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Kuhn-Tucker and Multiple
Discrete-Continuous Extreme Value Model
Estimation and Simulation in R: The
rmdcev Package
by Patrick Lloyd-Smith

Abstract This paper introduces the package rmdcev in R for estimation and simulation of Kuhn-
Tucker demand models with individual heterogeneity. The models supported by rmdcev are the
multiple-discrete continuous extreme value (MDCEV) model and Kuhn-Tucker specification common
in the environmental economics literature on recreation demand. Latent class and random parameters
specifications can be implemented and the models are fit using maximum likelihood estimation or
Bayesian estimation. The rmdcev package also implements demand forecasting and welfare calculation
for policy simulation. The purpose of this paper is to describe the model estimation and simulation
framework and to demonstrate the functionalities of rmdcev using real datasets.

1 Introduction

Individual choice contexts are often characterized by both extensive (i.e. what alternative to choose)
and intensive (i.e. how much of an alternative to consume) margins (Bhat, 2008). These multiple
discrete-continuous (MDC) choice situations are pervasive, arising in transportation, marketing, health,
and decisions regarding environmental resources (Bhat and Pinjari, 2014). The Kuhn-Tucker (KT)
modelling framework is often employed to analyze these MDC situations and substantial progress
has been made in improving these econometric modeling structures (von Haefen and Phaneuf, 2005;
Bhat and Pinjari, 2014). Despite the large potential applications for KT models, there remains a gap
between this potential and actual examples of these models being used. One of the reasons cited for
the lack of widespread use of KT models is that estimating and simulating these models is challenging.
The explanations of methods used to work with these models are spread across many papers and few
user friendly software tools are available. The purpose of this paper is to present a unified account for
KT estimation and simulation alongside computer code for easy and efficient implementation.

This paper presents an overview of the R package rmdcev which can estimate and simulate KT
demand models with discrete or continuous unobserved individual heterogeneity.1 The common
starting point for all KT models is the individual’s constrained optimization problem and exploiting
the resulting KT first order conditions in estimation. The most popular empirical KT modelling
framework is the multiple-discrete continuous extreme value (MDCEV) model as first introduced by
Bhat (2008). A separate stream of literature in the environmental economics on recreation demand
has developed a closely related set of models and use the term KT to describe the models. In this
paper, we use KT to describe the general modelling framework, MDCEV to describe the Bhat (2008)
specifications, and KT-EE to describe the environmental economics literature KT specification (von
Haefen et al., 2004). One of the main differences between the MDCEV and KT-EE frameworks is how
alternative-specific attributes enter the utility function, a point we describe in the paper.

Incorporating preference heterogeneity has been an important advancement in choice modeling.
Both the MDCEV and KT-EE specifications can be estimated to incorporate unobserved preference
heterogeneity by assuming continuous distributions using random parameters or using a latent class
(LC) specification assuming a discrete distribution where people can be divided into distinct segments.
The models in rmdcev can be fit using maximum likelihood estimation or Bayesian estimation. Besides
estimation, the rmdcev package also implements demand forecasting and welfare calculation for policy
simulation. The two main functions in the rmdcev are mdcev used to estimate all model specifications
and mdcev.sim used to simulate both demand and welfare implications. rmdcev is available from
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=rmdcev
as well as from GitHub at https://github.com/plloydsmith/rmdcev.

While there are several R packages available to estimate discrete choice data such as apollo (Hess
and Palma, 2019), mlogit (Croissant, 2019), and gmnl (Sarrias and Daziano, 2017)2, there are limited
options for users interested in estimating and simulating KT models. In addition to rmdcev, the

1This paper uses version 1.2.4 of the rmdcev package.
2Sarrias and Daziano (2017) provides a good overview of the different R packages available to estimate discrete

choice models
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apollo package developed by Stephane Hess and David Palma at the Choice Modelling Centre in
Leeds provides a flexible modelling platform for estimating MDCEV models and simulating demand
behaviour (Hess and Palma, 2019). apollo estimates a full suite of choice models including discrete
choice models and is thus more comprehensive and flexible than rmdcev. The main advantages for KT
modeling in using the rmdcev is that it 1) provides functions for calculating welfare implications of
policy scenarios, 2) allows the estimation and simulation of the KT formulation used in environmental
economics (von Haefen and Phaneuf, 2005), 3) uses the Stan program (Carpenter et al., 2017) for
Bayesian estimation and thus the user has access to specialized postestimation commands, and 4) is
primarily coded in C++ and thus around 20 times faster than apollo. The main advantages of apollo
compared to rmdcev is that 1) it can estimate model specifications without an outside good whereas
rmdcev only estimates models with an outside good, 2) users have more control over particular
parameter specifications such as which parameters are fixed at their starting values and which are
allowed to be random parameters, and 3) it allows users to estimate the multiple discrete continuous
nested extreme value model and LC-random parameter MDCEV specifications.

