
CONTRIBUTED RESEARCH ARTICLE 153

StratigrapheR: Concepts for Litholog
Generation in R
by Sébastien Wouters, Anne-Christine Da Silva, Frédéric Boulvain and Xavier Devleeschouwer

Abstract The StratigrapheR package proposes new concepts for the generation of lithological logs,
or lithologs, in R. The generation of lithologs in a scripting environment opens new opportunities
for the processing and analysis of stratified geological data. Among the new concepts presented:
new plotting and data processing methodologies, new general R functions, and computer-oriented
data conventions are provided. The package structure allows for these new concepts to be further
improved, which can be done independently by any R user. The current limitations of the package are
highlighted, along with the limitations in R for geological data processing, to help identify the best
paths for improvements.

1 Introduction

StratigrapheR is a package implemented in the open-source programming environment R. Stratig-
rapheR endeavors to explore new concepts to process stratified geological data. These concepts are
provided to answer a major difficulty posed by such data; namely a large amount of field observations
of varied nature, sometimes localized and small-scale, can carry information on large-scale processes.
Visualizing the relevant observations all at once is therefore difficult. The usual answer to this problem
in successions of stratified rocks is to report observations in a schematic form: the lithological log, or
litholog (e.g., Fig. 1). The litholog is an essential tool in sedimentology and stratigraphy and proves to
be equally invaluable in other fields such as volcanology, igneous petrology, or paleontology. Ideally,
any data contained in a litholog should be available in a reproducible form. Therefore, the challenge
at hand is what we would call "from art to useful data"; how can we best extract and/or process the
information contained in a litholog, designed to be as visually informative as possible (see again Fig. 1).

28

29

30

31

32

33

34

44

45a

45b

45c

46

47

48

49

51

35

52a

52b

60a

60b

60c

61

HIATUS

lamellar stromatoporoids

branching stromatoporoids

lamellar tabulate corals

branching tabulate corals

brachiopods

crinoids

receptaculitids

small fenestrae

large fenestrae

bioclasts

Legend

brachiopods in lenses

lithoclasts

joints (clay seams)

The colours are similar to the colours
observed on the field

Depth (m) Samples

Figure 1: Example of a computer-drawn litholog of calcareous rocks, modified from Humblet and
Boulvain (2000) using vector graphics software (e.g., Inkscape, CorelDRAW, or Adobe Illustrator).

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=StratigrapheR
https://CRAN.R-project.org/package=StratigrapheR

CONTRIBUTED RESEARCH ARTICLE 154

Lithologs can be hand-drawn, computer-drawn, or generated via ad hoc software tools. Drawn
figures can have unlimited precision and personalization. They are, however, time-consuming to
produce and ill-adapted for the extraction of data for further numerical analysis. Moreover, any
modification to drawn lithologs has to be performed manually. Ad hoc software tools such as the
open-source SedLog program (Zervas et al., 2009) or the SDAR R package (Ortiz et al., 2019) propose a
solution to such short-comings by generating lithologs from geological data provided in a text format.
The most common text format is the American Standard Code for Information Interchange -ASCII-.
ASCII is used for the SedLog data format and for the Log ASCII Standard -LAS- (Heslop et al., 1999).
The latter (LAS) is the data format used by the SDAR package.

A major advantage of ad hoc software tools is that any change in the data can automatically lead to
an update in the display of the litholog. However, ad hoc software tools only permit a certain amount
of personalization. The graphical output of ad hoc software tools, which can be obtained in vector
graphics format (e.g., in the Scalable Vector Graphics [SVG] format), has to be post-processed in vector
graphics software to add elements that are not supported by the data format. In SedLog, for instance,
to add plots next to the litholog (i.e., to visualize quantified analytical values and their relation to the
lithological features) the plots need to be generated separately and then added manually along the
litholog in vector graphics software. SedLog does permit a certain amount of personalization, but only
for the lithological symbology, by giving the user the option of adding self-made symbology (e.g., to
show the position of paleontological or sedimentological features). In the SDAR package, the only
data automatically displayable are Gamma Ray spectrometry values, and the symbology (for lithology,
fossils, etc.) cannot be personalized.

Generally speaking, the graphical style of the lithologs generated by ad hoc software tools is
difficult to personalize entirely. To do so, each functionality has to be modular, which is better done in
a scripting language such as R. Yet, the SDAR package, although coded in R, is not modular. All the
plotting is made using a single function. Any personalization feature would need to be explicitly coded
into that function, which would be a never-ending task. Moreover, ad hoc software tools are difficult
to update and improve. Adding new functionalities or maintaining the software for compatibility with
new operating systems, for example, usually falls on the shoulders of the developers of that software.

The StratigrapheR package is presented here as a new mean to generate lithologs. It provides a
complementary approach to the existing methodologies and circumvents the aforementioned problems.
StratigrapheR is designed not around a specific data format but on general tools able to deal with
different formats. This opens a way of processing the geological data through a scripting language
which has a large potential to evolve. StratigrapheR shows that symbiosis between automation and
personalization is achievable for litholog generation. As it stands, the package does not meet the "from
art to useful data" challenge entirely. However, it is a proof of concept showing that, despite the artistic
nature of lithologs, they can be based on usable digital data, or that conversely, usable data can be
extracted from drawn lithologs.

StratigrapheR is coded in R, which disposes of automated package checks (Wickham, 2015) and is
itself updated regularly. This is one mechanism against the inevitable obsolescence of the functionali-
ties. Similarly, as the StratigrapheR package is structured in distinct basic functions, implementing
new functionalities (or updating existing ones) can be done more easily by any user. Furthermore,
the processing of geological data, whether to generate lithologs or for any other procedure (among
others plotting proxies, applying moving averages on these proxies, or performing spectral analysis),
can directly be performed in R (see, for instance, the paleotree package for paleontology (Bapst,
2012), the IsoplotR package for geochronology (Vermeesch, 2018), or the hht (Bowman and Lees,
2013), astrochron (Meyers, 2014), biwavelet (Gouhier et al., 2019) and DecomposeR (Wouters, 2020)
packages for spectral analysis). This means that the entire data treatment and visualization could be
performed in a single scripting environment: R.

The main concepts for the use of StratigrapheR are presented in this paper. The current limitations
of StratigrapheR and R for the processing of geological data are also highlighted to give an idea of
the obstacles that the future developers will need to overcome to make R a better tool for geological
data processing. Throughout the paper, examples are provided on how to make lithologs and how
to process geological data. They can be run in R (you can download R here); the current version of
StratigrapheR (1.2.3) works only on R 4.0 or higher versions. A GitHub repository is available at
https://github.com/sewouter/StratigrapheR, where outside users can suggest improvements and
provide feedback. The free RStudio interface is advised to use StratigrapheR in the R environment.
The StratigrapheR package can be installed by typing:

install.packages("StratigrapheR")

To be used, the StratigrapheR package has to be loaded each time R or RStudio are opened, via
the following code:

library(StratigrapheR)

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

http://www.sedlog.com/
https://CRAN.R-project.org/package=SDAR
https://CRAN.R-project.org/package=paleotree
https://CRAN.R-project.org/package=IsoplotR
https://CRAN.R-project.org/package=hht
https://CRAN.R-project.org/package=astrochron
https://CRAN.R-project.org/package=biwavelet
https://CRAN.R-project.org/package=DecomposeR
https://www.r-project.org/
https://github.com/sewouter/StratigrapheR
https://rstudio.com/products/rstudio/#rstudio-desktop

CONTRIBUTED RESEARCH ARTICLE 155

2 Data importation and processing

Data of any form can easily be imported using basic R functions, such as read.table() or readLines()
for text files. Excel files can be downloaded using, for instance, the read.xlsx() function from the
xlsx package (Dragulescu and Arendt, 2020). We advise putting any tabular data into data frame form
(i.e., a table), which can be done via the data.frame() function.

