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Statistical Quality Control with the qcr
Package
by Miguel Flores, Rubén Fernández-Casal, Salvador Naya, Javier Tarrío-Saavedra

Abstract The R package qcr for Statistical Quality Control (SQC) is introduced and described. It
includes a comprehensive set of univariate and multivariate SQC tools that completes and increases
the SQC techniques available in R. Apart from integrating different R packages devoted to SQC (qcc,
MSQC), qcr provides nonparametric tools that are highly useful when Gaussian assumption is not
met. This package computes standard univariate control charts for individual measurements, x̄, S, R,
p, np, c, u, EWMA, and CUSUM. In addition, it includes functions to perform multivariate control
charts such as Hotelling T2, MEWMA and MCUSUM. As representative features, multivariate
nonparametric alternatives based on data depth are implemented in this package: r, Q and S control
charts. The qcr library also estimates the most complete set of capability indices from first to
the fourth generation, covering the nonparametric alternatives, and performing the corresponding
capability analysis graphical outputs, including the process capability plots. Moreover, Phase I and
II control charts for functional data are included.

1 Introduction

Throughout the last decades, there has been an increasing interest to measure, improve, and control
the quality of products, services, and procedures. This is connected to the strong relationship
between quality, productivity, prestige, trust, and brand image. In fact, implementing procedures of
statistical quality control (SQC) is currently related to increasing companies’ competitiveness.
The concept of quality control has been extended from the first definitions based on the idea
of adjusting production to a standard model to satisfy customer requirements and include all
participants. Nowadays, SQC is not only applied to manufactured products but to all industrial and
service processes.
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Figure 1: Statistical tools applied in each steps of the Six Sigma methodology.

The use of different SQC techniques was standardized With the development of the Six Sigma
method by Motorola in 1997 (Pande et al., 2000). Six Sigma is a methodology or even philosophy
focused on variability reduction that promotes the use of statistical methods and tools in order to
improve processes in industry and services. The Six Sigma application is composed of five stages:
Define, Measure, Analyze, Improve, and Control (DEMAIC). Figure 1 shows some representative
statistical techniques applied in each of the Six Sigma stages. The two most representative statis-
tical tools of SQC are the control charts and the process capability analysis (Montgomery, 2009).
Therefore, the proposed qcr package has been developed in order to provide users a comprehensive
and free set of programming tools to apply control charts and perform capability analysis in the
SQC framework.

The control stage is characterized by the use of tools based on anomaly detection and correction
(Montgomery, 2009). The most representative techniques of this stage and the primary tool of the
Statistical Process Control (SPC) are the control charts (Champ and Woodall, 1987). They have been
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developed to evaluate the process performance and at any time. The use of control charts prevents
the process from getting out of control, and helping to detect the assignable causes corresponding to
variations of the critical-to-quality features (CTQs), thus performing process changes when actually
required. Furthermore, control charts provide estimates of the natural range of process variation
(natural control limits), allowing us to compare this range with those limits specified by standards,
company managers, or customers (specification limits). Hence, the process monitoring can be carried
out by comparing each new observation with these natural limits, preventing defects in the final
product. Briefly, a control chart is a two-dimensional graph whose axis represents the variable or
attribute that is being monitored (CTQ variables). The estimation of natural control limits of the
CTQ variables is developed by a process composed of two phases: In Phase I, the natural control
limits are estimated using a preliminary sample (calibration sample) where we assume that the
causes of variation are only random. In Phase II, each new observation is plotted on the control
chart along with the natural limits obtained in the previous step. The set of new observations
(twhich are not used to calculate the natural control limits) make up the so-called monitoring sample.
Patterns, observations of out of control limits, runs of more than six observations on one side of the
central line, among others, are some of the different criteria to identify out of control states in a
specific process, providing also valuable information about the detection of any assignable causes of
variation in the monitoring.
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Figure 2: Control charts implemented in the qcr package.

The most used control charts are based on the assumptions of normality and independence of
the studied CTQ variables. These charts are used to control the position and dispersion of CTQ
attributes and variables. Figure 2 shows some of the most important types of control charts. These
can be classified according to the type of feature that is being controlled (attribute or variable),
the variable dimension (univariate or multivariate), and assuming or not a parametric distribution
of the variable (parametric or nonparametric). The qcr package provides charts for the mean (x̄),
standard deviation (s), range (R), individual measurements (I), moving ranges (MR), proportion
of nonconforming units (p), number of nonconforming units (np), number of defects per unit (c),
mean number of defects per control unit (u), exponentially weighted moving average (EWMA), and
cumulative sum control chart (CUSUM). The last two techniques are also called memory control
charts, and they are specially designed to detect shifts of less than two standard deviations, both
when using rational samples or individual measurements. On the other hand, new control charts
based on the concept of data depth and developed by Liu (1995) are implemented in qcr. Those
are the r, Q, and S control charts, the nonparametric alternatives for individual measurements,
mean control chart, and CUSUM control chart, respectively. When more than one variable defines
the process quality, multivariate control charts are applied. If the Gaussian assumption is met, the
Hotelling T2 control chart can be applied. If we want to detect small deviations, multivariate EWMA
(MEWMA) and multivariate CUSUM (MCUSUM) can be implemented. When no parametric
distribution is assumed, r, Q, and S charts can be used.

Another interesting SQC tool, which is very useful in the industry, is the Process Capability
Analysis (PCA). It estimates how well a process meets the tolerances defined by the company,
customers, standards, etc., by comparing the specification tolerances with respect to the natural
range of variation of CTQ features. The capability of the process is measured using capability
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indicators. Process Capability Ratio (PCR) is a numerical score that helps the manufacturers know
whether the output of a process meets the engineering specifications. Large PCR values show that
the industrial or service process is capable of meeting the customer requirements. There have been
many different PCRs developed in the last four decades that require the Gaussian assumption for
the CTQ variable (Boyles, 1991). However, many processes in industry and real applications do not
meet this hypothesis. Thus, we could innacuratelly estimate the capability using PCR. Hence, many
authors have studied different nonparametric alternatives to traditional PCR (Polansky, 2007).

The qcr package has been developed in R (R Core Team, 2021) under the GNU license. Nowadays,
there are other R packages that currently provide quality control tools for users. The use of each
one is shown in Figure 3.