The paper first introduces the conceptual framework underlying KT models and the connection to
economic theory and welfare measures. Section 2 also describes the various empirical specifications
for KT models. Section 3 introduces the rmdcev package focusing first on estimation before moving
on to discuss how to conduct welfare and demand simulations. Section 4 provides conclusions of the
paper.

2 Models

Conceptual framework

This section describes the underlying conceptual framework for KT models. Each individual i max-
imizes utility through the choice of the numeraire or outside good (xi1) and the non-numeraire
alternatives (xik) subject to a monetary or non-monetary budget constraint. We assume there is a
numeraire good (i.e. essential Hicksian composite good) which is always consumed and has a price of
one. The individual’s maximization problem is

max
xik ,xi1

U(xik, xi1)

s.t. yi =
K

∑
k=2

pikxik + xi1, xik ≥ 0, k = 2, ..., K,
(1)

where xik is the consumption level for alternative k, xi1 is consumption of the numeraire, yi is any
arbitrary budget amount (e.g. annual income), and pik is the unit price of alternative k.

The resulting first-order KT conditions that implicitly define the solution to the optimal consump-
tion bundles of xik and xi1 are

Uxik

Uxi1

≤ pik, k = 1, ....K,

xik

[
Uxik

Uxi1

− pik

]
= 0, k = 1, ....K.

(2)

For alternatives with positive consumption levels, the marginal rate of substitution between these
alternatives and the numeraire good is equal to the price of the alternative. For unconsumed alterna-
tives, the marginal rate of substitution between these alternatives and the numeraire good is less than
the price of the alternatives. For the rest of the paper, we drop the subscript i for notational simplicity.

These first-order conditions can be used to derive Marshallian and Hicksian demands and welfare
measures (von Haefen and Phaneuf, 2005). We assume that alternatives have non-price attribute qk
and the vector of k prices and attributes is denoted as p and q. The Hicksian compensating surplus
(CSH) for a change in price and quality from baseline levels p0 and q0 to new ‘policy’ levels p1 and q1

is defined explicitly using an expenditure function

CSH = y − e(p1, q1, Ū, θ, ε), (3)

where θ is the vector of structural parameters (ψk, αk, γk), ε is a vector or matrix of unobserved
heterogeneity, and Ū = V(p0, q0, y, θ, ε) and represents baseline utility.
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Multiple discrete-continuous extreme value model (MDCEV)

The rmdcev package implements the random utility specification of the MDCEV as introduced by
Bhat (2008). The model specifications included in rmdcev always assume an outside good (i.e. the
numeraire good that is always consumed by every individual). The general utility function is specified
as

U(xk, x1) =
K

∑
k=2

γk
αk

ψk

[(
xk
γk

+ 1
)αk

− 1
]
+

ψ1
α1

xα1
1 , (4)

where γk > 0, ψk > 0 and αk ≤ 1 for all k are required for this specification to be consistent with the
properties of a utility function (Bhat, 2008). Bhat (2008) provides a detailed overview of the parameter
interpretation and in brief

• The ψk parameters represent the marginal utility of consuming alternative k at the point of zero
consumption (i.e. baseline marginal utility).

• The γk parameters are translation parameters that allow for corner solutions (i.e. zero consump-
tion levels for alternatives) and also influence satiation. The lower the value of γk, the greater
the satiation effect in consuming xk.

• The αk parameters control the rate of diminishing marginal utility of additional consumption. If
αk equal to one, then there is no satiation effects (i.e. constant marginal utility).

The ‘random utility’ element of the model is introduced into the baseline utility through a random
error term as

ψk = ψ(zk, εk) = exp(β′zk + εk), (5)

where zk is a set of variables that can include alternative-specific attributes and individual-specific
characteristics, and εk is an error term that allows for the utility function to be random over the popu-
lation. We assume an extreme value distribution that is independently distributed across alternatives
for εk with an associated scale parameter of σ. For identification, we specify ψ1 = eε1 .

