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JMcmprsk: An R Package for Joint
Modelling of Longitudinal and Survival
Data with Competing Risks
by Hong Wang, Ning Li, Shanpeng Li, and Gang Li

Abstract In this paper, we describe an R package named JMcmprsk, for joint modelling of longitudinal
and survival data with competing risks. The package in its current version implements two joint
models of longitudinal and survival data proposed to handle competing risks survival data together
with continuous and ordinal longitudinal outcomes respectively (Elashoff et al., 2008; Li et al., 2010).
The corresponding R implementations are further illustrated with real examples. The package also
provides simulation functions to simulate datasets for joint modelling with continuous or ordinal
outcomes under the competing risks scenario, which provide useful tools to validate and evaluate
new joint modelling methods.

1 Introduction

Joint modeling of longitudinal and survival data has drawn a lot of attention over the past two decades.
Much of the research has been focused on data with a single event time and a single type of failure,
usually under the assumption of independent censoring of event times (Tsiatis and Davidian, 2004).
However, in some situations interest lies with competing risks data, where there is more than one
possible cause of an event or where the censoring is informative (Williamson et al., 2008). Typically, a
standard linear mixed model or its extensions are used for the longitudinal submodel. Cause-specific
hazards model with either unspecified or spline baseline hazards are studied for the competing risk
submodels. Various types of random effects are assumed to account for the association between these
submodels.

Despite various theoretical and methodological developments (Hickey et al., 2018b; Papageorgiou
et al., 2019), there are still limited software packages to deal with specific problems in the analysis
of follow-up data in clinical studies. To our knowledge, currently, there are three related CRAN R
packages, namely JM (Rizopoulos, 2012), joineR (Williamson et al., 2008), and lcmm (Proust-Lima
et al., 2017), which support the modeling of longitudinal and survival data with competing risks.

The JM package provides support for competing risks via the "CompRisk" option in the jointModel()
function. In JM, a linear mixed-effects submodel is modeled for the longitudinal part and a relative
risk submodel is assumed for each competing event. In the current version (1.4-8), only the piecewise
proportional hazards model, where the log baseline hazard is approximated using B-splines, is sup-
ported for the survival component. The joineR package fits the joint model (Williamson et al., 2008)
for joint models of longitudinal data and competing risks using the joint() function. In their model,
the time-to-event data is modeled using a cause-specific Cox proportional hazards regression model
with time-varying covariates. The longitudinal outcome is modeled using a linear mixed effects model.
The association is captured by a zero-mean shared latent Gaussian process. Parameters in the model
are estimated using an Expectation Maximization(EM) algorithm. The lcmm package implements the
support for competing risks joint modeling in the Jointlcmm() function. Radically different from the
above two R packages, the lcmm package uses a less well-known framework called the joint latent class
model (Proust-Lima et al., 2014), which assumes that dependency between the longitudinal markers
and the survival risk can be captured by a latent class structure entirely. However, the lcmm package
is mainly designed for prediction purpose and may not be suited to evaluate specific assumptions
regarding the characteristics of the marker trajectory that are the most influential on the event risk
(Proust-Lima et al., 2014).

In all these packages, a time-independent shared random effects vector is usually assumed in
modeling the longitudinal and survival data. However, they are not capable of fitting more flexible
models with separate random effects in these submodels (Elashoff et al., 2008; Li et al., 2010). In
many biomedical applications, sometimes, it is necessary to have a model which takes into account
longitudinal ordinal outcomes for the longitudinal part. Yet, due to the complex nature of joint
modeling, most of the available software does not support longitudinal ordinal variables (Armero
et al., 2016; Ferrer, 2017). We thus decided to fill this gap and implemented a joint model which
supports ordinal disease markers based on our previous work (Li et al., 2010).

Both JM and joineR packages depend heavily on the R nlme and survival packages. In JM, the
linear mixed-effects submodel and the survival submodel are first fitted using lme() and coxph() R
function in these packages before a joint modeling process. In joineR, lme() and coxph() functions
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are applied to obtain initial values for parameters in the joint model, which are further estimated by
an EM algorithm. The major advantage of using available packages such as survival and nlme lies
that joint modeling R packages can be built quickly with adequate efficiency as most of these base R
packages have been optimized for speed. However, if required functionality is not available in these
packages, as is the case of Elashoff et al. (2008) and Li et al. (2010), implementing new joint modeling
methods is a non-trivial task.

Compared with JM and joineR packages, the JMcmprsk package introduced here can be regarded
as a "stand-alone" R package, which does not required initial estimates for the linear mixed effects
model or survival submodel to compute parameters of the joint model in question. In particular, the
JMcmprsk package is built within the Rcpp (Eddelbuettel et al., 2011) and GSL(The GNU Scientific
Library)(Galassi et al., 2002) framework, which make R functions have access to a wide range of fast
numerical routines such as Monte Carlo integration, numerical integration and differentiation.

2 Joint Models with Competing Risks

A joint model for competing risk data consists of two linked components: the longitudinal submodel,
which takes care of repeatedly measured information and the survival submodel, which deals with
multiple failure times. The combination of different longitudinal and survival components leads to a
variety of joint models (Hickey et al., 2018a).

In the current version of JMcmprsk, we have implemented two joint models for competing risk
data, namely joint modeling with continuous longitudinal outcomes (Elashoff et al., 2008), and joint
modeling with ordinal longitudinal outcomes (Li et al., 2010). Both models have adopted a cause-
specific Cox submodel with a frailty term for multiple survival endpoints. The difference between
these two models lies in the longitudinal part. The former model applies a linear mixed submodel
for the continuous longitudinal outcome, while the latter model includes a partial proportional odds
submodel for the ordinal longitudinal outcome.

Different from previous approaches (Rizopoulos, 2012; Williamson et al., 2008), we assume a
flexible separate random effects structure for the longitudinal submodel and the survival submodel.
Furthermore, the association between both submodels is modeled by the assumption that the random
effects in two submodels jointly have a multivariate normal distribution.

Model 1: Joint modeling with continuous longitudinal outcomes

Let Yi(t) be the longitudinal outcome measured at time t for subject i, i = 1, 2, · · · , n and n is the total
number of subjects in study. Let Ci = (Ti, Di) denote the competing risks data on subject i, where
Ti is the failure time or censoring time, and Di takes value in {0, 1, · · · , g}, with Di = 0 indicating a
censored event and Di = k showing that subject i fails from the kth type of failure, where k = 1, · · · , g.