As stratigraphic data can be found in an interval form (e.g., a specific strata between 25 and 30 m
in a record, or the Jurassic between ca. 200 and ca. 145 million years ago), a formal scheme to deal
with such data is provided: the ’lim’ object (named after the xlim and ylim parameters that define the
boundaries of plots in common R graphical functions) and a suite of functions that are associated to lim
objects. The idea is to set a logical data format for intervals and to be able to manipulate these intervals
in R. The lim objects are made via the as.lim() function by providing boundaries in the form of the
l and r arguments, which respectively stand for left and right boundaries. The actual order of the
boundaries is irrelevant to avoid unnecessary data cleaning (which is the reason why ’left’ and ’right’
were chosen as a convention rather than ’up’ and ’down’). Each interval can be identified using the id
argument. Providing the upper and lower boundaries allows taking gaps into account in lithologs,
contrary to simply providing the thickness of layers (also called beds). Whether the boundaries are
included in the interval can be determined via the b argument, which defines the boundary rules. This
is an abstract feature, especially for geology purposes, because it is usually of negligible importance
whether the infinitesimal position of a boundary is included in a given interval. However, taking this
into account is critical to explicitly describe the behavior of intervals. This can be used, for instance, to
assign an interval to a sample located at the common boundary between two intervals that do not
overlap otherwise. By providing a boundary rule, it can be explicitly assigned to only one of the two
intervals, none of them, or both of them. The boundary rule is expressed by characters, and can be
set to "[]" (or "closed") to include both boundary points, "][" (or "()", and "open") to exclude both
boundary points, "[[" (or "[)", "right-open" and "left-closed") to include only the left boundary
point, and "]]" (or "(]", "left-open",and "right-closed") to include only the right boundary point.
The left element (e.g., the [of "[]") stands for the left boundary (not necessarily the lowest one), while
the right element (e.g., the] of "[]") stands for the right boundary (not necessarily the highest one).
We illustrate how to visualize intervals with the following code (note: graphics generated by code in
the article are shown directly after the code that generates them):

interval <- as.lim(l = c(0,1,2), r = c(0.5,2,2.5), # Make a lim object
id = c("Int. 1","Int.2","Int.3"))

interval # print what is in the lim object
#> $l
#> [1] 0 1 2
#> $r
#> [1] 0.5 2.0 2.5
#> $id
#> [1] "Int. 1" "Int.2" "Int.3"
#> $b
#> [1] "[]" "[]" "[]"

Visualization of the lim object
plot.new()
plot.window(ylim = c(-0.5, 2.5), xlim = c(0, 2.5))
axis(3, pos = 1.5, las = 1)

infobar(ymin = 0, ymax = 1, xmin = interval$l, xmax = interval$r,
labels = c(interval$id), srt = 0)

0.0 0.5 1.0 1.5 2.0 2.5

Int. 1 Int.2 Int.3

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=xlsx

CONTRIBUTED RESEARCH ARTICLE 156

Functions are provided to characterize the relationships of intervals with each other: are.lim.nonunique()
checks whether the intervals are of non-zero thickness (e.g., unlike [1,1]), are.lim.nonadjacent()
checks if the intervals do not share any adjacent boundaries, and are.lim.distinct() checks whether
the intervals are not overlapping. The simp.lim() function is provided to merge adjacent and/or
overlapping intervals having identical IDs. The flip.lim() function is provided to find the com-
plementary intervals of a set of intervals (i.e., the gaps). The mid.lim() function provides a way to
define intervals in between data points. If all different intervals are strictly non-overlapping for all
values (for instance, the intervals [0,20[and [20, 100] are non-overlapping and therefore 20 is uniquely
represented by the second interval), the in.lim() function can be used to find which values belong to
which respective intervals. Typically, such functions can be used to craft stratigraphic intervals (such
as magnetochrons or stages) and determine the beds or samples that are in or outside them.

3 General plotting considerations

The first challenge when plotting a litholog is its size: a litholog needs to be detailed at a small scale
(typically at the centimeter scale for high precision) while spanning the entirety of a record (up to
hundreds of meters). This makes lithologs sometimes quite extended. This is problematic considering
that the classical R graphic window is not adapted to visualize anything exceeding the size of the
computer screen. To remedy this problem, the pdfDisplay() function is here introduced, which draws
plots directly in a PDF (Portable Document File) document and opens it in the computer’s default PDF
reader. This PDF document can have any size desired by the user, and therefore, allows visualizing all
the details of a very long litholog. This is illustrated by the code here below, which draws a vertically
standing stickman. Depending on the screen, this vertical stickman could be difficult to visualize
without pdfDisplay().

To avoid having to close the PDF reader at each change of the plot (as most PDF readers do not
permit changes to the PDF file while it is displayed), each new PDF can be named differently: each
new document version will have its name be followed by ’_(i)’, where i is the version number (e.g.,
test_(1).pdf, test_(2).pdf, etc.). This practice is here referred as tracking the version number. It is
noteworthy to cite the free Sumatra PDF software, which is available for Windows operating systems,
and lets PDF files be modified while still displaying them without the trick of having to change the file
name. In that case, the tracking of the version numbers can be canceled by setting the track parameter
to FALSE. PDF files generated by pdfDisplay() can easily be imported into vector graphics software.
The pdfDisplay() function also allows for the direct generation of an SVG file. pdfDisplay() is a
wrapper of the more basic pdf() function (i.e., its code is based on the pdf() function); other PDF
generating functions could be used interchangeably.

To make plots starting from an empty background, we advise using the plot.new() and plot.window()
functions, which are of lower level (i.e., more basic) than the plot() function. They are used to create a
completely empty plotting environment in which to add the litholog. To add axes, the axis() function
is a versatile tool, which can be replaced by the minorAxis() function provided in StratigrapheR to
add minor axis ticks. The minorAxis() function is itself a wrapper of the axis() function.

graphical_function <- function() # Graphical function needed by pdfDisplay
{

opar <- par()$mar # Save initial graphical parameters
par(mar = c(0,3,0,1)) # Change the margins of the plot

plot.new() # Open a new plot
plot.window(xlim = c(-0.2, 1.2), ylim = c(-5, 1)) # Define plot coordinates
minorAxis(2, at.maj = seq(-5, 1, 0.5), n = 5, las = 1) # Add axis
points(c(0.25, 0.75), c(0.75, 0.75), pch = 19)
polygon(c(0.1, 0.25, 0.75, 0.9, 0.75, 0.25, NA,

0, 0.25, 0.75, 1, 0.75, 0.25),
c(0.5, 0.25, 0.25, 0.5, 0.4, 0.4, NA,
0.5, 0, 0, 0.5, 1, 1), lwd = 2)

lines(x = c(0.5, 0.5, NA, 0, 0.2, 0.5, 0.8, 1, NA,
0, 0.2, 0.5, 0.9, 1.2),

y = c(-0.25, -3, NA, -5, -4, -3, -4, -5, NA,
-2.5, -1.5, -1, -0.75, 0.25), lwd = 2)

par(mar = opar) # Restore initial graphical parameters
}

pdfDisplay(graphical_function(),"graphical_function", width = 3.5, height = 10)

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

https://www.sumatrapdfreader.org/free-pdf-reader.html

CONTRIBUTED RESEARCH ARTICLE 157

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

Adding every element of the lithologs symbology uses a very basic data format for polylines and
polygons, which are respectively drawn using the multigons() and multilines() functions. These
novel functions allow precise control of graphical parameters when drawing multiple polygons and
polylines. These functions require an identification argument i, similar for each point of a single
polygon or polyline, and the x and y coordinates of each point. The following code shows the use of
the multigons() and multilines() functions:

i <- c(rep("A1",6), rep("A2",6), rep("A3",6)) # Polygon IDs
x <- c(1,2,3,3,2,1,2,3,4,4,3,2,3,4,5,5,4,3) # x coordinates
y <- c(1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6) # y coordinates

plot.new()
plot.window(xlim = c(0,6), ylim = c(0,7))

multigons(i, x, y,
front = "A2", # This gets the polygon A2 in front of all others
density = c(NA, 5, 10), # Shading line density
scol = "grey20", # Shading line color; one value means all polygons

are subject to this graphical parameter
col = c("black", "grey80", "white"), # Background color
lwd = 2, # Width of border lines
slty = 2, slwd = 1) # Shading lines type and width