To ensure the estimated utility function corresponds to economic theory we specify γk = exp(γ∗
k )

such that γk > 0 and αk = exp(α∗k )/(1 + exp(α∗k )) such that 0 < αk < 1. γ∗
k and α∗k are estimated

in the package and γk and αk are reported to the user. Similarly, we specify σ = exp(σ∗). Weak
complementarity, which is required for deriving unique welfare measures (Mäler, 1974), is imposed in
this specification by adding and subtracting one in the non-numeraire part of the utility function.

While the most general form of the MDCEV model includes ψk, γk, and αk parameters for each
alternative, Bhat (2008) discusses the identification concerns regarding estimating separate γk and αk
parameters for each non-numeraire alternative. Typically only a subset of these parameters can be
identified and there are four common utility function specifications:

1. α-profile: set all γk parameters to 1.

U(xk, x1) =
K

∑
k=2

1
αk

exp(β′zk + εk)
[
(xk + 1)αk − 1

]
+

exp(ε1)

α1
xα1

1 . (6)

2. γ-profile: set all non-numeraire αk parameters to 0.

U(xk, x1) =
K

∑
k=2

γkexp(β′zk + εk) ln
(

xk
γk

+ 1
)
+

exp(ε1)

α1
xα1

1 . (7)

3. hybrid-profile: set all αk = α1 = α.

U(xk, x1) =
K

∑
k=2

γk
α

exp(β′zk + εk)

[(
xk
γk

+ 1
)α

− 1
]
+

exp(ε1)

α
xα

1 . (8)

4. hybrid0-profile: set all αk = α1 = 0.

U(xk, x1) =
K

∑
k=2

γkexp(β′zk + εk) ln
(

xk
γk

+ 1
)
+ exp(ε1) ln(x1). (9)

The likelihood function representing the model probability of the consumption pattern where M
alternatives are chosen can be expressed as Bhat (2008)

P(x∗1 , x∗2 ...x∗M, 0, ..., 0) =
1

σM−1

(
M

∏
m=1

cm

)(
M

∑
m=1

pm

cm

) ∏M
m=1 eVm/σ(

∑J
k=1 eVk/σ

)M

 (M − 1)!, (10)
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where σ is the scale parameter and cm = 1−αm
xm+γm

. The V expressions depend on what model specifica-
tion is used:

1. α-profile: Vk = β′zk + (αk − 1) ln (xk + 1)− ln (pk) for k ≥ 2, and V1 = (α1 − 1) ln(x1).

2. γ-profile: Vk = β′zk − ln
(

xk
γk

+ 1
)
− ln (pk) for k ≥ 2, and V1 = (α1 − 1) ln(x1).

3. hybrid-profile: Vk = β′zk + (α − 1) ln
(

xk
γk

+ 1
)
− ln (pk) for k ≥ 2, and V1 = (α − 1) ln(x1).

4. hybrid0-profile: Vk = β′zk − ln
(

xk
γk

+ 1
)
− ln (pk) for k ≥ 2, and V1 = − ln(x1).

Kuhn-Tucker model specifications in Environmental Economics (KT-EE)

The rmdcev package also implements the KT-EE specification (von Haefen and Phaneuf, 2005). The
utility function in this specification is similar to the γ-profile of the MDCEV specification introduced
above and is

U(xk, x1) =
K

∑
k=2

ψk ln (ϕkxk + γk) +
1
α1

xα1
1 , (11)

where ϕk > 0.3

An important difference between this KT formulation and the MDCEV models is the way weak
complementary is imposed. In this KT formulation, weak complementarity is imposed by only
including alternative-specific attributes in the ϕk parameter and not the ψk parameter.4

In this formulation, the estimating first-order conditions can be written as

εk ≤ 1
σ

(
−β′s + ln(

pk
ϕk

) + ln(ϕkxk + γk) + (α1 − 1) ln(y − pk ∗ xk)

)
, ∀k, (12)

and the resulting likelihood function as

P(x) = |J|∏
k
[exp(−gk(.))/σ]1(xk>0) exp[−exp(−gk(.))], (13)

where |J| is the determinant of the Jacobian of transformation, gk(.) is the right hand side of Equa-
tion (12), and 1(xk > 0) is equal to one if xk is positive and equal to zero if xk is zero (von Haefen and
Phaneuf, 2005). In previous implementations, the KT formulation used the computationally intensive
numerical gradient approach to the calculation of the determinant of the Jacobian of transformation
(von Haefen and Phaneuf, 2005).