The qcc package (Scrucca, 2004) was developed by Professor Luca Scrucca of the Department of
Economics, Finance, and Statistics at the University of Perugia. It enables us to perform Shewhart
quality control charts for variables and attributes, as well as the CUSUM and EWMA charts for de-
tecting small changes in the CTQ variable. Multivariate analysis is performed applying the Hotelling
T2 control chart. Additionally, it has functions implemented to obtain the operating characteristic
curves (OC) and to estimate process capability analysis indices. Pareto and Ishikawa diagrams are
also implemented. Otherwise, the IQCC package (Barros, 2017) is maintained by Professor Emanuel
P. Barbosa of the Institute of Mathematics in the State University of Campinas. It has a smaller
number of control charts implemented, but it incorporates multivariate graphics. The qualityTools
package (Roth, 2016) was developed to aid learning in quality sciences. Figure 3 shows some of
its utilities, e.g., capability analysis (providing a comprehensive set of parametric distributions)
and design of experiments. In addition, the SixSigma library (Cano et al., 2012, 2015) provides al-
ternative functions to qualityTools and qcc packages and the possibility of implementing process maps.
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Figure 3: Comparison between the main packages in R devoted to Statistical Quality Control and
the qcr package.

Furthermore, there are other libraries specifically focused on control chart applications. Namely,
the spcadjust (Gandy and Kvaloy, 2013) that allows us to estimate the calibration control limits of
Shewhart, CUSUM, and EWMA control charts, and the spc (Knoth, 2021) which provides tools
for the evaluation of EWMA, CUSUM, and Shiryaev-Roberts control charts by using Average Run
Length and RL quantiles criteria. Moreover, the MSQC package (Santos-Fernandez, 2013) is a set
of tools for multivariate process control, mainly control charts. It contains the main alternatives
for multivariate control charts such as Hotelling (T2), Chi-squared, MEWMA, MCUSUM, and
Generalized Variance control charts. It also includes some tools to evaluate the multivariate normal
assumption. The corresponding multivariate capability analysis can be performed using the MPCI
library (Santos-Fernández and Scagliarini, 2012) that provides different multivariate capability
indices. It is also interesting to mention the edcc package (Zhu and Park, 2013) for its economic
design of control charts by minimizing the expected cost per hour of the studied process.

It is important to emphasize that the qcr package also includes new applications such as
nonparametric approaches of control charts and capability indices (also covering the capability plots),
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which are currently unavailable in the R software.

2 Datasets in the qcr package

The qcr package contains new databases (see table 1) based on study cases tackled by the authors
during their professional activity as well as well-known datasets implemented on other packages
focused on statistical quality control such as:

• archery1: It consists of a stage in which the archer shoots 72 arrows. The information is
given in x and y coordinates. It is implemented in the MSQC package (Santos-Fernandez
2013).

• circuit: Number of nonconformities observed in 26 successive samples of 100 printed circuit
boards. It is implemented in the qcc package (Scrucca 2004).

• dowel1: Diameter and length of a dowel pin. It is implemented in the MSQC package
(Santos-Fernandez 2013).

• orangejuice: Frozen concentrated orange juice is packed in 6-oz cartons. These cartons are
formed on a machine by spinning them from a cardboard stock and attaching a metal bottom
panel. A can is then inspected to determine whether, when filled, the liquid could possibly
leak either on the side seam or around the bottom joint. If this occurs, a can is considered
nonconforming. The data were collected as 30 samples of 50 cans each at half-hour intervals
over a three-shift period in which the machine was in continuous operation. It is implemented
in the qcc package (Scrucca 2004).

• pcmanufact: A personal computer manufacturer counts the number of nonconformities per
unit on the final assembly line. He collects data on 20 samples of 5 computers each. It is
implemented in the qcc package (Scrucca 2004).

• pistonrings: Piston rings for an automotive engine are produced by a forging process. The
inside diameter of the rings manufactured by the process is measured on 25 samples, each
of size 5, drawn from a process being considered ‘in control’. It is implemented in the qcc
package (Scrucca 2004).

3 Univariate and multivariate parametric control charts in qcr

The construction of a control chart is equivalent to the plotting of the acceptance regions of a
sequence of hypothesis tests over time. Namely, the x̄ chart is a control chart used to monitor the
process mean µ. It plots the sample means, X̄’s, corresponding to subgroups of the {X1, X2, ...}
observations and is equivalent to test the hypotheses H0 : µ = µ0 versus Hα : µ ̸= µ0 (for some
target value µ0) conducted over time, using x̄ as the test statistic. Here we assume that {X1, X2, ...}
are the sample measurements of a particular CTQ feature that follows the F distribution with mean
µ and standard deviation σ. When there is insufficient evidence to reject H0, we can state that
the process is under control; otherwise, the process is out of control. In other words, processes are
under control when their sources of variation are only the sources common to the process (Brown
and Wetherill, 1990). The decision to reject or not H0 is based on the value of the sample mean
x̄ observed at each time interval (Liu and Tang, 1996). The control charts are easy to construct,
visualize, and interpret, and most important, have proven their effectiveness in practice since the
1920’s.

Control charts are defined, on the one hand, by a center line that represents the average value
of the CTQ feature corresponding to the in-control state and, on the other hand, two horizontal
lines, called the upper control limit (UCL) and the lower control limit (LCL). The region between
the control limits corresponds to the region where H0 is not rejected (defined in the previous
section). As a consequence, the process will be out of control when an observed rational sample
or an individual measurement falls outside the limits. Let w be a sample statistic that measures a
quality characteristic of interest, and suppose that the mean of w is µw and the standard deviation
of w is σw. Then the center line, the upper control limit, and the lower control limit become:

UCL = µw + Lσw

CL = µw

LCL = µw − Lσw,
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Name Description

counters

A water supply company wants to control the performance of the water
counters installed throughout a city. For this purpose, 60 rational
samples have been taken, each one composed by 3 measurements, from
the same age (10 years) and caliber water counters corresponding to
two different brands, and during a period of 5 years. This dataset
is based on a study case of A Coruña’s water supply company,
Empresa Municipal de Aguas de La Coruña (Emalcsa).

employment

A Spaniard-Argentinian hotel company wants to control the level of
occupancy (measured in %) in their establishments through the
application of a continuous control. For this purpose, 48 subsamples have
been taken from six hotels corresponding to two different countries.

oxidation

This database contains information about the resistance against the
oxidation of olive oil of the Picual variety. Five measurements of the
Onset Oxidation Temperature (OOT, index that measures the
resistance against the oxidation) are obtained from 50 batches of Picual
olive oil produced in chronological order. It is importantly to note
that OOT decreases as the oil is progressively mixed with other
olive oil varieties defined by a lower OOT.

plates

A chemical company is developing a patent for a new variant of artificial
stone mostly made of quartz (93wt% and polyester resin). This company
is launching a pilot plant where it begins to produce plates of this
material on an industrial scale. The CTQ variable of this product is the
Vickers hardness. In order to measure the hardness level and hardness
homogeneity of the product, 50 plates have been measured 5 times in
different sections. The characteristic learning curves, through gradual
level change, can be observed.

presion

A shipyard of recreational boats is intended to optimize and control the
mechanical properties of the yacht hulls made of a composite based on
epoxy resin. In this regard, the modulus of elasticity due to tensile
efforts is measured after applying two different curing pressures: 0.1
and 10 MPa. Overall, 60 subsamples, composed of three measurements,
obtained from 60 vessels, have been taken.