The joint model is specified in terms of the following two linked submodels:

Yi(t) = X(1)
i (t)⊤β + X̃(1)

i (t)⊤bi + ϵi(t),

λk(t) = λ0k(t) exp(X(2)
i (t)⊤γk + νkui), for k = 1, · · · , g,

where X(1)
i (t), X(2)

i (t) denote the covariates for the fixed-effects β and γk, X̃(1)
i (t) denotes the covari-

ates for the random-effects bi and ϵi(t) ∼ N(0, σ2) for all t ≥ 0. The parameter ν1 is set to 1 to ensure
identifiability. We assume that bi is independent of ϵi(t) and that ϵi(t1) is independent of ϵi(t2) for any
t1 ̸= t2. We further assume the random effects bi and ui jointly have a multivariate normal distribution,
denoted by θi ∼ N(0, Σ), where Σ = (Σb, Σ⊤

bu; Σbu, σu).

Denote Ψ as the unknown parameters from the joint models. We propose to obtain the maximum
likelihood estimate of Ψ through an EM algorithm. The complete data likelihood is

L(Ψ; Y, C, θ)

∝ Πn
i=1

[
Πni

j=1
1√

2πσ2
exp(− 1

2σ2 (Yij − X(1)
i (tij)

⊤β − X̃(1)
i (tij)

⊤bi)
2)
]

×Πg
k=1λk(Ti)

I(Di=k) exp
{
−

∫ Ti

0

g

∑
k=1

λk(t)dt
}

× 1√
(2π)d|Σ|

exp(−1
2

θ⊤i Σ−1θi).
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In the E-step, we need to calculate the expected value of all the functions of θ. Since the integral
over the random effects does not have a closed-form solution, an iterative numerical method has to be
employed.

In JMcmprsk, the integral over time is approximated using a Gauss-Kronrod quadrature and the
computation of the integral over the individual random effects is achieved using a Gauss-Hermite
quadrature. The quadrature approximates the integral using a weighted sum of function values at
specified points within the domain of integration; the Gaussian quadrature is based on the use of
polynomial functions. A standard option here is the Gaussian quadratic rules. In the M-step, Ψ is
updated by maximizing the functions obtained from the E-step.

Model 2: Joint modeling with ordinal longitudinal outcomes

Let Yij denote the jth response measured on subject i, where i = 1, · · · , n, j = 1, · · · , ni, and Yij takes
values in {1, · · · , K}. The competing risks failure times on subject i is (Ti, Di), and the notations have
the same meaning as in Model 1.

We propose the following partial proportional odds model for Yij

P(Yij ≤ k|Xij, X̃ij, Wij, bi) =
1

1 + exp(−θk − Xijβ − X̃ijαk − W⊤
ij bi)

,

where k = 1, · · · , K − 1, Xij and X̃ij are p × 1 and s × 1 vectors of covariates for the fixed-effect β and
αk, with α1 = 0, and X̃ij is a subset of Xij for which the proportional odds assumption may not be
satisfied. The q × 1 vector bi represents random effects of the associated covariates Wij.

The distribution of the competing risks failure times (Ti, Di) are assumed to take the form of the
following cause-specific hazards frailty model:

λd(t|Zi(t), ui) = λ0d(t) exp(Zi(t)⊤γd + νdui), for d = 1, · · · , g,

where the l × 1 vector γd and νd are the cause-specific coefficients for the covariates Zi(t) and the
random effects ui, respectively.

The parameter ν1 is set to 1 to ensure identifiability. We assume the random effects bi and ui jointly
have a multivariate normal distribution, denoted by ai ∼ N(0, Σ).

Denote Ψ as the unknown parameters from the joint models. We propose to obtain the maximum
likelihood estimate of Ψ through an EM algorithm. The complete data likelihood is

L(Ψ; Y, C, a)

∝ Πn
i=1

[
Πni

j=1ΠK
k=1{πij(k)− πij(k − 1)}I(Yij=k)

]
×Πg

d=1λd(Ti)
I(Di=d) exp

{
−

∫ Ti

0

d

∑
k=1

λd(t)dt
}

× 1√
(2π)q+1|Σ|

exp(−1
2

a⊤i Σ−1ai).

where πij(k) stands for the probability that Yij ≤ k given the covariates and the random effects. The
implementation of EM algorithm in this case is similar to the procedure of Model 1.

3 Package structure and functionality

The R package JMcmprsk implements the above two joint models on the basis of R package Rcpp
(Eddelbuettel et al., 2011) and GSL library(Galassi et al., 2002) and is hosted at CRAN. After setting
the GSL environment by following the instructions in the INSTALL file from the package, we can issue
the following command in the R console to install the package:

> install.packages("JMcmprsk")

There are two major functions included in the JMcmprsk package: the function that fits continuous
outcomes jmc() and the function that fits ordinal outcomes jmo().
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jmc() function

As an illustrative example of jmc(), we consider Scleroderma Lung Study (Tashkin et al., 2006), a
double-blinded, randomized clinical trial to evaluate the effectiveness of oral cyclophosphamide
(CYC) versus placebo in the treatment of lung disease due to scleroderma. This study consists of
158 patients and the primary outcome is forced vital capacity (FVC, as % predicted) determined at
3-month intervals from the baseline. The event of interest is the time-to-treatment failure or death.
We consider two covariates, baseline %FVC (FVC0) and baseline lung fibrosis (FIB0) and two risks,
informative and noninformative. The model setups are as follows:

%FVCij = β0 + β1tij + β2FVC0i + β3FIB0i + β4CYCi

+β5FVC0i × CYCi + β6FIB0i × CYCi + β7tij × CYCi + bitij + ϵ,

and the cause-specific hazards frailty models are

λ1(t) = λ01(t) exp(γ11FVC0i + γ12FIB0i + γ13CYCi + γ14FVC0i × CYCi + γ15FIB0i × CYCi + ui)

λ2(t) = λ02(t) exp(γ21FVC0i + γ22FIB0i + γ23CYCi + γ24FVC0i × CYCi + γ25FIB0i × CYCi + ν2ui),

We first load the package and the data.

library(JMcmprsk)
set.seed(123)
data(lung)
yread <- lung[, c(1,2:11)]
cread <- unique(lung[, c(1, 12, 13, 6:10)])

The number of rows in "yread" is the total number of measurements for all subjects in the study. For
"cread", the survival/censoring time is included in the first column, and the failure type coded as
0 (censored events), 1 (risk 1), or 2 (risk 2) is given in the second column. Two competing risks are
assumed.