The rmdcev package uses the compact structure of the determinant of the Jacobian as derived by
Bhat (2008) and defined as

|J| = (1 − α1)

x1

[
∏
m

ϕm

ϕm ∗ xm + γm

] [
x1(1 − α1) + ∑

m

(ϕm ∗ xm + γm) ∗ pm

ϕm

]
, (14)

where m denotes non-numeraire alternatives with positive consumption levels. Using this analyti-
cal gradient approach has the benefit of substantially speeding up estimation by around 70% relative
to the numerical gradient approach.

In both the MDCEV and KT-EE specifications described above, the parameters (β, αk, γk, ϕk, σ) are
structural parameters that are assumed to be equal across the population which simplifies estimation.
However, these fixed parameter specification is quite restrictive as they can only incorporate preference
heterogeneity through interaction terms with observed individual characteristics. Without these
interaction terms, the fixed specifications impose the assumption that all individuals have the same
tastes for alternatives (i.e. preference homogeneity). This assumption is relaxed in the next two
specifications which are able to accommodate both observed and unobserved preference heterogeneity.

Latent class (LC-KT) models

The latent class version of the KT model assumes that an individual belongs to a finite mixture of S
segments each indexed by s (s = 1, 2, ...S) (Sobhani et al., 2013; Kuriyama et al., 2010). Within each

3The environmental economics literature uses slightly different notation as typically θ is used for γ, µ is used
for σ, and ρ for α1. We change the notation slightly for consistency with the MDCEV model specifications.

4See Herriges et al. (2004) for more discussion on this point.
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segment, the LC specification assumes preference homogeneity. We do not observe which segment an
individual belongs to but we can attribute a probability πis that individual i is a member of segment s.
We impose that 0 ≤ πis ≤ 1 and ∑S

s=1 πis = 1 through the use of the logit link function as

πis =
exp(δ′swi)

∑S
s=1 exp(δ′swi)

, (15)

where wi is a vector of individual characteristics and δs is a vector of coefficients to be estimated. The
δs coefficients determine how the individual characteristics affect the membership of individual i in
segment s. For identification, the δ1 coefficients for the first segment are set to zero.

The likelihood function can be written as

P = ∏
i

πisPis, (16)

where Pis has the same form as Equations (10) and Equations (13) but is now class specific.

Random parameters (RP-LC) models

The random parameter specification of the LC models assumes that the structural parameters θ =
(β, αk, γk) are not necessarily fixed but have an assumed distribution (Bhat, 2008). In rmdcev, parame-
ters are distributed multivariate normal with a mean θ̄ and variance covariance matrix ∑θ (von Haefen
and Phaneuf, 2005). This structure allows for continuous preference heterogeneity and accommodates
more flexible correlation patterns between alternatives in a similar fashion to the mixed logit model in
discrete choice models. The σ scale parameter is always assumed to be a fixed parameter.

The most flexible model specification is to estimate the full variance covariance matrix and if there
are Q parameters in θ then there are Q(Q + 1)/2 unique variance covariance parameters to estimate
in the correlated RP-MDCEV specification. An alternative is to assume the off-diagonal parameters
are zero and estimate uncorrelated random parameters by estimating the Q diagonal elements of ∑θ .
If all elements of ∑θ are assumed to be zero, the model collapses to the fixed KT structures.

A note on Bayesian versus classical maximum likelihood estimation

The KT model without unobserved heterogeneity can be estimated using Bayesian or classical max-
imum likelihood techniques. The LC-KT model can only be estimated using classical maximum
likelihood techniques as Bayesian approaches are challenged by the ‘label switching’ problem (Jasra
et al., 2005). The RP-KT models can only be estimated using Bayesian techniques as random parameter
models require simulated maximum likelihood estimators and these are not implemented in rmdcev
at this time.

While there are philosophical differences between Bayesian and classical maximum likelihood
techniques to estimating models, the Bernstein-von Mises theorem suggests that the Bayesian posterior
distribution are asymptotically equivalent to maximum likelihood estimates if the data generating
process has been correctly specified (Train, 2009).

3 The rmdcev package

Data format

The rmdcev uses mdcev.data function for handling multiple discrete-continuous data while ensuring
the data is in the correct format and is suitable for estimation. The rmdcev package accepts data in
“long” format (i.e. one row per available non-numeraire alternative for each individual). There is no
row for the numeraire (i.e. outside) good. If there are I individuals and J non-numeraire alternatives,
then the data frame should have IxJ rows.

