum, but allow k to vary between strata - matching more controls to each treated individual in strata
where controls are plentiful and performing 1 : 1 or 1 : 2 matching where controls are less abundant.
Another solution is to use a matching scheme within strata that naturally allows for variation in the
ratio of treated and control individuals in matched sets, such as full matching (Rosenbaum, 1991;
Hansen and Klopfer, 2006) or variable k matching (Pimentel et al., 2015).

As shown in figure 5, stratification is expected to substantially accelerate the matching process,
especially for large sample sizes (several thousand or more). Hansen and Klopfer articulate a worst-
case run-time for various forms of optimal matching with optmatch as O(n3 log(nM)), where M
represents the maximum matching discrepancy between treated and control observations (Hansen
and Klopfer, 2006). For context, this scales slightly less favorably than matrix inversion, which quickly
becomes time-consuming for large inputs. By comparison, matching within strata of a fixed size tends
to scale much more favorably for large n (figure 5). To further accelerate computation, a researcher
might distribute matching the stratified data set over several computing nodes.
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Figure 5: Measured computation times for stratified and unstratified matching on a modern laptop.
Unstratified matching scales in a supra-linear manner with sample size (Hansen and Klopfer, 2006),
while stratified matching with a set strata size tends to scale more favorably with n. At sample sizes of
30,000, optimally matching a whole data set may take over an hour, and much larger sample sizes
may quickly become infeasible.

6 Trouble-shooting a stratification scheme

This section summarizes some common pitfalls and workarounds while stratifying a data set. Impor-
tantly, in order to preserve the separation of the design and analysis set, individuals partitioned into
the pilot set must not be recombined with the analysis set. For instance, simply running auto_stratify
repeatedly with different seeds to sample new pilot sets from the data and fit new prognostic score
models may lead to overfitting of the prognostic model, raising concerns of bias in the study results
(see Hansen (2008); Abadie et al. (2018)).

The following issues are common:

1. Some strata are too small or too large: This problem can often be solved simply by rerunning
auto_stratify with a different ‘size’ parameter. When this is done, the researcher should be
sure to use the same pilot and analysis set as they received when they first ran auto_stratify
(i.e., do not partition a new pilot set).

2. The strata have a poor balance of treated and control individuals: This situation is relatively
common but often straightforward to address with matching schemes that match more controls
to each treated observation or allow for variable treat:control ratios. See section 2.5.3 for some
suggestions.

3. The prognostic model is poor: In some cases, the user may encounter an error fitting the
prognostic model, or they may suspect from prognostic model diagnostics that the model does a
poor job of capturing variation predictive of the outcome. There are a few reasons the prognostic
model may be problematic.
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(a) The prognostic model was mis-specified. In this case, the user should fit a revised prognostic
model on the same pilot set as was previously used. However, refitting repeatedly can
lead to overfitting, so this should be done in moderation.

(b) The pilot set was too small to get a reliable fit. In this case, the user can add more samples
from the analysis set to the existing pilot set. Samples that are moved into the pilot set
must stay in the pilot set and should not be re-pooled with the analysis set.

(c) Pilot set size is sufficient, but prognostic model perfectly separates treated individuals from control
individuals: If this occurs in either the pilot set or analysis set, it may be a sign that overlap
is poor. See below.

4. The treated and control individuals within strata have poor overlap in propensity and/or
prognostic scores: This problem is best diagnosed with assignment-control plots (see Aikens
et al. (2020) for a deeper description). Propensity and prognostic score based subclassification
methods both depend on some form of overlap in the baseline characteristics of treated and
control individuals in order to make a valid estimate of causal effect (for a summary, see Leacy
and Stuart (2014)). Treatment and control groups that are clearly separated in terms of either
their propensity scores or prognostic scores can indicate that these two groups should not be
compared because the resulting inference on treatment effect would be misleading. A researcher
facing this situation might consider trimming the score space (Glynn et al., 2019) in some cases
or seeking out another data set if the overlap problems are severe. While this may seem to be
a disappointing result, the ability to identify these data issues before proceeding is one of the
most important strengths of design-based causal inference (see, for example, Austin (2011)).

7 Summary and discussion

Stratifying a data set prior to matching may make optimal and full matching designs scale more
practically for modern observational sample sizes (Figure 5). However, the primary objective of
stratamatch is not to directly implement a computationally taxing task, but to expand access to
sophisticated study design tools for a wide range of researchers with varying levels of technical and
statistical sophistication. Indeed, the computational steps of stratification are relatively straightforward;
however, the statistical concept of the pilot design is nuanced, and the process of stratifying a data set
and interrogating the quality of that stratification can be thought-intensive and isn’t well-supported
by other resources. The stratamatch package is intended to make prognostic score stratification pilot
designs – and stratified matching designs in general – easily implementable, with helpful diagnostic
tools and documentation. The overall goal of this effort is to push researchers toward approaches and
diagnostics that emphasize stronger study design in the observational setting. In modern observational
studies, designs, such as the stratamatch approach, that are tailored to large-sample studies can offer
increased precision and other statistical benefits that might otherwise be left on the table by more
traditional approaches.
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