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 158

i <- c(rep("A1",6), rep("A2",6), rep("A3",6)) # Lines IDs
x <- c(1,2,3,3,2,1,4,5,6,6,5,4,7,8,9,9,8,7) # x coordinates
y <- c(1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6) # y coordinates

plot.new()
plot.window(xlim = c(0,10), ylim = c(0,7))

multilines(i, x, y,
j = c("A3", "A1", "A2"), # j controls the order of the graphical

parameters applied to each named line:
lty = c(1,2,3), lwd = 2, # e.g., lty = 1 (solid line) is applied

to "A3", the line at the right
type = c("l", "o", "o"),
pch = c(NA,21,24), cex = 1, bg = "black")

●

●

●

●

●

●

The pointsvg() function is provided in StratigrapheR to import groups of polygons and polylines
drawn in vector graphics software, under specific conditions: firstly, the drawing needs to be in
SVG format; secondly, the pointsvg() function is only able to identify objects of class "line", "rect",
"polygon", and "polyline" in the SVG file. The reason for this is that only these types of objects
are simple lines, and polygons made of nodes linked together by straight lines. This means that
pointsvg() is not able to recognize all the objects present in an SVG file. Furthermore, pointsvg()
only identifies the coordinates of each objects, regroups them into separate polygons and polyline
objects, and in which order to plot them. All other graphical parameters, such as color or line thickness,
are not taken into account. These parameters have to be specified in the drawing functions. Objects
obtained using pointsvg() on SVG files can be added using the framesvg() or centresvg() functions,
which respectively add the object within a given frame or center the object on a given point.

svg.file.directory <- tempfile(fileext = ".svg") # Creates temporary file
writeLines(example.ammonite.svg, svg.file.directory) # Writes svg in the file

ammonite.drawing <- pointsvg(file = svg.file.directory) # Read svg

plot.new()
plot.window(xlim = c(-2, 5), ylim = c(-2, 2))
axis(1)
axis(2, las = 2)

centresvg(ammonite.drawing, # Object
x = c(3,0), y = 0, # Coordinates for centering
xfac = 2, yfac = 2, # Dimension stretching factors
col = c("grey","white")) # Graphical parameters

−2 −1 0 1 2 3 4 5

−2

−1

0

1

2

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 159

It should be noted that repetitions of the same SVG object can be generated by a single call of
the framesvg() or centersvg() functions. This facilitates the automation of the litholog generation.
Modifications of the SVG objects can also be accomplished using the changesvg() function, which
enables, among other things, to change the order of plotting of the polylines and polygons, remove
some of them, or invert the figure in x and/or y. The framesvg() or centersvg() can also output the
drawing with modified coordinates, which can be plotted using placesvg() (see, for instance, the
code of the last example).

4 Generating lithologs

The data to make lithologs can be provided in the form shown in Table 1.

id l r h colour litho

B1 0 1 3 grey S
B2 1 3 4 grey L
B3 3 4 5 black C
B4 4 9 4 white L
B5 9 11 4 white L
...

Table 1: Example of a data frame (bed.example in StratigrapheR) providing information for each bed:
id identifies each bed, l and r provide the boundaries, h the hardness, and the color is provided along
with a code for lithology (S for shale, L for limestone, C for chert). The only strict convention is that l, r,
and h need to be numerical values.

From such data, basic lithologs made of rectangles can be generated as a simple basis. They are the
starting point for making more complicated lithologs in StratigrapheR. The coordinates of the points
making up the rectangles can be computed through the litholog() function, which only needs the
position of the boundaries of the beds, their ’hardness’, and an ID. Text can be added to each bed using
the bedtext() function, which can be used to include the ID or the name of the bed (e.g., id in Table 1).

The output of the litholog() function can be provided to multigons() to draw the log. A
symbology for different types of rocks (or any other information that the symbology is meant to
provide) can be set up using the color fill and the shading. Providing a given symbology for each
polygon is performed by joining the table containing the information about each bed to a table
attributing symbology to rock type. We advise the use of the left_join() function in the dplyr
package (Wickham et al., 2020) for this procedure.

basic.log <- litholog(l = bed.example$l, # This creates a data table of
r = bed.example$r, # rectangles coordinates for a
h = bed.example$h, # basic litholog
i = bed.example$id)

legend <- data.frame(litho = c("S", "L", "C"), # This creates a
col = c("grey30", "grey90", "white"), # data table for
density = c(30, 0,10), # the symbology
angle = c(180, 0, 45), stringsAsFactors = FALSE)

View(legend)

left_join in the dplyr package merges the symbology with the table of beds:
bed.legend <- dplyr::left_join(bed.example,legend, by = "litho")

View(bed.legend)

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=dplyr

CONTRIBUTED RESEARCH ARTICLE 160

plot.new()
plot.window(xlim = c(0,6), ylim = c(-1,77))
minorAxis(2, at.maj = seq(0, 75, 5), n = 5)

Plotting of the polygons making the litholog,
with corresponding symbology:
multigons(basic.log$i, x = basic.log$xy, y = basic.log$dt,

col = bed.legend$col,
density = bed.legend$density,
angle = bed.legend$angle)

Writing the name of beds, only in beds thick enough
bedtext(labels = bed.example$id, l = bed.example$l, r = bed.example$r,

x = 0.5, # x position where to center the text
ymin = 3) # text is not added in beds thinner than ymin

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

B4

B8

B13

B17

B22

B26

B31

B35

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 161

To add more complicated beds, the user can add SVG drawings instead of drawing the rectangles
through multigons(), as shown earlier. This is, however, a time-consuming procedure as each bed
has to be imported separately. The weldlog() function can be used to automate the personalization of
bed boundaries. It needs to be provided as a polyline, either from R itself (e.g., a sinusoid) or from an
SVG file.

Code repeated from earlier examples ----
basic.log <- litholog(l = bed.example$l, r = bed.example$r,

h = bed.example$h, i = bed.example$id)
legend <- data.frame(litho = c("S", "L", "C"), density = c(30, 0,10),

col = c("grey30", "grey90", "white"),
angle = c(180, 0, 45), stringsAsFactors = FALSE)

bed.legend <- dplyr::left_join(bed.example,legend, by = "litho")

Generation of the boundaries, either sinusoidal or from drawings ---
s1 <- sinpoint(5,0,0.5,nwave = 1.5)
s2 <- sinpoint(5,0,1,nwave = 3, phase = 0)
s3 <- framesvg(example.liquefaction, 1, 4, 0, 2, plot = FALSE, output = TRUE)

Visualizing the s3 boundary, i.e., the liquefaction sedimentary feature ----
plot(s3$x, s3$y, cex.axis = 1.2, lwd = 2,

type = "l", ylab = "", xlab = "", bty = "n", las = 1)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.5

1.0

1.5

2.0

Welding the boundaries to the basic litholog ----
final.log <- weldlog(log = basic.log,

dt = boundary.example$dt, # Position of the boundaries
to be changed

seg = list(s1 = s1, s2 = s2, s3 = s3), # list of segments
j = c("s1","s1","s1","s3", # Attributing the segments to

"s2","s2","s1"), # the respective bed boundaries
to be changed

warn = F)

Visualizing the resulting litholog (similarly to earlier code) ----
plot.new()
plot.window(xlim = c(0,6), ylim = c(-1,77))
minorAxis(2, at.maj = seq(0, 75, 5), n = 5, las = 1)

multigons(final.log$i, x = final.log$xy, y = final.log$dt,
col = bed.legend$col,
density = bed.legend$density,
angle = bed.legend$angle)

bedtext(labels = bed.example$id, l = bed.example$l, r = bed.example$r,
x = 0.75, ymin = 3)

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 162

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

B4

B8

B13

B17

B22

B26

B31

B35

We see that the thickness of beds can vary. Therefore, a bed boundary can actually vary within a
given interval. This raises the question of how to document the position of the bed boundaries in data
tables that would only have 2 values for the boundaries (lower and upper) rather than 4 (upper and
lower interval of variation for the lower boundary, and upper and lower interval of variation for the
upper boundary) or even more (detailing the exact form of the boundaries). We propose a convention
for the data tables to be used for the generation of lithologs: the positions of the bed boundaries that
are defined in the quantified data have to match in a litholog with the positions of the boundaries
of the beds on the axis side of the litholog (usually the left side for single logs). The axis side of the
litholog is ideal: it follows a straight vertical line, by an implicit convention followed by the large
majority of geologists.