Then, "yread" and "cread" are used as the longitudinal and survival input data for the model
specified by the function jmc() as shown below:

jmcfit <- jmc(long_data = yread, surv_data = cread, out = "FVC",
FE = c("time", "FVC0", "FIB0", "CYC", "FVC0.CYC",

"FIB0.CYC", "time.CYC"),
RE = "linear", ID = "ID",cate = NULL, intcpt = 0,
quad.points = 20, quiet = TRUE, do.trace = FALSE)

where out is the name of the outcome variable in the longitudinal sub-model, FE the list of covariates
for the fixed effects in the longitudinal sub-model, RE the types/vector of random effects in the
longitudinal sub-model, ID the column name of subject id, cate the list of categorical variables for the
fixed effects in the longitudinal sub-model, intcpt the indicator of random intercept coded as 1 (yes,
default) or 0(no). The option quiet is used to print the progress of function, the default is TRUE (no
printing).

A concise summary of the results can be obtained using jmcfit as shown below:

>jmcfit
Call:
jmc(long_data = yread, surv_data = cread, out = "FVC",
FE = c("time", "FVC0", "FIB0", "CYC", "FVC0.CYC", "FIB0.CYC", "time.CYC"),
RE = "linear", ID = "ID", cate = NULL, intcpt = 0, quad.points = 20, quiet = FALSE)

Data Summary:
Number of observations: 715
Number of groups: 140

Proportion of competing risks:
Risk 1 : 10 %
Risk 2 : 22.86 %

Numerical intergration:
Method: standard Guass-Hermite quadrature
Number of quadrature points: 20

Model Type: joint modeling of longitudinal continuous and competing risks data
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Model summary:
Longitudinal process: linear mixed effects model
Event process: cause-specific Cox proportional hazard model with unspecified baseline hazard

Loglikelihood: -3799.044

Longitudinal sub-model fixed effects: FVC ~ time + FVC0 + FIB0 + CYC + FVC0.CYC + FIB0.CYC + time.CYC

Estimate Std. Error 95% CI Pr(>|Z|)
Longitudinal:
Fixed effects:
intercept 66.0415 0.7541 ( 64.5634, 67.5196) 0.0000
time -0.0616 0.0790 (-0.2165, 0.0932) 0.4353
FVC0 0.9017 0.0365 ( 0.8302, 0.9732) 0.0000
FIB0 -1.7780 0.5605 (-2.8767,-0.6793) 0.0015
CYC 0.0150 0.9678 (-1.8819, 1.9119) 0.9876
FVC0.CYC 0.1380 0.0650 ( 0.0106, 0.2654) 0.0338
FIB0.CYC 1.7088 0.7643 ( 0.2109, 3.2068) 0.0254
time.CYC 0.1278 0.1102 (-0.0883, 0.3438) 0.2464

Random effects:
sigma^2 22.7366 0.6575 ( 21.4478, 24.0253) 0.0000

Survival sub-model fixed effects: Surv(surv, failure_type) ~ FVC0 + FIB0 + CYC + FVC0.CYC + FIB0.CYC

Estimate Std. Error 95% CI Pr(>|Z|)
Survival:
Fixed effects:
FVC0_1 0.0187 0.0326 (-0.0452, 0.0826) 0.5660
FIB0_1 0.1803 0.3521 (-0.5098, 0.8705) 0.6086
CYC_1 -0.6872 0.7653 (-2.1872, 0.8128) 0.3692
FVC0.CYC_1 -0.0517 0.0746 (-0.1979, 0.0945) 0.4880
FIB0.CYC_1 -0.4665 1.1099 (-2.6419, 1.7089) 0.6743
FVC0_2 -0.0677 0.0271 (-0.1208,-0.0147) 0.0123
FIB0_2 0.1965 0.3290 (-0.4484, 0.8414) 0.5503
CYC_2 0.3137 0.4665 (-0.6007, 1.2280) 0.5013
FVC0.CYC_2 0.1051 0.0410 ( 0.0248, 0.1854) 0.0103
FIB0.CYC_2 0.1239 0.4120 (-0.6836, 0.9314) 0.7636

Association parameter:
v2 1.9949 2.3093 (-2.5314, 6.5212) 0.3877

Random effects:
sigma_b11 0.2215 0.0294 ( 0.1638, 0.2792) 0.0000
sigma_u 0.0501 0.0898 (-0.1259, 0.2260) 0.5772

Covariance:
sigma_b1u -0.0997 0.0797 (-0.2560, 0.0565) 0.2109

The resulting table contains three parts, the fixed effects in longitudinal model, survival model
and random effects. It gives the estimated parameters in the first column, the standard error in the
second column, and 95% confidence interval and p-value for these parameters in the third and fourth
columns. In our example, there is only one random effect. If there is more than one random effect, the
output will include sigmab11, sigmab12, sigmab22, sigmab1u, sigmab2u, and so on.

The supporting function coef() can be used to extract the coefficients of the longitudinal/survival
process by specifying the argument coeff, where"beta" and "gamma" denotes the longitudinal and
survival submodel fixed effects, respectively.

beta <- coef(jmcfit, coeff = "beta")
>beta
intercept time.1 FVC0 FIB0 CYC FVC0.CYC FIB0.CYC

66.04146267 -0.06164756 0.90166283 -1.77799172 0.01503104 0.13798885 1.70883750
time.CYC

0.12776670

gamma <- coef(jmcfit, coeff = "gamma")
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>gamma
FVC0 FIB0 CYC FVC0.CYC FIB0.CYC

[1,] 0.01871359 0.1803249 -0.6872099 -0.05172157 -0.4664724
[2,] -0.06772664 0.1965190 0.3136709 0.10509986 0.1239203

The supporting function summary() can be used to extract the point estimate, the standard error,
95%CI, and p-values of the coefficients of both sub-models with the option coeff to specify which
submodel fixed effects one would like to extract, and digits, the number of digits to be printed out.
We proceed below to extract the fixed effects for both submodels:

>summary(jmcfit, coeff = "longitudinal", digits = 4)
Longitudinal coef SE 95%Lower 95%Upper p-values