Table 1: Some of the specific datasets included in the qcr package

where L is the “distance” of the control limits from the center line, expressed in standard deviation
units.

When several random variables characterize the quality of a process/service, applying statistical
multivariate quality control techniques becomes necessary. In fact, if we analyze each variable
separately, the probability that an observation of a variable will fall within the calculated limits
when it is known that the process is actually under control will no longer be 0.9973 for 6σ amplitude.
Assuming independence, it will be 0.9973p, where p is the number of CTQ features, while the
probability of type I will actually lead to α′ = 1 − (1 − α)p. Therefore, the control limits are
different from those drawn, assuming the control of each CTQ variable independently from the
others. Moreover, if the variables are dependent, the calculation of α becomes more complex. This
subject is particularly important today, as automatic inspection procedures make it customary to
measure many parameters of each product over time. The more common multivariate parametric
control charts are the Hotelling T2 (to identify big shifts) and the multivariate CUSUM (MCUSUM)
and EWMA (MEWMA) for identifying small shifts.

The functions that compute the quality control statistics for the different univariate control
charts (involving continuous, attribute or count data) are shown in Table 2. For the sake of simplicity
and taking into account that these types of control charts are implemented in other packages, the
use of these functions is not shown in this work. More details are given in the help of qcr package
(Flores et al., 2021).
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Statistical quality control charts for
Function Chart name Variables

qcs.xbar X̄
Sample means of a continuous process variable are
plotted to control the process average.

qcs.R R
Sample ranges of a continuous process variable are
plotted to control the process variability.

qcs.S S
Sample standard deviations of a continuous variable
are plotted to control the process variability.

qcs.one I
Sample values from a I chart data of a continuous
process variable to control the level (position)
of the process.

Attributes

qcs.p p
Proportion of nonconforming units is plotted, the
number of defective items follow a binomial distribution.

qcs.np np
Number of nonconforming units is plotted, and the chart
is constructed based on the average of the process.

qcs.c c
Nonconformities per unit are plotted, number of defects
in a large population follow a Poisson distribution.

qcs.u u
Average nonconformities per unit are plotted, this chart
does not require a constant number of units.

qcs.g g
Number of non-events between events are plotted, it
counts the number of events between rarely-occurring
errors or nonconforming incidents.

Attributes and variables

qcs.cusum CUSUM
Cumulative sums for individual observations or for the
averages of rational subgroups are plotted to monitor
the process mean.

qcs.ewma EWMA
The exponential weighed average of CTQ variables are
plotted to identify small changes in the process
(measured as rational samples or individual observations).

Multivariate control charts

mqcs.t2 T2 Multivariante Hotelling T2 control chart for individual
observations (vectors).

mqcs.mcusum MCUSUM Multivariate Cumulative Sum control chart for individual
observations (vectors).

mqcs.ewma MEWMA Multivariate EWMA control chart for individual
observations (vectors).

Functional data control charts

fdqcs.depth Phase I Phase I control chart for functional data:
depth control chart and deepest curves envelope.

fdqcs.rank Phase II Phase II control chart for functional data:
rank control chart and deepest curves envelope.

plot.fdqcs FDA plots Graphical outputs for Phase I and Phase II control charts
for functional data.

Table 2: Univariate Shewhart, multivariate Hotelling T2, univariate and multivariate CUSUM and
EWMA and FDA control charts available in the qcr package

4 Nonparametric control charts based on data depth

The control charts presented in this section were proposed by Liu (1995) as an alternative to those
described in previous section. The main idea of its control graphs is to reduce each multivariate
measure to the univariate index, that is, its relative center-exterior classification induced by a depth
of data. This approach is completely nonparametric, and therefore, these control charts are not
defined by any parametric assumption regarding the process model. Thus, they are applicable in a
wider number of case studies than those counterparts such as T 2, MCUSUM, and MEWMA control
charts. In addition, these graphs allow the simultaneous detection of the change of location (shift of
the mean) and the increase of the scale (change in variability) in a process.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=qcr


Contributed research article 200

Liu (1995) proposed and justified three types of control charts, the r, Q, and S charts which can
be considered as data-depth-based multivariate generalizations of the univariate X, x̄, and CUSUM
charts, respectively.

Data depth

In multivariate analysis, the term depth refers to the degree of centrality of a point regarding a data
cloud or a probability distribution. Therefore, it is possible to define a rank in the multidimensional
Euclidean space through the calculation of observation depth. According to Dyckerhoff (2004) and
Cascos et al. (2011), the depth function can be defined as a bounded function Dp : Rd −→ R, with
P the distribution set in Rd, that assigns at each point of Rd its degree of centrality with respect to
P . Depth functions with which control charts can be performed are the

• Simplicial depth (Liu 1990),
• Mahalanobis depth (Mahalanobis 1936),
• Halfspace or Tukey depth (Tukey 1975),
• Likelihood depth (Fraiman et al. 1997), and
• Random projection depth (Zuo and Serfling 2000).

Statistics derived from data depth

Let G a k-dimensional distribution, and let Y1, . . . , Ym be m random observations from G. The
sample Y1, . . . , Ym is generally the reference sample of a CTQ variable in the context of quality control,
composed of measurements from products obtained by an under control process. If X1, X2, . . . are
the new observations from the manufacturing process, assuming that the different Xi values follow
an F distribution if the quality of the studied product has been deteriorated or, in other words, if
the process is out of control. Otherwise, they follow a G distribution. Let DG(·) denote a notion of
depth, and assume that G and F are two continuous distributions. Thus, if all the DG(Yi) values
are sorted in increasing order, and Y[j] denotes the sample value associated with the jth smallest
depth value, then Y[1], . . . , Y[m] are the order statistics of Yi’s, with Y[m] being the most central
point. Therefore, the smaller the order (or the rank) of a point, the farther that point will be from
the underlying distribution G(·).