Extra stratigraphic or lithological information, such as geomagnetic chrons, rock color, etc., can
be added using the infobar() function. Any information that can be conveyed by text, such as the
positions of samples, can be added using the axis() or text() functions.

Code repeated from earlier examples ----
basic.log <- litholog(l = bed.example$l, r = bed.example$r,

h = bed.example$h, i = bed.example$id)
legend <- data.frame(litho = c("S", "L", "C"), density = c(30, 0,10),

col = c("grey30", "grey90", "white"),
angle = c(180, 0, 45), stringsAsFactors = FALSE)

bed.legend <- dplyr::left_join(bed.example,legend, by = "litho")
s1 <- sinpoint(5,0,0.5,nwave = 1.5)
s2 <- sinpoint(5,0,1,nwave = 3, phase = 0)
s3 <- framesvg(example.liquefaction, 1, 4, 0, 2, plot = FALSE, output = TRUE)
final.log <- weldlog(log = basic.log, dt = boundary.example$dt,

seg = list(s1 = s1, s2 = s2, s3 = s3),
j = c("s1","s1","s1","s3","s2","s2","s1"), warn = F)

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 163

Visualizing the resulting litholog (similarly to earlier code) ----
plot.new()
plot.window(xlim = c(-1.5,8), ylim = c(-1,81))
minorAxis(2, at.maj = seq(0, 75, 5), n = 5, las = 1)

multigons(final.log$i, x = final.log$xy, y = final.log$dt,
col = bed.legend$col,
density = bed.legend$density,
angle = bed.legend$angle)

bedtext(labels = bed.example$id, l = bed.example$l, r = bed.example$r,
x = 0.5, ymin = 2)

Making a data table for the symbology of magnetochrons
legend.chron <- data.frame(polarity = c("N", "R"),

bg.col = c("black", "white"),
text.col = c("white", "black"),
stringsAsFactors = FALSE)

Merging symbology with a data table of chrons
chron.legend <- dplyr::left_join(chron.example, legend.chron, by = "polarity")

Plotting the chrons with the given symbology
infobar(-1.5, -1, chron.legend$l, chron.legend$r,

labels = chron.legend$polarity,
m = list(col = chron.legend$bg.col),
t = list(col = chron.legend$text.col),
srt = 0)

Adding color information
colour <- bed.example$colour
colour[colour == "darkgrey"] <- "grey20"
colour[colour == "brown"] <- "tan4"

Plotting the color next to the litholog
infobar(-0.25, -0.75, bed.example$l, bed.example$r,

m = list(col = colour))

text(-0.5, 79, "Colour", srt = 90)
text(-1.25, 79, "Magnetochrons", srt = 90)

axis(4, at = proxy.example$dt, labels = proxy.example$name,
pos = 6, lwd = 0, lwd.ticks = 1, las = 1)

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 164

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

B2

B4

B5

B7

B8

B9

B11

B13

B14

B16

B17

B18

B20

B22

B23

B25

B26

B27

B29

B31

B32

B34

B35

B36

N

R

N

C
ol

ou
r

M
ag

ne
to

ch
ro

ns

EXA 1
EXA 2
EXA 3
EXA 4
EXA 5
EXA 6
EXA 7
EXA 8
EXA 9
EXA 10
EXA 11
EXA 12
EXA 13
EXA 14
EXA 15
EXA 16
EXA 17
EXA 18
EXA 19
EXA 20
EXA 21
EXA 22
EXA 23
EXA 24
EXA 25
EXA 26
EXA 27
EXA 28
EXA 29
EXA 30
EXA 31
EXA 32
EXA 33
EXA 34
EXA 35
EXA 36
EXA 37
EXA 38
EXA 39
EXA 40
EXA 41
EXA 42
EXA 43
EXA 44
EXA 45
EXA 46
EXA 47
EXA 48
EXA 49
EXA 50
EXA 51
EXA 52
EXA 53
EXA 54
EXA 55
EXA 56
EXA 57
EXA 58
EXA 59
EXA 60
EXA 61
EXA 62
EXA 63
EXA 64
EXA 65
EXA 66
EXA 67
EXA 68
EXA 69
EXA 70
EXA 71
EXA 72
EXA 73
EXA 74
EXA 75
EXA 76

Other plots can be drawn along the litholog. Great care should be taken to ensure that the depth
axis is identical in all plots. To ensure that, two components have to be taken into account: the
ylim argument of plot.window() or plot() (for vertical logs, otherwise the xlim argument), and the
graphical parameters defined by the par() function, especially the yaxs (for vertical logs, otherwise
xaxs) and the mar arguments. The ylim argument controls the range of the axis, but the exact range
will depend on the yaxs argument. Indeed, the default setting of yaxs is "r", which stands for regular,
and means that the data range defined by ylim is extended by 4 percent at each end. Such extension
can be unwanted in very long lithologs. Alternatively, the yaxs argument can be set as "i", which
stands for ’internal’, and prevents the extension of the range defined by ylim. The mar argument
controls the margin size of the plotting zone. To add plots along the litholog, a simple way is to use
the mfrow argument in the par() function to define several plotting areas, which will be used by the
successively called plots.

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 165

Code repeated from earlier examples ----
basic.log <- litholog(l = bed.example$l, r = bed.example$r,

h = bed.example$h, i = bed.example$id)
legend <- data.frame(litho = c("S", "L", "C"),

col = c("grey30", "grey90", "white"),
density = c(30, 0,10),
angle = c(180, 0, 45), stringsAsFactors = FALSE)

bed.legend <- dplyr::left_join(bed.example,legend, by = "litho")
s1 <- sinpoint(5,0,0.5,nwave = 1.5)
s2 <- sinpoint(5,0,1,nwave = 3, phase = 0)
s3 <- framesvg(example.liquefaction, 1, 4, 0, 2, plot = FALSE, output = TRUE)
final.log <- weldlog(log = basic.log, dt = boundary.example$dt,

seg = list(s1 = s1, s2 = s2, s3 = s3),
j = c("s1","s1","s1","s3","s2","s2","s1"), warn = F)

opar <- par() # Save initial graphical parameters (IGP)
par(mfrow = c(1,2), # Set two vertical plots along each other

yaxs = "r", # Default setting, adds 4% more range for y
mar = c(5.1, 4.1, 4.1, 0.1)) # Change settings for margins

Visualizing the resulting litholog (similarly to earlier code) ----
plot.new()
plot.window(xlim = c(0,6), ylim = c(-1,77))
minorAxis(2, at.maj = seq(0, 75, 5), n = 5, las = 1)

multigons(final.log$i, x = final.log$xy, y = final.log$dt,
col = bed.legend$col,
density = bed.legend$density,
angle = bed.legend$angle)

bedtext(labels = bed.example$id, l = bed.example$l, r = bed.example$r,
x = 0.75, ymin = 3)