1 intercept 66.0415 0.7541 64.5634 67.5196 0.0000
2 time -0.0616 0.0790 -0.2165 0.0932 0.4353
3 FVC0 0.9017 0.0365 0.8302 0.9732 0.0000
4 FIB0 -1.7780 0.5605 -2.8767 -0.6793 0.0015
5 CYC 0.0150 0.9678 -1.8819 1.9119 0.9876
6 FVC0.CYC 0.1380 0.0650 0.0106 0.2654 0.0338
7 FIB0.CYC 1.7088 0.7643 0.2109 3.2068 0.0254
8 time.CYC 0.1278 0.1102 -0.0883 0.3438 0.2464

>summary(jmcfit, coeff = "survival", digits = 4)
Survival coef exp(coef) SE(coef) 95%Lower 95%Upper p-values

1 FVC0_1 0.0187 1.0189 0.0326 -0.0452 0.0826 0.5660
2 FIB0_1 0.1803 1.1976 0.3521 -0.5098 0.8705 0.6086
3 CYC_1 -0.6872 0.5030 0.7653 -2.1872 0.8128 0.3692
4 FVC0.CYC_1 -0.0517 0.9496 0.0746 -0.1979 0.0945 0.4880
5 FIB0.CYC_1 -0.4665 0.6272 1.1099 -2.6419 1.7089 0.6743
6 FVC0_2 -0.0677 0.9345 0.0271 -0.1208 -0.0147 0.0123
7 FIB0_2 0.1965 1.2172 0.3290 -0.4484 0.8414 0.5503
8 CYC_2 0.3137 1.3684 0.4665 -0.6007 1.2280 0.5013
9 FVC0.CYC_2 0.1051 1.1108 0.0410 0.0248 0.1854 0.0103
10 FIB0.CYC_2 0.1239 1.1319 0.4120 -0.6836 0.9314 0.7636

We proceed to test the global hypothesis for the longitudinal and the survival submodels using
linearTest().

>linearTest(jmcfit, coeff="beta")
Chisq df Pr(>|Chi|)

L*beta=Cb 1072.307 7 0.0000
>linearTest(jmcfit, coeff="gamma")

Chisq df Pr(>|Chi|)
L*gamma=Cg 11.06558 10 0.3524

The results suggest that the hypothesis β1 = β2 = · · · = β7 = 0 is rejected, and the hypothesis
γ11 = γ12 = · · · = γ15 = γ21 = γ22 = · · · = γ25 = 0 is not rejected at the significance level of 0.05.

linearTest() can also be used to test any linear hypothesis about the coefficients for each sub-
model. For example, if one wants to test H0 : β1 = β2 in the longitudinal submodel, then we start with
a linear contrast Lb and pass it to linearTest().

Lb <- matrix(c(1, -1, 0, 0, 0, 0, 0), ncol = length(beta)-1, nrow = 1)
>linearTest(jmcfit, coeff="beta", Lb = Lb)

Chisq df Pr(>|Chi|)
L*beta=Cb 124.8179 1 0.0000

Note that we do not include intercept for linear hypotheses testing. It is seen that the hypothesis
β1 = β2 is rejected at level 0.05 in the above example.

Similarly, a linear hypotheses testing can also be done in the survival submodel using linearTest().
For example, if we want to test H0 : γ11 = γ21, then we start with another linear contrast Lg and pass
it to linearTest().

Lg <- matrix(c(1, 0, 0, 0, 0, -1, 0, 0, 0, 0), ncol = length(gamma), nrow = 1)
>linearTest(jmcfit, coeff="gamma", Lg = Lg)

Chisq df Pr(>|Chi|)
L*gamma=Cg 4.301511 1 0.0381
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It is seen that the hypothesis γ11 = γ21 is rejected at level 0.05.

For categorical variables, jmc() function will create the appropriate dummy variables automatically
as needed within the function. The reference group in a categorical variable is specified as the one that
comes first alphabetically. Below is another example:

First, we add two categorical variables "sex" and "race" to the longitudinal data set "yread", in
which "sex" is coded as "Female" or "Male", and race is coded as "Asian", "White", "Black", or "Hispanic".

#make up two categorical variables and add them into yread
set.seed(123)
sex <- sample(c("Female", "Male"), nrow(cread), replace = TRUE)
race <- sample(c("White", "Black", "Asian", "Hispanic"),

nrow(cread), replace = TRUE)
ID <- cread$ID
cate_var <- data.frame(ID, sex, race)
if (require(dplyr)) {
yread <- dplyr::left_join(yread, cate_var, by = "ID")

}

Second, we rerun the model with the two added categorical variables.

# run jmc function again for yread file with two added categorical variables
res2 <- jmc(long_data = yread, surv_data = cread,

out = "FVC", cate = c("sex", "race"),
FE = c("time", "FVC0", "FIB0", "CYC", "FVC0.CYC",

"FIB0.CYC", "time.CYC"),
RE = "time", ID = "ID", intcpt = 0,
quad.points = 20, quiet = FALSE)

res2

We can obtain the estimated coefficients of the longitudinal process using coef().

> coef(res2, coeff = "beta")
intercept time FVC0 FIB0 CYC FVC0.CYC FIB0.CYC time.CYC

67.05760799 -0.07340060 0.91105151 -1.75007966 0.02269507 0.13045588 1.58807248 0.15876200
Male Black Hispanic White

-0.77110697 -0.94635182 -0.45873814 -1.19910638

jmo() function

The implementation of jmo() is very similar to that of jmc(). As an illustrative example, we use the
data from (rt PA Stroke Study, 1995). In this study, 624 patients are included, and the patients treated
with rt-PA were compared with those given placebo to look for an improvement from baseline in the
score on the modified Rankin scale, an ordinal measure of the degree of disability with categories
ranging from no symptoms, no significant disability to severe disability or death, which means in
this example, Yij takes K = 4 ordinal values. The following covariates are considered: treatment
group (rt-PA or placebo), modified Rankin scale prior stroke onset, time since randomization (dummy
variables for 3, 6 and 12 months), and the three subtypes of acute stroke (small vessel occlusive disease,
large vessel atherosclerosis or cardioembolic stroke, and unknown reasons). Similarly, we also consider
the informative and noninformative risks. The model setups are as follows:

P(Yij ≤ k) = [1 + exp(−θk − (β1Group + β2Modified Rankin scale prior onset + β3time3

+β4time6 + β5time12 + β6Small vessel + β7Large vessel or cardioembolic stroke

+β8Small vessel*group + β9Large vessel or cardioembolic stroke*group)

−(αk1Small vessel + αk2Large vessel or cardioembolic stroke)− bi)]
−1,

where k = 1, · · · , K − 1.