Liu (1995) defines the rank statistic as

rG (y) = P {DG (Y ) ≤ DG (y) | Y ∼ G}

whereby Y ∼ G indicates that the random variable Y follows the distribution G. When G is
unknown, the empirical distribution Gm of the sample {Y1, . . . , Ym} can be used instead, and the
statistic is defined by

rGm
(y) =

#
{

DGm
(Yj) ≤ DGm

(y) , j = 1, . . . , m
}

m

In the same way that rG and rGm
, the Q statistics can be also defined as follows

Q (G, F ) = P {DG (Y ) ≤ DG (X) | Y ∼ G, X ∼ F } = EF [rG (X)]

Q (G, Fn) =
1
n

n∑
i=1

rG (Xi)

Q (Gm, Fn) =
1
n

n∑
i=1

rGm
(Xi) ,

whereby Fn(·) denotes the empirical distribution of the sample {X1, . . . , Xn}. The control charts
corresponding to these statistics can be developed as described in the following sections.

The r chart

Calculate {rG (X1) , rG (X2) , . . . , rG (Xn)} or {rGm
(X1) , rGm

(X2) , . . . , rGm
(Xn)} if G is un-

known but Y1, . . . , Ym are available. As a result, the r chart consists of plotting the rank statistic in
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regard to time. The control chart central line is CL = 0.5, whereas the lower limit is LCL =α, with
α accounting for the false alarm rate. The process will be out of control if rG(·) falls under LCL. A
small value of the rank statistic rGm(X) means that only a very small proportion of Yi values are
more outlying than X. Therefore, assuming that X ∼ F , then a small value of rGm(X) suggests a
possible deviation from G to F . This may be due to a shifting in the location and/or an increase in
the scale of the studied CTQ variable. Taking into account that the UCL is not defined for the r
chart, the CL line serves as a reference to identify emerging patterns, runs, or trends. If rGm(X) is
greater than 0.5, there is evidence of scale decreasing, and also could take place a negligible location
shift. This case should be tackled as an improvement in quality given a gain in the accuracy, and
thus the process should not be considered as out of control.

The Q chart

The idea behind the Q chart is similar to the one behind the x̄ chart. If X1, X2, . . . are univariate
and G is a normal distribution, the x̄ chart plots the averages of consecutive subsets of the different
Xi. A goal of this type of chart is that it can prevent the identification of a false alarm when the
process is actually in control (even when some individual sample points fall out of control limits due
to random fluctuations).
The Q chart is the nonparametric alternative to the x̄ chart. It is performed by plotting the averages
of consecutive subsets of size n corresponding to the rank statistic (rG(Xi) or rGm(Xi)), given by
Q

(
G, F j

n

)
or Q

(
Gm, F j

n

)
, whereas F j

n is the empirical distribution of the Xi’s in the jth subset,
j = 1, 2, . . . . Accordingly, if only {Y1, Y2, . . . , Ym} are available, the Q chart plots the sequence{

Q
(

Gm, F j
n

)
, Q

(
Gm, F j

n

)
, . . .

}
.

Depending on the value of n, the corresponding control limits are as follows:

• If n ≥ 5, CL = 0.5 and

– LCL = 0.5 − Zα (12n)
1
2 for Q

(
G, F j

n

)
.

– LCL = 0.5 − Zα

√
1

12
( 1

m + 1
n

)
for Q

(
Gm, F j

n

)
.

• If n < 5, CL = 0.5 and LCL = (n!α)
1
n

n .

The S control chart

The S control chart is based on the CUSUM univariate control chart, which is basically the plot
of

∑n
i=1 (X − µ), which reflects the pattern of the total deviation from the expected value. As

mentioned above, it is more effective than the X chart or the x̄ chart in detecting small process
changes. The nonparametric CUSUM chart based on data depth suggests plotting Sn(G) and
Sn(Gm), defined by

Sn (G) =

n∑
i=1

(
rG (Xi) − 1

2

)
with control limits CL = 0 and LCL = −Zα

(
n
12

) 1
2 and

Sn (Gm) =

n∑
i=1

(
rGm

(Xi) − 1
2

)
.

If only Y1, . . . Ym are available, the control limits are CL = 0 and LCL = −Zα

√
n2 (

1
m + 1

n )
12 . The

LCL control limits in both cases constitute a curve instead of a straight line; if n is large, the control
chart S should be standardized as follows:

S∗
n (G) =

S∗
n (G)√

n
12

S∗
n (Gm) =

Sn (Gm)√
n2 (

1
m + 1

n )
12

Therefore, this S∗ chart is defined by CL = 0 and LCL = −Zα.
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Examples of r, Q and S control charts applied using synthetic data

A bivariate data set is used to illustrate how the previously discussed control charts arise. In fact,
a synthetic dataset composed of 540 observations of a bidimensional standard Gaussian variable
has been simulated, in addition to 40 individuals corresponding to another bidimensional Gaussian
variable with mean and standard deviation equal to 2.

R> mu <- c(0, 0)
R> Sigma <- matrix(c(1, 0, 0, 1), nrow = 2)
R> Y <- rmvnorm(540, mean = mu, sigma = Sigma)
R> u <- c(2, 2)
R> S <- matrix(c(4, 0, 0, 4), nrow = 2)
R> x <- rmvnorm(40, mean = u, sigma = S)

Prior to the application of nonparametric control charts, the dataset has to be converted into a
npqcsd object. The synthetic dataset is arranged as two matrices, G composed of the 500 first rows
(multivariate observations) of Y, and x with the remaining ones and including those belonging to the
second bidimensional variable

R> x <- rbind(Y[501:540, ], x)
R> G <- Y[1:500, ]
R> data.npqcd <- npqcd(x, G)

In the same way, the npqcd function creates a data object for non parametric quality control, the
npqcs.r(), npqcs.Q(), and npqcs.S() functions computes all the statistics required to obtain the r,
Q, and S control charts, respectively. The argument method = c("Tukey","Liu","Mahalanobis","RP","LD")
specifies the data depth function, and alpha is the signification level that defines the LCL. See
Flores et al. (2021) to obtain additional information about these functions and their arguments.

r chart

The r control chart can be obtained by applying the npqcs.r() function to the npqcd object and
plotting the result.

R> res.npqcs <- npqcs.r(data.npqcd, method = "Tukey", alpha = 0.025)
R> plot(res.npqcs, title = " r Control Chart")

The resulting chart is shown in Figure 4, where it can be observed that the process is out of control
from the 42nd observation, as expected, taking into account that most of the rGm(Xi) values are
falling below the LCL.