Visualizing quantified values along the litholog ----

par(mar = c(5.1, 0.1, 4.1, 4.1)) # Change settings for margins of 2nd plot

plot.new()
plot.window(xlim = c(-2*10^-8,8*10^-8), ylim = c(-1,77)) # ylim similar to

litholog

minorAxis(4, at.maj = seq(0, 75, 5), n = 5, las = 1) # Repetition of the axis to
check both sides are matching

lines(proxy.example$ms, proxy.example$dt, type = "o", pch = 19)
axis(1)
title(xlab = "Magnetic Susceptibility")

par(mar = opar$mar, mfrow = opar$mfrow, yaxs = opar$yaxs) # Restore IGP

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 166

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

B4

B8

B13

B17

B22

B26

B31

B35

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

●
●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●
●

●
●

●

−2e−08 2e−08 6e−08

Magnetic Susceptibility

A legend plot can be generated using the nlegend() function. The basic idea is to make a subplot
for each symbol (using the par() function, for instance), in which the nlegend() function calls a new
plot leaving free space for the symbol (included in [-1, 1], both for x and y coordinates), and adds the
text description. This scheme improves automation, e.g., by simplifying the symbol generation of rock
types in a function as shown in the code below:

legend <- data.frame(litho = c("S", "L", "C"), # Symbology
col = c("grey30", "grey90", "white"), # data table
density = c(30, 0,10), angle = c(180, 0, 45),
stringsAsFactors = FALSE)

f <- function(legend_row) # To simplify coding, we design here a function
plotting rectangles with the desired symbology

{
multigons(i = rep(1, 4), c(-1,-1,1,1), c(-1,1,1,-1),

col = legend$col[legend_row],
density = legend$density[legend_row],
angle = legend$angle[legend_row])

}

opar <- par() # Save initial graphical parameters
par(mar = c(0,0,0,0), mfrow = c(5,1)) # Make 5 plot windows

nlegend(t = "Shale", cex = 2) # The cex parameter controls the size of the text
f(1) # 1 stands for the first row of the symbology data table
nlegend(t = "Limestone", cex = 2)
f(2)
nlegend(t = "Chert", cex = 2)
f(3)

nlegend(t = "Ammonite", cex = 2)
centresvg(example.ammonite, 0,0,xfac = 0.5)
nlegend(t = "Belemnite", cex = 2)
centresvg(example.belemnite, 0,0,xfac = 0.5)

par(mar = opar$mar, mfrow = opar$mfrow) # Restore initial graphical parameters

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 167

Shale

Limestone

Chert

Ammonite

Belemnite

As lithologs can be longer than a single printable page, it is sometimes necessary to split them into
separate plots to be displayed on successive pages of a text document. This can be done by grouping
all the drawing functions used to generate the litholog into a single function, with ylim as an argument.
This function can be iterated with successive ylim intervals.

Functions that generate several plots will generate the corresponding pages in the PDF generated
by pdfDisplay(). All the pages have to be of the same dimensions. To integrate these successive
litholog figures into a larger document that would include all the litholog parts, the associated legend,
a text description of the section, etc., LaTeX can be used. A \foreach loop in LaTeX can then be applied
to import all the pages using the \includegraphics function.

Code repeated from earlier examples ----
basic.log <- litholog(l = bed.example$l, r = bed.example$r,

h = bed.example$h, i = bed.example$id)
legend <- data.frame(litho = c("S", "L", "C"),

col = c("grey30", "grey90", "white"),
density = c(30, 0,10),
angle = c(180, 0, 45), stringsAsFactors = FALSE)

bed.legend <- dplyr::left_join(bed.example,legend, by = "litho")
s1 <- sinpoint(5,0,0.5,nwave = 1.5)
s2 <- sinpoint(5,0,1,nwave = 3, phase = 0)
s3 <- framesvg(example.liquefaction, 1, 4, 0, 2, plot = FALSE, output = TRUE)
final.log <- weldlog(log = basic.log, dt = boundary.example$dt,

seg = list(s1 = s1, s2 = s2, s3 = s3),
j = c("s1","s1","s1","s3","s2","s2","s1"), warn = F)

legend.chron <- data.frame(polarity = c("N", "R"),
bg.col = c("black", "white"),
text.col = c("white", "black"),
stringsAsFactors = FALSE)

chron.legend <- dplyr::left_join(chron.example,legend.chron, by = "polarity")
colour <- bed.example$colour
colour[colour == "darkgrey"] <- "grey20"
colour[colour == "brown"] <- "tan4"

Function that will draw a litholog, with personalized coordinates control
log.function <- function(xlim = c(-2.5,7), ylim = c(-1,77))
{

plot.new()
plot.window(xlim = xlim, ylim = ylim)
minorAxis(2, at.maj = seq(0, 75, 5), n = 5, pos = -1.75, las = 1)

multigons(final.log$i, x = final.log$xy, y = final.log$dt,
col = bed.legend$col,
density = bed.legend$density,
angle = bed.legend$angle)

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

https://www.latex-project.org/

CONTRIBUTED RESEARCH ARTICLE 168

bedtext(labels = bed.example$id, l = bed.example$l, r = bed.example$r,
x = 1, edge = TRUE, ymin = 2)

centresvg(example.ammonite, 6,
fossil.example$dt[fossil.example$type == "ammonite"],
xfac = 0.5)

centresvg(example.belemnite, 6,
fossil.example$dt[fossil.example$type == "belemnite"],
xfac = 0.5)

infobar(-1.5, -1, chron.legend$l, chron.legend$r,
labels = chron.legend$id, m = list(col = chron.legend$bg.col),
t = list(col = chron.legend$text.col))

infobar(-0.25, -0.75, bed.example$l, bed.example$r,
m = list(col = colour))

}

In this gr() function, log.function() is repeated, which plots the
desired parts of the litholog

gr <- function()
{

opar <- par() # Save initial graphical parameters
par(mar = c(1,2,1,2), yaxs = "i")
ylim <- c(0,40) # Initial range to be plotted

for(i in 1:0) log.function(ylim = ylim + 40*i) # Iteration of the plotting
The drawing range's length is iteratively added to the range already drawn

par(mar = opar$mar, yaxs = opar$yaxs) # Restore initial graphical parameters
}

Integration of gr() in pdfDisplay to make PDFs
pdfDisplay(gr(), name = "divided log", width = 3, height = 5)

40

45

50

55

60

65

70

75

B20

B22

B23

B25

B26

B27

B29

B31

B32

B34

B35

B36

C
hr

on
 1

r
C

hr
on

 2
n

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 169

0

5

10

15

20

25

30

35

40

B2

B4

B5

B7

B8

B9

B11

B13

B14

B16

B17

B18

B20

C
hr

on
 1

n

The code can be adapted to divide the plot differently,
and to add other plots along the litholog

gr2 <- function()
{

opar <- par() # Save initial graphical parameters (IGP)

low <- c(-5, 25, 55) # Another way of defining the dimensions
high <- c(25, 55, 85) # of succesive plotting windows

for(i in 3:1){ # Inverted order to have them in stratigraphic order

par(mfrow = c(1,2), yaxs = "i") # Plot in two columns, same yaxs for both
par(mar = c(5,2,1,0)) # Define margins for first plot (left)

log.function(ylim = c(low[i], high[i]))

par(mar = c(5,0,1,1)) # Second plot (right): change only the vertical
margins (2nd and 4th)

plot.new()
plot.window(xlim = c(-2*10^-8,8*10^-8), ylim = c(low[i], high[i]))
lines(proxy.example$ms, proxy.example$dt, type = "o", pch = 19)
axis(1)
title(xlab = "Magnetic Susceptibility")

}

par(mar = opar$mar, yaxs = opar$yaxs, mfrow = opar$mfrow) # Restore IGP
}

pdfDisplay(gr2(), name = "divide in 3", wi = 5, he = 7)

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 170

55

60

65

70

75

B25

B26

B27

B29

B31

B32

B34

B35

B36

C
hr

on
 2

n

−2e−08 2e−08 6e−08

Magnetic Susceptibility

25

30

35

40

45

50

55

B11

B13

B14

B16

B17

B18

B20

B22

B23

B25

B26

B27

C
hr

on
 1

r

−2e−08 2e−08 6e−08

Magnetic Susceptibility

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 171

0

5

10

15

20

25

B2

B4

B5

B7

B8

B9

B11

B13

C
hr

on
 1

n

−2e−08 2e−08 6e−08

Magnetic Susceptibility

The preceding examples illustrate some of the capabilities of the StratigrapheR package. However,
an important question remains unanswered: have we overcome the "from art to useful data" challenge?
We will illustrate our answer by importing the computer-drawn litholog from Fig. 1. We will also
take the opportunity to show how StratigrapheR can help in the comparison and correlation of
sections. For that purpose, we plot two lithologs in front of each other and visually link them using the
ylink() function. ylink() currently only works in single window plots, i.e., having a coherent x and
y coordinate system. Therefore, we need to change the coordinate system of one of the two lithologs.