λ1(t) = λ01(t) exp(γ11Group + γ12Modified Rankin scale prior onset

+γ13Small vessel + γ14Large vessel or cardioembolic stroke

+γ15Small vessel*group + γ16Large vessel or cardioembolic stroke*group + ui)

λ2(t) = λ02(t) exp(γ21Group + γ22Modified Rankin scale prior onset

+γ23Small vessel + γ24Large vessel or cardioembolic stroke

+γ25Small vessel*group + γ26Large vessel or cardioembolic stroke*group + ν2ui)
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We first load the package and the data.

library(JMcmprsk)
set.seed(123)
data(ninds)
yread <- ninds[, c(1, 2:14)]
cread <- ninds[, c(1, 15, 16, 6, 10:14)]
cread <- unique(cread)

and the other arrangements are the same with those in jmc(),

jmofit <- jmo(yread, cread, out = "Y",
FE = c("group", "time3", "time6", "time12", "mrkprior",

"smlves", "lvORcs", "smlves.group", "lvORcs.group"),
cate = NULL,RE = "intercept", NP = c("smlves", "lvORcs"),
ID = "ID",intcpt = 1, quad.points = 20,
max.iter = 1000, quiet = FALSE, do.trace = FALSE)

where NP is the list of non-proportional odds covariates and FE the list of proportional odds covariates.

To see a concise summary of the result, we can type:

>jmofit
Call:
jmo(long_data = yread, surv_data = cread, out = "Y",
FE = c("group", "time3", "time6", "time12", "mrkprior", "smlves", "lvORcs", "smlves.group", "lvORcs.group"),
RE = "intercept", NP = c("smlves", "lvORcs"), ID = "ID", cate = NULL, intcpt = 1,
quad.points = 20, max.iter = 1000, quiet = FALSE, do.trace = FALSE)

Data Summary:
Number of observations: 1906
Number of groups: 587

Proportion of competing risks:
Risk 1 : 32.88 %
Risk 2 : 4.26 %

Numerical intergration:
Method: Standard Guass-Hermite quadrature
Number of quadrature points: 20

Model Type: joint modeling of longitudinal ordinal and competing risks data

Model summary:
Longitudinal process: partial proportional odds model
Event process: cause-specific Cox proportional hazard model with unspecified baseline hazard

Loglikelihood: -2292.271

Longitudinal sub-model proportional odds: Y ~ group + time3 + time6 + time12 + mrkprior + smlves +
lvORcs + smlves.group + lvORcs.group
Longitudinal sub-model non-proportional odds: smlves_NP + lvORcs_NP

Estimate Std. Error 95% CI Pr(>|Z|)
Longitudinal:
Fixed effects:
proportional odds:
group 1.6053 0.1905 ( 1.2319, 1.9786) 0.0000
time3 2.5132 0.1934 ( 2.1341, 2.8923) 0.0000
time6 2.6980 0.1962 ( 2.3134, 3.0825) 0.0000
time12 2.9415 0.2004 ( 2.5486, 3.3344) 0.0000
mrkprior -2.1815 0.2167 (-2.6063,-1.7567) 0.0000
smlves 6.4358 0.4228 ( 5.6072, 7.2644) 0.0000
lvORcs -1.2907 0.2861 (-1.8515,-0.7300) 0.0000
smlves.group 0.4903 0.7498 (-0.9793, 1.9598) 0.5132
lvORcs.group -3.2277 0.4210 (-4.0528,-2.4026) 0.0000
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Non-proportional odds:
smlves_NP_2 0.2725 0.4485 (-0.6066, 1.1515) 0.5435
lvORcs_NP_2 -0.4528 0.2466 (-0.9362, 0.0305) 0.0663
smlves_NP_3 1.7844 1.0613 (-0.2958, 3.8645) 0.0927
lvORcs_NP_3 -0.1364 0.4309 (-0.9809, 0.7081) 0.7516
Logit-specific intercepts:
theta1 -6.2336 0.1722 (-6.5712,-5.8960) 0.0000
theta2 -4.1911 0.1561 (-4.4971,-3.8851) 0.0000
theta3 3.9806 0.1896 ( 3.6091, 4.3522) 0.0000

Survival sub-model fixed effects: Surv(surv, comprisk) ~ group + mrkprior + smlves + lvORcs +
smlves.group + lvORcs.group

Estimate Std. Error 95% CI Pr(>|Z|)
Survival:
Fixed effects:
group_1 -0.4630 0.2434 (-0.9400, 0.0140) 0.0571
mrkprior_1 0.5874 0.1371 ( 0.3187, 0.8560) 0.0000
smlves_1 -2.5570 0.7223 (-3.9728,-1.1413) 0.0004
lvORcs_1 0.5992 0.2485 ( 0.1120, 1.0863) 0.0159
smlves.group_1 -0.4990 1.4257 (-3.2934, 2.2955) 0.7264
lvORcs.group_1 1.1675 0.4692 ( 0.2479, 2.0871) 0.0128
group_2 0.2087 0.4834 (-0.7388, 1.1562) 0.6659
mrkprior_2 0.0616 0.4277 (-0.7766, 0.8998) 0.8854
smlves_2 0.7758 0.6217 (-0.4428, 1.9943) 0.2121
lvORcs_2 -0.3256 0.5120 (-1.3291, 0.6778) 0.5247
smlves.group_2 -0.0437 1.1573 (-2.3120, 2.2245) 0.9699
lvORcs.group_2 0.0991 1.0718 (-2.0015, 2.1998) 0.9263

Association prameter:
v2 0.0101 0.1595 (-0.3025, 0.3227) 0.9496

Random effects:
sigma_b11 55.6404 5.6560 ( 44.5547, 66.7261) 0.0000
sigma_u 6.6598 1.7196 ( 3.2894, 10.0303) 0.0001

Covariance:
sigma_b1u -19.2452 0.7730 (-20.7602,-17.7302) 0.0000

The usage of function coef() is similar to those in Model 1. More specifically, coef() can extract
the coefficients of non-proportional odds fixed effects and logit-specific intercepts. For example,

alpha <- coef(jmofit, coeff = "alpha")
>alpha

smlves_NP lvORcs_NP
[1,] 0.2724605 -0.4528214
[2,] 1.7843743 -0.1363731

theta <- coef(jmofit, coeff = "theta")
> theta
[1] -6.233618 -4.191114 3.980638

The usage of function summary() is the same as in Model 1. It extracts the point estimate, standard
error, 95%CI, and p-values of the coefficients of both submodels as demonstrated below:

> summary(jmofit, coeff = "longitudinal")
Longitudinal coef SE 95%Lower 95%Upper p-values

1 group 1.6053 0.1905 1.2319 1.9786 0.0000
2 time3 2.5132 0.1934 2.1341 2.8923 0.0000
3 time6 2.6980 0.1962 2.3134 3.0825 0.0000
4 time12 2.9415 0.2004 2.5486 3.3344 0.0000
5 mrkprior -2.1815 0.2167 -2.6063 -1.7567 0.0000
6 smlves 6.4358 0.4228 5.6072 7.2644 0.0000
7 lvORcs -1.2907 0.2861 -1.8515 -0.7300 0.0000
8 smlves.group 0.4903 0.7498 -0.9793 1.9598 0.5132
9 lvORcs.group -3.2277 0.4210 -4.0528 -2.4026 0.0000
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10 smlves_NP_2 0.2725 0.4485 -0.6066 1.1515 0.5435
11 lvORcs_NP_2 -0.4528 0.2466 -0.9362 0.0305 0.0663
12 smlves_NP_3 1.7844 1.0613 -0.2958 3.8645 0.0927
13 lvORcs_NP_3 -0.1364 0.4309 -0.9809 0.7081 0.7516
14 theta1 -6.2336 0.1722 -6.5712 -5.8960 0.0000
15 theta2 -4.1911 0.1561 -4.4971 -3.8851 0.0000
16 theta3 3.9806 0.1896 3.6091 4.3522 0.0000

> summary(jmofit, coeff = "survival")
Survival coef exp(coef) SE(coef) 95%Lower 95%Upper p-values

1 group_1 -0.4630 0.6294 0.2434 -0.9400 0.0140 0.0571
2 mrkprior_1 0.5874 1.7993 0.1371 0.3187 0.8560 0.0000
3 smlves_1 -2.5570 0.0775 0.7223 -3.9728 -1.1413 0.0004
4 lvORcs_1 0.5992 1.8206 0.2485 0.1120 1.0863 0.0159
5 smlves.group_1 -0.4990 0.6072 1.4257 -3.2934 2.2955 0.7264
6 lvORcs.group_1 1.1675 3.2140 0.4692 0.2479 2.0871 0.0128
7 group_2 0.2087 1.2321 0.4834 -0.7388 1.1562 0.6659
8 mrkprior_2 0.0616 1.0636 0.4277 -0.7766 0.8998 0.8854
9 smlves_2 0.7758 2.1722 0.6217 -0.4428 1.9943 0.2121
10 lvORcs_2 -0.3256 0.7221 0.5120 -1.3291 0.6778 0.5247
11 smlves.group_2 -0.0437 0.9572 1.1573 -2.3120 2.2245 0.9699
12 lvORcs.group_2 0.0991 1.1042 1.0718 -2.0015 2.1998 0.9263

Analogous to jmcfit, linearTest() can be used to the global hypothesis for the longitudinal and
the survival submodels.

> linearTest(jmofit,coeff="beta")
Chisq df Pr(>|Chi|)

L*beta=Cb 1096.991 9 0.0000
> linearTest(jmofit,coeff="gamma")

Chisq df Pr(>|Chi|)
L*gamma=Cg 47.15038 12 0.0000
> linearTest(jmofit,coeff="alpha")

Chisq df Pr(>|Chi|)
L*alpha=Ca 8.776262 4 0.0669

According to the p-values, the hypothesis β1 = β2 = · · · = β9 = 0 is rejected, γ11 = γ12 = · · · =
γ16 = γ21 = γ22 = · · · = γ26 = 0 is rejected, but α11 = α12 = α21 = α22 = 0 is not rejected at the
significance level of 0.05.

Similarly, linearTest() can be used to test a linear hypothesis for non-proportional odds fixed
effects in the longitudinal submodel. For example, if we want to test H0 : α11 = α21, then we can
simply type:

La <- matrix(c(1, 0, -1, 0), ncol = length(alpha), nrow = 1)
> linearTest(jmofit, coeff = "alpha", La = La)

Chisq df Pr(>|Chi|)
L*alpha=Ca 1.929563 1 0.1648

It is seen that the hypothesis α11 = α21 is not rejected at level 0.05.

Likewise, jmo() function allows for categorical variables. Moreover, categorical variables are
allowed for setting up non-proportional odds covariates. As an illustration, here we consider the "sex"
and "race" variables and use them as two of the non-proportional odds covariates. Below is another
example:

#Create two categorical variables and add them into yread
ID <- cread$ID
set.seed(123)
sex <- sample(c("Female", "Male"), nrow(cread), replace = TRUE)
race <- sample(c("White", "Black", "Asian", "Hispanic"), nrow(cread), replace = TRUE)
cate_var <- data.frame(ID, sex, race)
if (require(dplyr)) {

yread <- dplyr::left_join(yread, cate_var, by = "ID")
}

res2 <- jmo(yread, cread, out = "Y",
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FE = c("group", "time3", "time6", "time12", "mrkprior",
"smlves", "lvORcs", "smlves.group", "lvORcs.group"), cate = c("race", "sex"),

RE = "intercept", NP = c("smlves", "lvORcs", "race", "sex"), ID = "ID",intcpt = 1,
quad.points = 20, max.iter = 10000, quiet = FALSE, do.trace = FALSE)

res2
Call:
jmo(long_data = yread, surv_data = cread, out = "Y",
FE = c("group", "time3", "time6", "time12", "mrkprior", "smlves", "lvORcs", "smlves.group", "lvORcs.group"),
RE = "intercept", NP = c("smlves", "lvORcs", "race", "sex"), ID = "ID", cate = c("race", "sex"),
intcpt = 1, quad.points = 20, max.iter = 10000, quiet = FALSE, do.trace = FALSE)

Data Summary:
Number of observations: 1906
Number of groups: 587

Proportion of competing risks:
Risk 1 : 32.88 %
Risk 2 : 4.26 %

Numerical intergration:
Method: Standard Guass-Hermite quadrature
Number of quadrature points: 20