Q chart

In this case, the dataset is assumed to be composed of rational samples of size 4. Thus, the Q
nonparametric alternative of x̄ chart is proposed and applied to control the bidimensional process:

R> n <- 4 # samples
R> m <- 20 # measurements
R> k <- 2 # number of variables
R> x.a <- array( , dim = c(n, k, m))
R> for (i in 1:m) {
+ x.a[, , i] <- x[(1 + (i - 1) * n):(i * n), ]
+ }
R> data.npqcd <- npqcd(x.a, G)
R> res.npqcs <- npqcs.Q(data.npqcd, method = "Tukey", alpha = 0.025)
R> plot(res.npqcs, title = "Q Control Chart")

Figure 5 clearly shows that the process is out of control in the second half, from the 20th rational
sample. We can also see that the high random fluctuations of the r chart are attenuated in the Q
chart due to the averaging effect.

S chart

Finally, the nonparametric counterpart of CUSUM control chart is performed from the multivariate
individual observations.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859



Contributed research article 203

 r Control Chart

Sample

R
an

k

1 5 9 14 20 26 32 38 44 50 56 62 68 74 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LCL= 0.025

CL

Figure 4: r control chart.
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Figure 5: Q control chart.

R> data.npqcd <- npqcd(x, G)
R> res.npqcs <- npqcs.S(data.npqcd, method = "Tukey", alpha = 0.05)
R> plot(res.npqcs, title = "S Control Chart")

Figure 6 shows that the process is out of control from the 48th observation. Note that the S graph
performs better in identifying small changes in a process. In this case, the performance of the Q
chart is better than the corresponding to the S chart.
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Figure 6: S control chart.

Control charts for functional data based on data depth

In the paradigm of Industry 4.0, processes and services are many times described by continuously
monitored data of hourly, daily, monthly curves or smooth functions. When the processes are defined
by functional data, the authors encourage to apply control charts based on Functional Data Analysis
(FDA) in order to implement control and improvement tasks. In this section, the use of control
charts presented in Flores et al. (Flores et al., 2020). Summarizing, this methodology consists of
the proposal of new Phase I and Phase II control charts to be applied in those case study in which
the datum unit is a curve. Phase I control chart is based on the computation of functional data
depth (specifically Fraiman and Muniz (Fraiman and Muniz, 2001), Mode (Cuevas et al., 2007),
and random projections (Cuevas et al., 2007) data depth) from which a data depth control chart
is developed. Once the in-control calibration sample is obtained, the Phase II control chart based
on functional data depth and rank nonparametric control chart can be applied. In addition to the
Phase I functional data depth and Phase II rank control charts, plots of functional envelopes from
the original curves are provided in order to help to identify the possible assignable causes of out of
control states.

Estimating a Phase I control chart for functional data (calibration)

A dataset is simulated in order to illustrate the use of FDA control charts for Phase I and II. A
functional mean, mu0, and a functional standard deviation, sigma, are defined as shown in (Flores
et al., 2020). An n0 = 100 hundred curves composed of m = 30 points are simulated. They account
for the calibration or retrospective sample.

R> library(fda.usc)
R> m <- 30
R> tt<-seq(0,1,len=m)
# H0
R> mu_0<-30 * tt * (1 - tt)^(3/2)
R> n0 <- 100
R> mdata<-matrix(NA,ncol=m,nrow=n0)
R> sigma <- exp(-3*as.matrix(dist(tt))/0.9)
R> for (i in 1:n0) mdata[i,]<- mu_0+0.5*mvrnorm(mu = mu_0,Sigma = sigma )

Prior to the application of control charts, the dataset is converted in a specific format by the
fdqcd function. A plot function is also programmed to properly show the original functional data,
plot.fdqcd. Figure 7 shows the original functional data consisting of curves.
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R> fdchart <- fdqcd(mdata)
R> plot(fdchart,type="l",col="gray",main="Functional data")
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Figure 7: Original curves that account for the calibration sample.

The following step is to identify those curves that account for the in-control process. This task is
done by the application of a Phase I control chart for functional data. This method is implemented
in the qcr package by the fdqcs.depth function. Specifically, the arguments and default values for
these functions are

R> fdqcs.depth.default <- function(x, data.name=NULL,func.depth = depth.mode,nb=200,
+ type = c("trim","pond"),ns = 0.01,
+ plot = TRUE, trim = 0.025, smo =0.05,
+ draw.control = NULL,...)

where func.depth is the type of depth measure, by default depth.mode, nb the number of bootstrap
resamples, type accounts for the method used to trim the data, trim or pond (Flores et al., 2020), ns is
the quantile to determine the cutoff from the bootstrap procedure (Flores et al., 2020), plot a logical
value indicating that it should be plotted, trim the percentage of the trimming, smo the smoothing
parameter for the bootstrap resampling (Flores et al., 2020), whereas draw.control specifies the
col, lty, and lwd for the fdataobj, statistic, IN and OUT objects. When the fdqcs.depth function
is applied to the curves of the calibration sample, the fddep object of fdqcs.depth class is obtained.
It is composed of the original data, the depth corresponding to each curve, the lower control limit of
the depth chart, the index of those curves out of control, the curves that account for the limits of
the envelope composed by the deepest cures, and the deepest curve or functional median.

R> fddep <- fdqcs.depth(fdchart)
R> summary(fddep)

Length Class Mode
fdata 100 fdata list
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Depth 100 -none- numeric
LCL 1 -none- numeric
out 1 -none- numeric
fmin 1 fdata list
fmax 1 fdata list
fmed 1 fdata list
ns 1 -none- numeric

R> class(fddep)

[1] "fdqcs.depth"

R> plot(fddep,title.fdata = "FDA chart",title.depth = "Depth chart")
R> out <- fddep$out; out

[1] 29

Figure 8 shows the control chart for the depth of the curves (right panel). The LCL is estimated
by a smoothed bootstrap procedure (Flores et al., 2020). In order to provide a tool to identify the
assignable cause of each out-of-control curve, the original curves with the envelope with the 99%
of the deepest curves are also shown (left panel). The analysis of the shape and magnitude of the
curves in and out of bounds can help to associate each curve out of control to an assignable cause,
allowing for processes control, maintenance, and improvement.
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Figure 8: Left panel: Original curves with the envelope composed of 90% of the deepest curves.
Right panel: Control chart for the depths of the curves (the LCL has been estimated by bootstrap
procedures at a signification level of 10%.

Phase I ends when a calibration sample without curves out of control is obtained. The iterative
procedure to obtain an in control calibration sample is shown in the following lines.

R> alpha <- 0.1
R> trim <- 0.1
R> while (length(out)>0) {
R> mdata <- fddep$fdata$data[-out,]
R> fddep <- fdqcs.depth(mdata,ns = alpha, trim=trim, plot=FALSE)
R> out <- fddep$out
R> }
R> plot(fddep,title.fdata = "Envelope with the 90\% deepest curves",
+ title.depth = "Depth control chart")

Figure 9 is obtained from the application of plot function to fddep object. It shows that all the
curves of the calibration sample are in control, and thus, the natural variability of the process is
estimated.
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Figure 9: Results corresponding to the second iteration to obtain the in control calibration sample.
Left panel: Original curves with the envelope composed of the 90% of the deepest curves. Right panel:
Control chart for the depths of the curves (the LCL has been estimated by bootstrap procedures at
a signification level of 10%.