Prior to importing it into R using pointsvg(), all the lines and polygons in the litholog in Fig. 1 are
sparsely interpolated, and all the curves are converted into straight lines. To have perfect positioning
in x and y coordinates, the initial drawing is surrounded by a rectangle having known coordinates.
Afterward, the figure is saved as an SVG file. All this takes less than a minute with vector graphics
software (here using CorelDRAW). The sparse interpolation means that the figures will be angular
(take, for instance, the initially elliptical lens containing brachiopods at 34.5 m, when imported by
the code here below, it becomes clearly polygonal). If smoother curves are desired, the amount
of interpolated points can be increased. When the figure is imported by pointsvg(), the rectangle
defines the borders of the figure, which by default are set at [-1, 1] in x and y. These coordinates are
changed using framesvg() by providing the initial coordinates of the rectangle as xmin, xmax, ymin,
and ymax. Having served its purpose as a reference in x and y, the rectangle can be removed directly in
framesvg() using the forget argument.

svg.file.directory <- tempfile(fileext = ".svg") # Creates temporary file
writeLines(example.HB2000.svg, svg.file.directory) # Writes svg in the file

Log: 1 Humblet and Boulvain 2000 ----

a <- pointsvg(svg.file.directory) # Import the svg
out <- framesvg(a,

xmin = 0, xmax = 5, # Initial coordinates of the
ymin = 27, ymax = 36, # rectangle (see SVG file)
output = T, # This allows to output the changed coordinates
forget = "P287") # 'forget' removes the rectangle added in the

svg to serve as a referential in x and y

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 172

Log 2: Code repeated from earlier examples ----

basic.log <- litholog(l = bed.example$l, r = bed.example$r,
h = bed.example$h, i = bed.example$id)

legend <- data.frame(litho = c("S", "L", "C"),
col = c("grey30", "grey90", "white"),
density = c(30, 0,10),
angle = c(180, 0, 45), stringsAsFactors = FALSE)

bed.legend <- dplyr::left_join(bed.example,legend, by = "litho")
s1 <- sinpoint(5,0,0.5,nwave = 1.5)
s2 <- sinpoint(5,0,1,nwave = 3, phase = 0)
s3 <- framesvg(example.liquefaction, 1, 4, 0, 2, plot = FALSE, output = TRUE)
final.log <- weldlog(log = basic.log, dt = boundary.example$dt,

seg = list(s1 = s1, s2 = s2, s3 = s3),
j = c("s1","s1","s1","s3","s2","s2","s1"), warn = F)

Plotting two logs in front of each other ----

plot.out <- out # Save a version of the svg object
tie.points <- data.frame(l = c(20,35,54,66), # Define points to correlate

r.raw = c(29.8,31,32.5,33.25)) # the two sections in
their own depth scales

plot.out$x <- 15 - out$x # Change the coordinates for
plot.out$y <- 10*(out$y - 27.5) # second litholog (imported
axs2 <- 10*(28:35 - 27.5) # from Fig. 1), to plot it t
tie.points$r <- 10*(tie.points$r.raw - 27.5) # in front of the first litholog

g <- function()
{

opar <- par() # Save initial graphical parameters
par(mar = c(1,4,1,4))
plot.new()
plot.window(xlim = c(0,15), ylim = c(0,75))
minorAxis(2, at.maj = seq(0,75, 5), n = 5, las = 1, cex.axis = 1.2)
minorAxis(4, at.maj = axs2, labels = 28:35, n = 10, las = 1, cex.axis = 1.2)

multigons(final.log$i, x = final.log$xy, y = final.log$dt,
col = bed.legend$col,
density = bed.legend$density,
angle = bed.legend$angle)

placesvg(plot.out, col = "white") # Adding the drawn plot

ylink(tie.points$l, tie.points$r, 6, 9, ratio = 0.5, # Correlation between
l = list(lty = c(1,2,2,1), lwd = 2)) # the two plots

par(mar = opar$mar) # Restore initial graphical parameters

}

pdfDisplay(g(), "Log Correlation")

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 173

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

28

29

30

31

32

33

34

35

The most obvious discrepancy between the original computer-drawn version (Fig. 1) and the one
imported in R is the lack of color in the latter. We could have identified all the gray polygons one by
one and provided them with a color symbology, but such a tedious task would go against the motto of
simplifying data management. This highlights that at the moment, the conversion of lithologs "from
art to useful data" is not as straightforward as it could be, yet it is not too far out of our reach.

5 New R functions for geological and general purpose

StratigrapheR was designed in a modular way: low-level general-purpose functions were imple-
mented to simplify the development of higher-level functions. The package also hosts a couple of
functions that are not specifically related to lithologs but could be of great use, especially to geologists,
and to other developers. We present a few of these functions in this chapter to promote the use of
modular and general-purpose functions and to help other developers making their own functions.

• divisor(): finds the greatest common rational divisor (GCRD) of a set of values, typically depth,
height, or time in time series. This function is important as it allows to transform floating-point
values into integers (within the precision range allowed by floating-point arithmetic) by dividing
them by the GCRD. We highlight its high potential to automate data processing, especially
to interpolate the irregularly-sampled depth, height, or time values that are omnipresent in
geology (interpolation by the GCRD preserves the original values). This function is somewhat
empirical and would benefit from improvements (among others to reduce the computing time,
typically in the case where the GCRD is significantly smaller than the input values), but this
would require expertise in mathematics and informatics that the authors do not have. We hope
that open-source developers will respond to this challenge.

• every_nth(): leaves or removes values at position indexes of multiples of a given amount (n).
This is typically useful to discriminate major and minor ticks of a personalized axis.

• in.window(): this function can serve as a base for windowing (typically to perform a moving
average). It gives a matrix of all the points included in each successive window (in depth, height,
or time). We illustrate this with irregularly sampled data points.

window <- in.window(irreg.example$dt, # Depth values
w = 30, # Size of the window
xout = seq(0, 600, 20), # Center position of windows
xy = irreg.example$xy) # Intensity values (or other)

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 174

mov.mean <- rowMeans(window$xy, na.rm = TRUE) # Average of the intensity
values in windows

presence <- matrix(as.integer(!is.na(window$xy)), # Discriminate between NA
ncol = ncol(window$xy)) # values and intensity values

amount <- rowSums(presence) # to determine the amount of
real values in each window
(example of window calculation)

opar <- par() # Save initial graphical parameters
par(mfrow = c(2,1), mar = c(0,4,0,0))
plot(irreg.example$dt, irreg.example$xy, type = "o", pch = 19,

xlim = c(0,600), xlab = "dt", ylab = "xy and moving average", axes = F)
lines(window$xout, mov.mean, col = "red", lwd = 2)
axis(2, las = 1)

par(mar = c(5,4,0,0))
plot(window$xout, amount, pch = 19, xlim = c(0,600), ylim = c(0,25),

xlab = "dt", ylab = "amount of points in the windows", axes = F)
axis(1)
axis(2, las = 1)

par(mar = opar$mar, mfrow = opar$mfrow) # Restore initial graphical parameters

dt

xy
 a

nd
 m

ov
in

g
av

er
ag

e

0

2

4

6

8

dt

am
ou

nt
 o

f p
oi

nt
s

in
 th

e
w

in
do

w
s

0 100 200 300 400 500 600

0

5

10

15

20

25

• nset(): finds the position of a given amount of values (n) having a common identification code,
selecting either the n first or the n last ones, or signaling that they are not available (NA). This is
useful to homogenize replicate measurement values.

id <- c("samp1", "samp1", "samp2", "samp3", "samp3", "samp3")
meas <- c(0.45, 0.55, 5.0, 100, 110, 120)

new_sequence <- nset(id, 2, warn = F)

new_sequence
#> [,1] [,2]
#> samp1 1 2
#> samp2 3 NA
#> samp3 4 5

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 175

clean_meas <- matrix(meas[new_sequence], ncol = 2)

row.names(clean_meas) <- unique(id)

clean_meas
#> [,1] [,2]
#> samp1 0.45 0.55
#> samp2 5.00 NA
#> samp3 100.00 110.00

• seq_mult(): gives a sequence of numbers that are reordered by a given divisor of the length of
the sequence (e.g., seq_mult(10,5) gives the sequence 1, 6, 2, 7, 3, 8, 4, 9, 5, 10). This is useful to
reorder and manipulate repetitive sequences (e.g., changing 1, 2, 3, 4, 5, 1, 2, 3, 4, 5 into 1, 1, 2, 2,
3, 3, 4, 4, 5, 5 and back).