Model Type: joint modeling of longitudinal ordinal and competing risks data

Model summary:
Longitudinal process: partial proportional odds model
Event process: cause-specific Cox proportional hazard model with unspecified baseline hazard

Loglikelihood: -2271.831

Longitudinal sub-model proportional odds: Y ~ group + time3 + time6 + time12 + mrkprior + smlves +
lvORcs + smlves.group + lvORcs.group + Black + Hispanic + White + Male
Longitudinal sub-model non-proportional odds: smlves_NP + lvORcs_NP + Black_NP + Hispanic_NP +
White_NP + Male_NP

Estimate Std. Error 95% CI Pr(>|Z|)
Longitudinal:
Fixed effects:
proportional odds:
group 1.1430 0.1989 ( 0.7532, 1.5328) 0.0000
time3 2.4607 0.1963 ( 2.0758, 2.8455) 0.0000
time6 2.6310 0.1986 ( 2.2416, 3.0203) 0.0000
time12 2.8717 0.2111 ( 2.4579, 3.2854) 0.0000
mrkprior -2.3329 0.1855 (-2.6965,-1.9693) 0.0000
smlves 3.9941 0.4413 ( 3.1292, 4.8589) 0.0000
lvORcs -0.9469 0.3219 (-1.5778,-0.3160) 0.0033
smlves.group -4.3940 0.7560 (-5.8758,-2.9123) 0.0000
lvORcs.group -3.6954 0.4768 (-4.6299,-2.7608) 0.0000
Black 0.8235 0.3162 ( 0.2038, 1.4433) 0.0092
Hispanic -0.0218 0.3289 (-0.6665, 0.6229) 0.9471
White 0.0523 0.3457 (-0.6253, 0.7299) 0.8797
Male -0.3528 0.2323 (-0.8080, 0.1025) 0.1288
Non-proportional odds:
smlves_NP_2 0.3314 0.4310 (-0.5133, 1.1761) 0.4419
lvORcs_NP_2 -0.3148 0.2696 (-0.8432, 0.2136) 0.2429
Black_NP_2 0.3781 0.2936 (-0.1973, 0.9535) 0.1978
Hispanic_NP_2 -0.0303 0.3176 (-0.6528, 0.5923) 0.9241
White_NP_2 -0.3802 0.3034 (-0.9748, 0.2144) 0.2102
Male_NP_2 0.0531 0.2221 (-0.3822, 0.4884) 0.8110
smlves_NP_3 2.2743 1.0748 ( 0.1677, 4.3809) 0.0343
lvORcs_NP_3 0.0033 0.4632 (-0.9045, 0.9111) 0.9943
Black_NP_3 -0.2274 0.5419 (-1.2896, 0.8349) 0.6748
Hispanic_NP_3 -0.5070 0.5087 (-1.5040, 0.4901) 0.3190
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White_NP_3 0.4205 0.5722 (-0.7010, 1.5420) 0.4624
Male_NP_3 -0.8489 0.3911 (-1.6155,-0.0824) 0.0300
Logit-specific intercepts:
theta1 -6.0565 0.2868 (-6.6186,-5.4945) 0.0000
theta2 -4.0881 0.2379 (-4.5545,-3.6217) 0.0000
theta3 4.1340 0.3437 ( 3.4602, 4.8077) 0.0000

Survival sub-model fixed effects: Surv(surv, comprisk) ~ group + mrkprior + smlves + lvORcs +
smlves.group + lvORcs.group

Estimate Std. Error 95% CI Pr(>|Z|)
Survival:
Fixed effects:
group_1 -0.2815 0.2545 (-0.7802, 0.2173) 0.2687
mrkprior_1 0.6404 0.1549 ( 0.3367, 0.9440) 0.0000
smlves_1 -1.8107 0.8252 (-3.4280,-0.1934) 0.0282
lvORcs_1 0.4894 0.2450 ( 0.0092, 0.9696) 0.0458
smlves.group_1 1.2608 1.6390 (-1.9517, 4.4733) 0.4417
lvORcs.group_1 1.4503 0.4901 ( 0.4898, 2.4108) 0.0031
group_2 0.2073 0.4831 (-0.7396, 1.1542) 0.6678
mrkprior_2 0.0617 0.4343 (-0.7896, 0.9129) 0.8871
smlves_2 0.7871 0.6026 (-0.3940, 1.9683) 0.1915
lvORcs_2 -0.3266 0.5085 (-1.3233, 0.6701) 0.5207
smlves.group_2 -0.0374 1.1600 (-2.3110, 2.2362) 0.9743
lvORcs.group_2 0.0952 1.0591 (-1.9807, 2.1711) 0.9284

Association prameter:
v2 0.0036 0.1577 (-0.3056, 0.3128) 0.9818

Random effects:
sigma_b11 49.0241 5.0606 ( 39.1053, 58.9430) 0.0000
sigma_u 6.3475 1.5884 ( 3.2343, 9.4607) 0.0001

Covariance:
sigma_b1u -17.6331 0.7415 (-19.0864,-16.1797) 0.0000

coef(res2, coeff = "beta")
group time3 time6 time12 mrkprior smlves lvORcs

1.14302264 2.46065107 2.63095850 2.87165209 -2.33288371 3.99407491 -0.94689649
smlves.group lvORcs.group Black Hispanic White Male
-4.39403193 -3.69535020 0.82353645 -0.02181286 0.05232005 -0.35276916

Older versions of jmc() and jmo()

In the previous versions of JMcmprsk, both the previous jmc() and jmo() functions require the
longitudinal input data "yfile" to be in a specific format regarding the order of the outcome variable
and the random and fixed effects covariates. It also requires users to create an additional "mfile" for
the longitudinal data. At the suggestions of the reviewers, in the most recent version, we focus and
develop user-friendly versions of these functions.

However, for both package consistency and user’s convenience, we still keep older versions of
these functions in the package, and rename these functions to jmc_0() and jmo_0(), respectively.
Supporting functions of jmo() and jmc(), such as coef(), summary(), linearTest(), also apply to
jmc_0() and jmo_0() functions.

Here, we show the usage of jmc_0() with some simulated data and the "lung" data used in
presenting jmc() functions.