Estimating a Phase II control chart for functional data (monitoring)

The next step is to perform the Phase II of process control. The monitoring phase is performed by
the application of Phase II control charts for functional data based on multivariate nonparametric
control charts. Firstly, a monitoring sample composed of 50 curves is simulated by the following
code.

R> mu_a<- 30 * tt^(3/2) * (1 - tt)
R> n_a <- 50
R> mdata_a<-matrix(NA,ncol=m,nrow=n_a)
R> for (i in 1:n_a) mdata_a[i,]<- mu_a+0.5*mvrnorm(mu = mu_a,Sigma = sigma )

The curves of the monitoring sample are defined with fdqcd format and a control chart
for Phase II is developed by applying the fdqcs.rank function. It is composed by the follow-
ing arguments, fdqcs.rank(x,y = x,func.depth = depth.FM,alpha = 0.01,plot = TRUE,trim
= 0.1,draw.control = NULL,...).

R> fdchart_a <- fdqcd(mdata_a,"Monitoring curves")
R> phase2.chart <- fdqcs.rank(fdchart,fdchart_a)
R> plot(phase2.chart)
R> summary(phase2.chart)

Figure 10 accounts for the FDA chart with the calibration sample and its envelope composed
by the deepest curves. Moreover, the monitoring sample is also included and compared with the
calibration sample by using the FDA chart. In addition, the Phase II rank control chart for functional
data is shown including both calibration and monitoring samples or only the ranks corresponding
to the monitoring sample. The second population that corresponds with the monitoring sample is
identified by the control chart from the first monitored curve (panels below in Figure 10).

5 Process capability analysis

The analysis of the capability of a process in the case of statistical quality control is done through
the calculation of the so-called capability. These indices measure whether a process is capable or not
of meeting the corresponding technical specifications set by the customer, or the manufacturer, by
comparing those with the natural variability of the CTQ variable that characterizes the process.
The interpretation of these indices is associated with the result of this relation. Capability indices
are generally calculated as the ratio between the length of the specification interval and the natural
variability of the process in terms of σ. Large values of these indices mean that the corresponding
process is capable of producing articles that meet the requirements of the client and manufacturers.
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Figure 10: First row: the left and right panels show the FDA charts for the calibrating and
monitoring samples with a signification level of 0.01. Second row: The left and right panels show
the Phase II rank control chart for functional data, including calibration and monitoring sample
(left panel) and only monitoring sample (right panel).

In other words, the larger the value of the capability index, the smaller the number of products
outside the specification limits.

In this section, we describe the capability indices for processes whose underlying distribution
is normal and not normal (exponential, Weibull, etc.). However, it is important to note that the
development of programming tools for nonparametric capability analysis is one of the main goals
and contributions of the qcr package. In addition to the estimation of capability indices, a graphical
output is provided. Based on the proposal of qualityTools package, the qcr graphical output for
capability analysis includes a normality test for the CTQ variable, a Q-Q plot, a histogram with
the theoretical Gaussian distribution density, parametric and nonparametric estimates of capability
indices and a contour capability control chart. In the following lines, parametric and nonparametric
capability analysis utilities are described using different examples of applications.

Assuming a normal distribution

The most widely used capability indexes in the industry analyze the process capability under the
assumptions of a stabilized process (in control) and a Gaussian distributed CTQ variable. Table 3
shows the main parametric (assuming Gaussian distribution) indices, namely Cp, Cpk, Cpm, and
Cpmk.

Vännman (1995) proposed a general formulation of these indices by an expression that depends
on the non-negative parameters u and v:

Cp (u, v) =
d − u|µ − m|

3
√

σ2 + v (µ − T )2
,

whereby d = (USL − LSL)/2, m = (LSL+USL)/2, USL is the upper specification limit, the LSL
is the lower specification limit, σ is the theoretical standard deviation, µ accounts for the theoretical
mean of the CTQ variable, and T is the specification target (by default the mean between the LSL
and USL). The indices shown in Table 3 are obtained from this expression just considering values
of 0 or 1 for u and v: Cp (0, 0) = Cp, Cp (1, 0) = Cpk, Cp (0, 1) = Cpm, Cp (1, 1) = Cpmk.

The piston rings data set is used to illustrate the calculation of the capability indices using the
qcs.cp() function based on the expressions previously described in Table 3. From the statistics
obtained from the x̄ control chart of pistonrings dataset, the γ and β values are estimated, and the
corresponding capability index is computed.

R> data("pistonrings")
R> xbar <- qcs.xbar(pistonrings[1:125, ], plot = FALSE)
R> limits <- c(lsl = 73.99, usl = 74.01)
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Potential capability Ĉp = USL−LSL
6σ̂

Actual capability with respect
to the specification limits

Ĉp,lower = µ̂−LSL
3σ̂

Ĉp,upper = USL−µ̂
3σ̂

Ĉpk = min
[

USL−µ̂
3σ̂ , µ̂−LSL

3σ̂

]
Shifting of the mean with
respect to the target Ĉpm =

Ĉp√
1+

(
µ̂−T

σ̂

)2

Cpk correction for detecting
deviations with respect to the target Ĉpkm =

Ĉpk√
1+

(
µ̂−T

σ̂

)2

Table 3: PCR from first to fourth generation, USL is the upper specification limit, LSL is the lower
specification limit, µ is the real mean, µ̂ is the estimated mean, and σ̂ is the estimated standard
deviation.

R> # qcs.cp(object = xbar, parameters = c(0, 0), limits = limits,
R> # contour = FALSE)
R> # qcs.cp(object = xbar, parameters = c(1, 0), limits = limits,
R> # contour = FALSE)
R> # qcs.cp(object = xbar, parameters = c(0, 1), limits = limits,
R> # contour = FALSE)
R> qcs.cp(object = xbar, parameters = c(1, 1), limits = limits,
+ contour = FALSE)

Cpmk delta.usl gamma.usl
0.2984 0.1176 0.9785

Consequently, the obtained results are Cp = 0.3407, Cpk = 0.3006, Cpm = 0.3382, and
Cpmk = 0.2984, respectively. The argument parameters account for u and v values, while object is
the type of control chart from which the σ is estimated, limits are the specification control limits,
and contour is the parameter that indicates when the process capability contour chart is plotted.