6 Present limitations and prospects for the future

StratigrapheR, for the moment, uses the base graphics in R. This is a choice that was made in the
initial development phase of the package, as the base graphics (also called traditional graphics) are
easy to learn for R beginners and are relatively robust, compared to their alternative; the grid graphics
(Murrell, 2012). The grid graphics are the basis for the lattice (Sarkar, 2008) and ggplot2 (Wickham,
2016) graphical packages. Grid graphics allow more sophistication than the base graphics, but at the
price of a more complicated implementation (Murrell, 2012). However, grid graphics would make
the entire litholog generation process more efficient, especially by using the concept of grob (which
stands for GRaphical OBject). Grobs are R objects that save all the information of a plot, which can
then be modified without needing to alter or rewrite the code made to generate the grobs. This would
avoid any unnecessary repetition of code. Revisiting the examples in the article, you will see that the
code needed for litholog generation does require writing the entire plotting functions at each plot
generation or inserting them into a function. On the other hand, elements of a plot made in grid
graphics can be expressed via grobs and can be reassembled to generate a modified version of the
plot without explicitly making a function or repeating the code. This would further simplify drawing
different parts of the same plot on several pages: if a litholog was expressed as a grob, only a few lines
of codes would be needed to generate successive versions of the plot, and make them fit on different
pages. For all these reasons, grobs would prove to be a key feature for future litholog generation into
R. This would especially be useful to integrate lithologs in plots made by other packages, something
which was not explored in this article: in the current implementation of StratigrapheR (i.e., without
grobs), this would be more complicated than it could be (although it should still be possible). We hope
to explore this aspect in the subsequent developments of the StratigrapheR package.

More generally, the difficulty of importing SVG objects into R should be discussed. With pointsvg(),
only polyline and polygon objects can be imported; their color, line type, or line thickness are not
taken into account. However, this is justified by the fundamental incompatibility between SVG and R
graphics, whether from base graphics or grid graphics: SVG files display a wide variety of graphical
parameters that are inexistent in R. Other authors have attempted to allow the complete importation
of vector graphics into R (e.g., grImport (Murrell, 2009), or the vectoR package available from GitHub).
These works are remarkable but require a lot more effort to use compared to pointsvg(). This comes
from the fact that the only task allocated to pointsvg() is to provide coordinates of polygons and
polylines. Afterward, the graphical parameters can be dealt with in R. Therefore we argue that this
limitation is not by any means a flaw that will impede the use of StratigrapheR or R to deal with
geological data. Furthermore, in order to work with pointsvg(), one only needs to simplify SVG
objects into polygons and polylines. This procedure can be done quite easily in vector graphics
software but could also be automated either in R or using SVG-related software and libraries.

Pattern fillings, often used to represent lithologies in traditional lithologs, are currently difficult
to plot in R. Indeed, carbonates are often represented with a brick pattern, shales with horizontal
layering, and conglomerates by a pattern of polygons to represent heterogeneous pieces. Not all of
these pattern fillings are easily implementable in R at the moment, as the only user-friendly pattern is
the shading (parallel lines). Rectangular pattern blocs could be generated in SVG form, imported in R
using the pointsvg() function, and repeated to fill polygons.

Another useful feature that has not been implemented in StratigrapheR yet is a way to display
’hardness’ variations within the lithological beds. The side opposite to the axis could indeed exhibit
continuous variations, which would represent continuous changes in hardness, changes in topographi-
cal relief of beds in the field (which is a good indicator of hardness), but also variations of grain size or

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=grImport
https://github.com/richfitz/vectoR

CONTRIBUTED RESEARCH ARTICLE 176

lithology. These are parameters that are critical to quantify and formalize. We therefore advocate for
a community effort to come up with standards for the quantification of the hardness, topographical
relief, grain size, and lithology. The way to quantify these parameters should allow to express them
in discrete values along the stratigraphical depth or height. These discrete values will make up the
points of the polygons symbolizing the beds, on the ’hardness’-varying side of the litholog.

The importation of the PDF documents generated by pdfDisplay() back into R, to make documents
including the lithologs and providing supporting information (maps, legends, descriptions, etc.),
could, in theory, be implemented using the R Markdown scheme (see Xie et al. (2018), Xie et al.
(2020) and Allaire et al. (2021) that document the rmarkdown package). In practice, however, the
include_graphics() function in knitr (Xie, 2020), which is used to import PDF files in R Markdown,
does not allow the selection of specific pages. This means that, for the moment, R Markdown is not
well-suited for such a task. Nonetheless, this can be done using LaTeX.

StratigrapheR, for the moment, does not provide a library of geological features symbology, to
avoid favoring specific standards of symbology that are not the norm for all geoscientists. However,
we encourage the creation of different geological data formats and of their related symbology. One
idea would be to have a repository for different geological symbols, grouping different versions of
symbols standing for identical geological features and enabling easy download (and upload of new
formats).

Finally, the definitive answer to the "from art to usable data" challenge would be to enable the
importation into R of lithologs made by other software. This would be easily applicable with ad hoc
software tools for which all the geological information is available in a text file. It would furthermore
be conceptually possible to import computer-drawn lithologs into Geographical Information System
(GIS) software such as the open-source QGIS, treat the polygons and polylines making up the litholog
as spatial data, and to couple them with geological meta-data (i.e., by manually selecting these objects
and providing them with identification, lithological information, etc.). This could be further facilitated
by using algorithms developed for Optical Character Recognition (OCR, typically used to convert
handwritten or printed text) and apply them to geological symbols. The combination of polygons,
polylines, meta-data, and symbology could subsequently be used as a basis for a general-purpose
litholog data format, which could then be imported in R and allow direct figure generation. With
this idea, one could make software facilitating the conversion of one geological data format (e.g.,
hand-drawn lithologs) into this general format and then back to another format (e.g., the LAS format).
The final step of this would be to improve and streamline the exchange and publication of geological
data.

7 Summary

StratigrapheR explores new concepts to deal with geological data. It can serve as a strong basis for
the generation of lithologs, especially facilitating the workflow when repetitive features are present.
The importation of quantified data and the generation of lithologs can be refined to very simple
and reproducible steps. Complex drawings can also be included. Modifying the lithologs can be
automated, as the geological data can be reprocessed in R or corrected in the files used to generate the
lithologs: this means that the visual output can be efficiently updated.

For the future, litholog generation in R has a strong potential to be improved: anyone willing to
code in R can put a personal spin on our current work. Ultimately, all types and formats of lithologs
could be imported, treated, converted, and exported efficiently, using R as a focal point for geological
data processing.

8 Acknowledgments

The authors would like to thank four anonymous reviewers and the editor Michael Kane, who, through
their insight, have brought substantial improvements to the paper and to StratigrapheR. We also
thank Thomas Goovaerts and an anonymous copy editor for their proofreading of the manuscript.
The first author (SW) would like to express his gratitude to Adam Smith for allowing the inclusion
of his every_nth() function into StratigrapheR, and to Michel Crucifix for his help on the divisor()
function. SW also thanks the Belgian Fund for Scientific Research (FNRS) for the FRIA grant having
funded his PhD.