If the data are provided as files, the function jmc_0() has the following usage:

library(JMcmprsk)
yfile=system.file("extdata", "jmcsimy.txt", package = "JMcmprsk")
cfile=system.file("extdata", "jmcsimc.txt", package = "JMcmprsk")
mfile=system.file("extdata", "jmcsimm.txt", package = "JMcmprsk")
jmc_0fit = jmc_0(p=4, yfile, cfile, mfile, point=20, do.trace = FALSE)

with p the dimension of fixed effects (including the intercept) in yfile, the option point is the
number of points used to approximate the integral in the E-step, default is 20, and do.trace is used to
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control whether the program prints the iteration details. Additionally, the option type_file controls
the type of data inputs.

If data frames or matrices are provided as inputs, we set the above type_file option as type_file
= FALSE in the jmc_0() function:

library(JMcmprsk)
data(lung)
lungY <- lung[, c(2:11)]
lungC <- unique(lung[, c(1, 12, 13, 6:10)])
lungC <- lungC[, -1]
## return a vector file with the number of repeated measurements as lungM
lungM <- data.frame(table(lung$ID))
lungM <- as.data.frame(lungM[, 2])
jmc_0fit2=jmc_0(p=8, lungY, lungC, lungM, point=20, do.trace = FALSE, type_file = FALSE)

Computational Complexity

To understand the computational complexity of both jmc() and jmo() models, we carried out a variety
of simulations with different sample size and different proportions of events. However, there was no
clear trend observed between the proportions of events and running times. Hence, only one event
distribution with different sample sizes are given here for illustration purpose. According to Figures 1
and 2, we can easily see that the run time grows much faster as sample size increases, which implies
that the computational complexity does not follow a linear order. In this case, it will limit joint models
to handling large and even moderate sample size data. To make the joint modeling more scalable, it is
necessary to carry out a novel algorithm to reduce its computational complexity to a linear order.

Figure 1: Run time comparison under different sample sizes for jmc() function (from 500 to 5000).
Data setup: p = 4, nq = 6, 10.4% censoring, 51.4% risk 1, and 38.2% risk 2. The run time under each
sample size was based on one random sample.

Data Simulation

A simulation can generate datasets with exact ground truth for evaluation. Hence, the simulation of
longitudinal and survival data with multiple failures associated with random effects is an important
measure to assess the performance of joint modeling approaches dealing with competing risks. In
JMcmprsk, simulation tools are based on the data models proposed in Elashoff et al. (2008) and Li et al.
(2010), which can be used for testing joint models with continuous and ordinal longitudinal outcomes,
respectively.

The main function for simulation data continuous longitudinal outcomes and survival data with
multiple event outcomes is called SimDataC(), which has the following usage:

SimDataC(k_val, p1_val, p1a_val, p2_val, g_val, truebeta, truegamma,
randeffect, yfn, cfn, mfn)

We briefly explain some of the important options. k_val denotes the number of subjects in study;
p1_val and p1a_val denote the dimension of fixed effects and random effects in longitudinal mea-
surements, respectively; p2_val and g_val denotes the dimension of fixed effects and number to
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Figure 2: Run time comparison under different sample sizes for jmo() function (from 500 to 5000).
Data setup: p = 4, nq = 10, 22.4% censoring, 57.2% risk 1, and 20.4% risk 2. The run time under each
sample size was based on one random sample.

competing risks in survival data; truebeta and truegamma represent the true values of fixe effects in
the longitudinal and the survival submodels, respectively. randeffect sets the true values for random
effects in longitudinal and competing risks parts, namely in the order of σ,σb,ν2, and σu.

The following example generates the datasets used in simulation study in Elashoff et al. (2008):

require(JMcmprsk)
set.seed(123)
yfn="jmcsimy1.txt";
cfn="jmcsimc1.txt";
mfn="jmcsimm1.txt";
k_val=200;p1_val=4;p1a_val=1; p2_val=2;g_val=2;
truebeta=c(10,-1,1.5,0.6);truegamma=c(0.8,-1,0.5,-1); randeffect=c(5,0.5,0.5,0.5);
#writing files
SimDataC(k_val, p1_val, p1a_val, p2_val, g_val,truebeta,

truegamma, randeffect, yfn, cfn, mfn)

The output of function SimDataC() contains additional censoring rate information and newly generated
files names for further usage.

$`censoring_rate`
[1] 0.21
$rate1
[1] 0.45
$rate2
[1] 0.34
$yfn
[1] "jmcsimy1.txt"
$cfn
[1] "jmcsimc1.txt"
$mfn
[1] "jmcsimm1.txt"

The main function for data simulation with ordinal longitudinal outcomes and survival data with
multiple event outcomes is called SimDataO(), the usage of which is very similar to SimDataC():

SimDataO(k_val, p1_val, p1a_val, p2_val, g_val, truebeta, truetheta,
truegamma, randeffect, yfn, cfn, mfn)

All options have the same meanings as in SimDataC(), while SimDataO() has one more option
truetheta, which sets the true values of the non-proportional odds longitudinal coefficients sub-
set.

The following example generates the datasets used in simulation study in Li et al. (2010):

require(JMcmprsk)
set.seed(123)
yfn="jmosimy1.txt";
cfn="jmosimc1.txt";
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mfn="jmosimm1.txt";
k_val=500;p1_val=3;p1a_val=1; p2_val=2;g_val=2;
truebeta=c(-1,1.5,0.8);truetheta=c(-0.5,1);truegamma=c(0.8,-1,0.5,-1); randeffect=c(1,0.5,0.5);
#writing files
SimDataO(k_val, p1_val, p1a_val, p2_val, g_val,

truebeta, truetheta, truegamma, randeffect, yfn, cfn, mfn)

The output of the above function is

$`censoring_rate`
[1] 0.218
$rate1
[1] 0.414
$rate2
[1] 0.368
$yfn
[1] "jmosimy1.txt"
$cfn
[1] "jmosimc1.txt"
$mfn
[1] "jmosimm1.txt"

4 Conclusions and Future Work

In this paper, we have illustrated the capabilities of package JMcmprsk for fitting joint models of time-
to-event data with competing risks for two types of longitudinal data. We also present simulation tools
to generate joint model datasets under different settings. Several extensions of JMcmprsk package are
planned to further expand on what is currently available. First, as the integral over the random effects
becomes computationally burdensome in the case of high dimensionality, Laplace approximations or
other Gauss-Hermite quadrature rules would be applied to the E-M step to speed up the computation
procedure. Second, with the increasing need for predictive tools for personalized medicine, dynamic
predictions for the aforementioned joint models will be added. Third, other new joint models such as
joint analysis for bivariate longitudinal ordinal outcomes will be included.
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