Process capability plot

In Vännman (2001) and Deleryd and Vännman (1999), a graphical method (based on common
capability indices) to analyze the capability of a process is proposed. The goal of using this type
of plot (if compared with respect to only capability indices calculation) is to provide immediate
information of the location and spread of the CTQ feature and about the capability to meet the
specifications of the corresponding process. When using this chart, a process will be capable if the
process capability index is higher than a certain value k, with k > 1. The most used values for k
are k = 1, k = 4/3, or k = 5/3, even 2 at a Six Sigma level, taking into account the usual index
limits for which a process could be assumed capable. It will also be assumed that the target value
matches the center of the specification interval, that is, T = (USL+LSL)

2 = m. Then, one of the
indices defined by the Cp (u, v) family is used, e.g., Cpk or Cpm, and the process will be defined as
capable if Cp (u, v) > k, given the values of u, v, and k. Also note that if µ = T , all the Cp (u, v)
indices are defined by the same expression as the Cp. Moreover, different setting for u, v, and k
impose different constraints on the process parameters (µ, σ). This can be easily seen through a
process capability plot. This graph is a contour plot of Cp (u, v) = k as a function of µ and σ, but
it can also be defined as a function of δ and γ, with δ = µ−T

d and γ = σ
d . The contour line is

obtained by rewriting the index Cp (u, v) as a function of δ and γ as follows Cp (u, v) =
1−u|δ|

3
√

γ2+v(δ)2 .

Therefore, the Cp (u, v) = k equation is solved, plotting γ depending on the values of δ. The resulting
expressions are:

γ =

√
(1 − u|δ|)

9k2 − vδ2, |δ| ≤ 1
u + 3k

√
v

, (u, v) ̸= (0, 0)

When u = v = 0, that is, when we consider the index Cp = k, we have γ = 1
3k and |δ| ≤ 1. It is

important to highlight that the γ-axis accounts for the process spread, whereas the δ-axis accounts
for the process location. The values of the parameters µ and σ which provide values (δ, γ) within
the region bounded by the contour line Cp (u, v) = k and the δ-axis will provide a larger Cp (u, v)
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value than k, leading a capable process. Furthermore, values of µ and σ which provide values (δ, γ)
outside this region will provide a value Cp (u, v) smaller than k, i.e., a non-capable process. In the
case of the process not being capable, this type of plot is useful to understand if the corrective
actions have to be performed to decrease the process spread, or the process location (deviation with
respect to target), or even when both changes are needed to improve the process capability. This can
be observed by observing the distance with respect to the x and y-axis. Below are some examples of
capability plot application which can be generated through the application of the qcs.cp function
with contour=TRUE and k=1 (default values):

R> oldpar <- par(mfrow = c(2, 2))
R> qcs.cp(object = xbar, parameters = c(0, 0), limits = limits,
+ ylim = c(0, 1))
R> qcs.cp(object = xbar, parameters = c(1, 0), limits = limits,
+ ylim = c(0, 1))
R> qcs.cp(object = xbar, parameters = c(0, 1), limits = limits,
+ ylim = c(0, 1))
R> qcs.cp(object = xbar, parameters = c(1, 1), limits = limits,
+ ylim = c(0, 1))
R> par(oldpar)

The result is shown in Figure 11. In all the cases, the points in red are out of the area defined by the
line in blue and the δ axis. Thus, the corresponding process is not capable, no matter the capability
index that is used. In any case, note that the Cp index is useless in identifying non-capable processes
due to location shifts with respect to the target. In the same way, the Cpk index assumes as capable
processes that are far from the target as long as they were close to the specification limits (as shown
in Figure 11). Thus, the use of the Cpm and Cpmk are recommended due to they take into account
both shifts from the target and the spread. In the present case, the process is not capable due to
the spread rather than the target shift. Therefore, the process changes could be due to decreases in
the variability process.
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Figure 11: Process capability plots using the Cp, Cpk, Cpm, and Cpmk indexes.
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Estimated process capability plot

In practice, the process parameters are unknown and we need to estimate them. We can perform a
decision rule based on the sample statistics that provide a sample estimate of the capability index
and, finally the so called estimated process capability plot, also called γ∗ − δ∗ plot (Deleryd and
Vännman, 1999). It allows us to decide whether a process is capable or not assuming that µ and
σ parameters are unknown and estimated by µ̂ = X̄ and σ̂2 = 1

n

∑n
i=1 X2

i − X̄2. They are the
maximum likelihood estimators when the CTQ variable of the process is normally distributed, and
X1, X2, . . . , Xn is a random sample of a normal distribution with µ mean and σ2 variance.
The qcr package only provides the γ∗ − δ∗ plot corresponding to the Cpm index taking into account
that the other capability indices do not consider shifts from the target value in their calculations.
For the general case, see the work of Vännman (2001). In order to obtain an appropriate decision
rule for the case of Cpm index, we test the hypotheses H0 : Cpm ≤ k0 versus H1 : Cpm > k0, using

Ĉpm =
d

3
√

σ̂2 + (µ̂ − T )2

as test statistic. The null hypothesis will be rejected if Ĉpm > cα, where the constant cα is
determined by previously defining a signifition test level α . Vännman (2001) showed that the null
hypothesis H0 : Cpm ≤ k0 can be reduced to H0 : Cpm = k0. Thus, for given values of α and n, the
process will be considered capable if Ĉpm > cα, with cα > k0. Hubele and Vannman (2004) proved
that, when the Cpm index is used, the critical value for a given α is obtained as

cα = k0

√
n

χ2
α,n

,

where χ2
α,n is the quantile α of a χ2 distribution with n degrees of freedom. The qcr package

includes the qcs.hat.cpm() function to obtain both the theoretical capability plot and the estimated
capability plot from sample statistics. Among other options, the user can indicate the control chart
from which the estimates µ̂ and σ̂ are obtained (alternatively, µ̂ and σ̂ can be introduced through mu
and std.dev), and the specification limits using limits. Furthermore, the signification level and the
capability limit can be modified, as they are set to α = 0.05 and k0 = 1 by default. The following
code illustrates its application to pistonrings data.

R> xbar <- qcs.xbar(pistonrings[1:125, ], plot = FALSE)
R> limits <- c(lsl = 73.99, usl = 74.01)
R> # qcs.hat.cpm(object = xbar, limits = limits, ylim = c(0,1))
R> mu <- xbar$center
R> std.dev <- xbar$std.dev
R> qcs.hat.cpm(limits = limits, mu = mu, std.dev = std.dev, ylim = c(0,1))

The result is shown in Figure 12. The contour line corresponding to the capability region obtained
from the capability index sample is always more restrictive than the corresponding theoretical one.