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=knitr
https://www.latex-project.org/
https://www.qgis.org/en/site/

CONTRIBUTED RESEARCH ARTICLE 177

Bibliography

J. J. Allaire, Y. Xie, J. McPherson, J. Luraschi, K. Ushey, A. Atkins, H. Wickham, J. Cheng, W. Chang,
and R. Iannone. rmarkdown: Dynamic Documents for R, 2021. URL https://github.com/rstudio/
rmarkdown. R package version 2.7. [p176]

D. W. Bapst. paleotree: Paleontological and Phylogenetic Analyses of Evolution, 2012. URL https:
//CRAN.R-project.org/package=paleotree. [p154]

D. C. Bowman and J. M. Lees. The Hilbert–Huang Transform: A High Resolution Spectral Method
for Nonlinear and Nonstationary Time Series. Seismological Research Letters, 84(6):1074–1080, Nov.
2013. ISSN 0895-0695. doi: 10.1785/0220130025. URL https://pubs.geoscienceworld.org/srl/
article/84/6/1074/349062/The-Hilbert-Huang-Transform-A-High-Resolution. [p154]

A. Dragulescu and C. Arendt. xlsx: Read, Write, Format Excel 2007 and Excel 97/2000/XP/2003 Files,
Feb. 2020. URL https://CRAN.R-project.org/package=xlsx. [p155]

T. C. Gouhier, A. Grinsted, and V. Simko. R package biwavelet: Conduct Univariate and Bivariate
Wavelet Analyses, 2019. URL https://CRAN.R-project.org/package=biwavelet. [p154]

K. Heslop, J. Karst, S. Prensky, and D. Schmitt. Log Ascii Standard (las) Version 3.0. The Log Analyst,
40(06), Nov. 1999. ISSN 0024-581X. URL https://www.onepetro.org/journal-paper/SPWLA-1999-
v40n6a4. [p154]

M. Humblet and F. Boulvain. Sedimentology of the Bieumont Member: influence of the Lion Mem-
ber carbonate mounds (Frasnian, Belgium) on their sedimentary environment. Geologica Belgica,
2000. ISSN 1374-8505, 2034-1954. URL https://popups.uliege.be/1374-8505/index.php?id=1916.
[p153]

S. R. Meyers. Astrochron: An R Package for Astrochronology, 2014. URL https://cran.r-project.
org/package=astrochron. [p154]

P. Murrell. Importing Vector Graphics: The grImport Package for R. Journal of Statistical Software, 30(4):
1–37, 2009. URL http://www.jstatsoft.org/v30/i04/. [p175]

P. Murrell. R Graphics. CRC Press, second edition, 2012. URL https://r-graphics.org/. [p175]

J. R. Ortiz, C. Jaramillo, and C. Moreno. SDAR: Stratigraphic Data Analysis, 2019. URL https:
//CRAN.R-project.org/package=SDAR. [p154]

D. Sarkar. Lattice: Multivariate Data Visualization with R. Springer, New York, 2008. ISBN 978-0-387-
75968-5. URL http://lmdvr.r-forge.r-project.org. [p175]

P. Vermeesch. IsoplotR: a free and open toolbox for geochronology. Geoscience Frontiers, 9:1479–1493,
2018. URL https://doi.org/10.1016/j.gsf.2018.04.001. [p154]

H. Wickham. R packages. O’Reilly, 2015. URL http://r-pkgs.had.co.nz/. [p154]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. ISBN
978-3-319-24277-4. URL https://ggplot2.tidyverse.org. [p175]

H. Wickham, R. François, L. Henry, K. Müller, and RStudio. dplyr: A Grammar of Data Manipulation,
Mar. 2020. URL https://CRAN.R-project.org/package=dplyr. [p159]

S. Wouters. DecomposeR: Empirical Mode Decomposition for Cyclostratigraphy, 2020. URL https:
//CRAN.R-project.org/package=DecomposeR. [p154]

Y. Xie. knitr: A General-Purpose Package for Dynamic Report Generation in R, 2020. URL https:
//yihui.org/knitr/. [p176]

Y. Xie, J. J. Allaire, and G. Grolemund. R Markdown: The Definitive Guide. Chapman and Hall/CRC,
Boca Raton, Florida, 2018. URL https://bookdown.org/yihui/rmarkdown. [p176]

Y. Xie, C. Dervieux, and E. Riederer. R Markdown Cookbook. Chapman and Hall/CRC, Boca Raton,
Florida, 2020. URL https://bookdown.org/yihui/rmarkdown-cookbook. [p176]

D. Zervas, G. J. Nichols, R. Hall, H. R. Smyth, C. Lüthje, and F. Murtagh. SedLog: A shareware program
for drawing graphic logs and log data manipulation. Computers & Geosciences, 35(10):2151–2159,
2009. ISSN 0098-3004. doi: 10.1016/j.cageo.2009.02.009. URL http://www.sciencedirect.com/
science/article/pii/S0098300409001861. [p154]

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

https://github.com/rstudio/rmarkdown
https://github.com/rstudio/rmarkdown
https://CRAN.R-project.org/package=paleotree
https://CRAN.R-project.org/package=paleotree
https://pubs.geoscienceworld.org/srl/article/84/6/1074/349062/The-Hilbert-Huang-Transform-A-High-Resolution
https://pubs.geoscienceworld.org/srl/article/84/6/1074/349062/The-Hilbert-Huang-Transform-A-High-Resolution
https://CRAN.R-project.org/package=xlsx
https://CRAN.R-project.org/package=biwavelet
https://www.onepetro.org/journal-paper/SPWLA-1999-v40n6a4
https://www.onepetro.org/journal-paper/SPWLA-1999-v40n6a4
https://popups.uliege.be/1374-8505/index.php?id=1916
https://cran.r-project.org/package=astrochron
https://cran.r-project.org/package=astrochron
http://www.jstatsoft.org/v30/i04/
https://r-graphics.org/
https://CRAN.R-project.org/package=SDAR
https://CRAN.R-project.org/package=SDAR
http://lmdvr.r-forge.r-project.org
https://doi.org/10.1016/j.gsf.2018.04.001
http://r-pkgs.had.co.nz/
https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=DecomposeR
https://CRAN.R-project.org/package=DecomposeR
https://yihui.org/knitr/
https://yihui.org/knitr/
https://bookdown.org/yihui/rmarkdown
https://bookdown.org/yihui/rmarkdown-cookbook
http://www.sciencedirect.com/science/article/pii/S0098300409001861
http://www.sciencedirect.com/science/article/pii/S0098300409001861

CONTRIBUTED RESEARCH ARTICLE 178

Sébastien Wouters
Sedimentary Petrology
University of Liege
Belgium
ORCiD: 0000-0003-2526-0880
sebastien.wouters@doct.uliege.be

Anne-Christine Da Silva
Sedimentary Petrology
University of Liege
Belgium
ORCiD: 0000-0003-4191-7600
ac.dasilva@uliege.be

Frédéric Boulvain
Sedimentary Petrology
University of Liege
Belgium
fboulvain@uliege.be

Xavier Devleeschouwer
O.D. Earth and History of Life
Royal Belgian Institute of Natural Sciences
Belgium
ORCiD: 0000-0002-8841-1159
xdevleeschouwer@naturalsciences.be

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

https://orcid.org/0000-0003-2526-0880
mailto:sebastien.wouters@doct.uliege.be
http://orcid.org/0000-0003-4191-7600
mailto:ac.dasilva@uliege.be
mailto:fboulvain@uliege.be
https://orcid.org/0000-0002-8841-1159
mailto:xdevleeschouwer@naturalsciences.be

	StratigrapheR: Concepts for Litholog Generation in R
	Introduction
	Data importation and processing
	General plotting considerations
	Generating lithologs
	New R functions for geological and general purpose
	Present limitations and prospects for the future
	Summary
	Acknowledgments