To illustrate the suitable form of the data, we can load the recreation data included with the rmdcev
package. This data is from the Canadian Nature Survey and includes choices for number of days
spent recreating in 17 different outdoor activities for 2,000 people (Federal, Provincial, and Territorial
Governments of Canada, 2014).

data(data_rec, package = "rmdcev")

Each recreation activity is characterized by the daily costs of participation for each individual. In
addition to the recreation behaviour and prices, the data includes information on three individual
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characteristics: university (a dummy variable if the person has completed a university degree),
ageindex (a person’s age divided by the average age in sample), and urban (a dummy variable if a
person lives in an urban area). Additional details on the data and price construction are provided in
Lloyd-Smith (forthcoming). We can summarize the average consumption and price levels for each
alternative as:

aggregate(cbind(quant, price) ~ alt, data = data_rec, FUN = mean )

#> alt quant price
#> 1 beach 6.5375 53.18359
#> 2 birding 14.3835 44.01734
#> 3 camping 2.5125 61.38326
#> 4 cycling 9.4700 45.99470
#> 5 fish 3.3435 86.22383
#> 6 garden 21.5710 38.28073
#> 7 golf 4.0260 134.10374
#> 8 hiking 41.4150 37.53204
#> 9 hunt_birds 0.4855 111.00176
#> 10 hunt_large 0.9480 184.46812
#> 11 hunt_trap 0.6290 95.33228
#> 12 hunt_waterfowl 0.2085 159.66605
#> 13 motor_land 3.7040 123.10169
#> 14 motor_water 2.8390 139.63845
#> 15 photo 8.6415 67.13733
#> 16 ski_cross 2.6450 32.65243
#> 17 ski_down 1.2065 151.01398

The data can be transformed into the structure for MDCEV estimation using the mdcev.data
function:

data_mdcev <- mdcev.data(data_rec,
id.var = "id",
alt.var = "alt",
choice = "quant")

#> Sorting data by id.var then alt...
#> Checking data...
#> Data is good

The id.var argument indicates what variable uniquely identifies individuals in the data set,
alt.var indicates the variable that identifies the non-numeraire alternatives, and choice indicates
the level of consumption made by the individuals. Two other optional arguments of mdcev.data are
price and income indicating the individual-specific price levels for each alternative, and the income
level for each individual. These two arguments only need to be explicitly specified if they are not
labeled price and income. Alternative-specific attributes and individual-specific characteristics can be
included as additional columns and do not need to be specified in mdcev.data.

The mdcev.data function also checks to ensure the data has the necessary variables, and that all
individuals spend positive amounts on the numeraire good. If an individual does not have positive
expenditures on the numeraire good, an error message is given.

KT model estimation

A general overview of mdcev

The rmdcev

All the various KT model specifications are estimated using the mdcev function.

args(mdcev)

#> function (formula = NULL, data, weights = NULL, model = c("alpha",
#> "gamma", "hybrid", "hybrid0", "kt_ee"), n_classes = 1, fixed_scale1 = 0,
#> single_scale = 0, trunc_data = 0, psi_ascs = NULL, gamma_ascs = 1,
#> seed = "123", max_iterations = 2000, jacobian_analytical_grad = 1,
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#> initial.parameters = "random", hessian = TRUE, algorithm = c("MLE",
#> "Bayes"), flat_priors = NULL, print_iterations = TRUE,
#> prior_psi_sd = 10, prior_gamma_sd = 10, prior_phi_sd = 10,
#> prior_alpha_shape = 1, prior_scale_sd = 1, prior_delta_sd = 10,
#> gamma_nonrandom = 0, alpha_nonrandom = 0, std_errors = "deltamethod",
#> n_draws = 50, keep_loglik = 0, random_parameters = "fixed",
#> show_stan_warnings = TRUE, n_iterations = 200, n_chains = 4,
#> n_cores = 4, max_tree_depth = 10, adapt_delta = 0.8, lkj_shape_prior = 4,
#> ...)

The main arguments are briefly explained below:

• formula: Formula for the model to be estimated as described in the next section.
• data The (IxJ) data to be used in estimation as described above.
• weights An optional vector of length I of sampling or frequency weights.
• model A string indicating which model specification to estimate. The four options are presented

below:

– “alpha”: α-profile with all γk parameters fixed equal to 1 (Equation (6)).
– “gamma”: γ-profile with one estimated α1 and all non-numeraire αk parameters equal to 0

(Equation (7)).
– “hybrid”: hybrid-profile with a single estimated α parameter (i.e. α1 = αk = α) (Equation

(8)).
– “hybrid0”: hybrid-profile with all α parameters fixed equal to 1e-3 (Equation (8)).
– “kt_ee”: Environmental economics version of KT model (Equation (11)).