Nonparametric capability analysis

Traditional assumptions about data such as normality or independence are frequently violated in
many real situations. Thus, in scenarios in which assumptions of normality are not verified, the
indices defined in the previous sections are not valid. Pearn and Chen (1997) and Tong and Chen
(1998) proposed generalizations of Cp (u, v) for the case of arbitrary distributions of data

CNp (u, v) =
d − u|M − m|

3
√(

F99.865−F0.135
6

)2
+ v (M − T )2

,

where Fα is the percentile α% of the corresponding distribution and M the median of the process.
However, the distribution of the underlying process is always unknown. Chang and Lu (1994)
calculated estimates for F99.865, F0.135 and M based on the sample percentiles.

Pearn and Chen (1997) proposed the following estimator

ĈNp (u, v) =
d − u|M̂ − m|

3
√(

Up−Lp

6

)2
+ v

(
M̂ − T

)2
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Figure 12: Comparison between theorical and estimated process capability plots.

where Up is an estimator for F99.865, Lp is an estimator for F0.135, and M̂ is an estimator for M ,
obtained from the tables developed by Gruska et al. (1989).

The qcs.cpn() function of qcr calculates CNp, CNpk, CNpm, and CNpmk using the formulation
described by Tong and Chen (1998). The code that illustrates its use is shown below. To obtain the
nonparametric capability indices it is necessary to indicate the u and v parameters.

R> xbar <- qcs.xbar(pistonrings[1:125, ], plot = FALSE)
R> limits <- c(lsl = 73.99, usl = 74.01)
R> # x <- xbar$statistics[[1]]
R> # median <- median(x)
R> # q = quantile(x, probs = c(0.00135, 0.99865)) # c(lq, uq)
R> # qcs.cpn(parameters = c(0, 0), limits = limits, median = median, q = q)
R> # qcs.cpn(object = xbar, parameters = c(0, 0), limits = limits)
R> # qcs.cpn(object = xbar, parameters = c(1, 0), limits = limits)
R> # qcs.cpn(object = xbar, parameters = c(0, 1), limits = limits)
R> qcs.cpn(object = xbar, parameters = c(1, 1), limits = limits)

CNpmk
0.9015

Thus, the values obtained are CNp = 1.0082, CNpk = 0.9275, CNpm = 0.9799 and CNpmk = 0.9015.
If a capability limit of k = 1 or k = 1.33 is assumed, we can infer that the process is not actually
capable to meet the customers or manager’s requirements.

Tools for a comprehensive processs capability analysis

Function qcs.ca() provides a comprehensive information of the capability of a process, summarized
through a graphical output. This function calculates the process capability indices Cp, Cpk, CpL,
CpU , Cpm, Cpmk from a qcs object, assuming a Gaussian distribution. Moreover, it computes
confidence limits for Cp using the method described by Chou et al. (1990). Approximate confidence
limits for Cpl, Cpu, and Cpk are also estimated using the method described in Bissell (1990), while
the confidence limits for Cpm are based on the approximated method of Boyles (1991) that assumes
the target is the mean of the specification limits. Moreover, the CNp, CNpk, CNpm, and CNpmk

nonparametric capability indices are also obtained. There is also a specific box within the summary
plot that shows the proportion of observations and expected observations under the Gaussian
assumption out of the specification limits (nonconforming observations). Further, a histogram of the

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=qcr


Contributed research article 213

data sample is provided, in addition to the corresponding Gaussian density curves obtained from
the sample estimates (one per standard deviation estimate procedure). They are displayed along
with the specification limits, a quantile-quantile plot for the specified distribution, and a process
capability plot obtained from the Cpm index (both using theoretical and sample alternatives). In
order to describe the qcs.ca() performance, the following code corresponds to the analysis of the
first 125 observations of the pistonrings dataset (the corresponding output is shown in Figure 13).

R> qcs.ca(xbar, limits = c(lsl = 73.99, usl = 74.01))

Process Capability Analysis

Call:
qcs.ca(object = xbar, limits = c(lsl = 73.99, usl = 74.01))

Number of obs = 125 Target = 74
Center = 74 LSL = 73.99
StdDev = 0.009785 USL = 74.01

Paremetric Capability indices:

Value 0.1% 99.9%
Cp 0.3407 0.2771 0.4065
Cp_l 0.3807 0.2739 0.4875
Cp_u 0.3006 0.2021 0.3991
Cp_k 0.3006 0.1944 0.4068
Cpm 0.3382 0.2749 0.4038

Non parametric Capability indices:

Value
CNp 1.0082
CNpK 0.9275
CNpm 0.9799
CNpmk 0.9015

PPM:

Exp<LSL 1.267e+07 Obs<LSL 0
Exp>USL 1.836e+07 Obs>USL 8e+05

Exp Total 3.103e+07 Obs Total 8e+05

Test:

Anderson Darling Test for normal distribution

data: xbar
A = 0.1399, mean = 74.001, sd = 0.005, p-value = 0.9694
alternative hypothesis: true distribution is not equal to normal
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Figure 13: A complete analysis of the process capability.

6 Conclusions

The qcr package has been developed to provide users with a comprehensive set of functions that
manage statistical process control, ranging from univariate parametric analysis to multivariate and
FDA nonparametric statistics. This package includes the main types of control charts and capability
indices. It combines the main features of reputed SQC packages in R such as qcc and qualityTools
with the proposal of a new graphical appearance and the implementation of new SQC tools with
increasing importance in Industry 4.0 such as multivariate and nonparametric analysis.
In addition to some utilities provided by reference R packages such as qcc, SixSigma, and qualityTools,
qcr implements very important statistical techniques of Control and Analysis tasks of the Six Sigma
procedure that are not included in other libraries. In the case of multivariate control charts, these
tools are the MEWMA and MCUSUM multivariate control charts, on the one hand, and the r, Q
and S nonparametric control charts based on data depth, on the other hand. In addition, Phase I
and Phase II control charts for functional data (monthly, daily, hourly curves) based on functional
data depth, bootstrap procedures, and nonparametric rank charts have also been implemented in the
qcr package. These control charts for functional data provide tools to control and improve processes
when their CTQ variables are obtained as hourly, monthly, daily, yearly smooth curves.
It is also very important to note that qcr provides functions to perform nonparametric capability
analysis. In addition, the new implementation of the process capability plots for the main parametric
capability indices allows us to analyze if improvements in process spread or/and process location are
needed to obtain a capable process. The comparison between suppliers, machines, etc., is enabled
through capability plots.
All these utilities intend to make qcr a useful tool for users of a wide variety of industries, providing
a competitive alternative to commercial software.
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