• n_classes The number of latent classes. Note that the LC model is automatically estimated as
long as the prespecified number of classes is set greater than 1.

• gamma_ascs Indicator to include alternative-specific gammas parameters.
• psi_ascs Whether to include alternative-specific psi parameters. The first alternative is used as

the reference category. Only specify to 1 for MDCEV models.
• fixed_scale1 Whether to fix the scale parameter at 1.
• trunc_data Whether the estimation should be adjusted for truncation of non-numeraire alterna-

tives. This option is useful if the data only includes individuals with positive non-numeraire
consumption levels such as recreation data collected on-site. To account for the truncation of
consumption, the likelihood is normalized by one minus the likelihood of observing zero con-
sumption for all non-numeraire alternatives (i.e. likelihood of positive consumption) following
Englin, Boxall and Watson (1998) and von Haefen (2003).

• seed Random seed.
• algorithm Either “Bayes” for Bayesian estimation or “MLE” for maximum likelihood estimation.

The MLE algorithm uses the Limited-memory BFGS which approximates the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm but uses less computer memory.

• flat_priors indicator if completely uninformative priors should be specified. Defaults to 1 if
MLE used and 0 if Bayes used. If using MLE and set flat_priors = 0, penalized MLE is used and
the optimizing objective is augmented with the priors.

• print_iterations Whether to print intermediate iteration information or not.
• std_errors Compute standard errors using the delta method (“deltamethod”) or multivariate

normal draws (“mvn”). The default is “deltamethod”. Note that mvn parameter draws should
be used to incorporate parameter uncertainty for demand and welfare simulation. For maximum
likelihood estimation only.

• n_draws The number of multivariate normal draws for standard error calculations if “mvn” is
specified.

• initial.parameters The default for fixed and random parameter specifications is to use ran-
dom starting values (except for the scale parameter with a starting value set to 1). For LC
models, the default is to use slightly adjusted MLE point estimates from the single class model.
Initial parameter values should be included in a named list. For example, the LC “hybrid”
specification initial parameters can be specified as:

initial.parameters = list(psi = array(0, dim = c(K, num_psi)),
gamma = array(1, dim = c(K, num_alt)),
alpha = array(0.5, dim = c(K, 1)),
scale = array(1, dim = c(K)))

where K is the number of classes (i.e. K = 1 is used for single class models), num_psi is number
of psi parameters, and num_alt is number of non-numeraire alternatives.
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Formula format

The formula is used to incorporate alternative-specific variables and individual-specific characteristics
into the ψk parameters, the membership equation of the LC-KT models, and ϕk parameters for the
KT-EE specification. By default, alternative-specific constants (ASCs) for all non-numeraire alternatives
are included in the ψk and γk parameters. For the ψk, the first ASC is fixed at 0 due to identification
concerns. They can be omitted using the psi_ascs = 0 and gamma_ascs = 0 arguments. Furthermore,
the γk, αk, and σ parameters cannot include alternative- or individual specific variables besides ASCs.

The formula is divided in three parts, separated by the symbol | and is based on the R package
Formula (Zeileis and Croissant, 2010). The first part is reserved for the zk variables in ψk as in
Equation (5), excluding ASCs. These can include alternative-specific and individual-specific variables.
Interaction terms between variables can be included using the normal Formula syntax of z1:z2. This
is particularly useful for creating interaction terms to incorporate observed preference heterogeneity
for alternative-specific variables and individual-specific characteristics.

For a model with only ASCs in ψk, the formula can be specified as

f1 = ~ 0

We can add individual-specific variables to the ψk parameters as follows

f2 = ~ university + ageindex

Alternative-specific variables such as z1 and z2 can be included in the same way such as

f2 = ~ z1 + z2

The second part corresponds to individual-specific characteristics that enter in the probability
assignment in models with latent classes. The formula will automatically include a constant in the
membership equation but this can be omitted if -1 is used in the formula. For example, a LC model
with no alternative-specific variables in the psik parameters and university, ageindex and a constant
determine the class membership can be specified as

f3 = ~ 0 | university + ageindex

The third part is reserved for the qk variables included in the ϕk parameters in the KT-EE model
specification ((Equation 11)). For example, if there was an alternative-specific variable named ‘q1’, it
can be included as below

f4 = ~ 0 | 0 | q1

Estimating KT models using maximum likelihood techniques

We estimate a KT model by first calling mdcev.data on the Recreation data. For these examples we are
going to use a subset of 200 individuals from the data.

data_model <- mdcev.data(data_rec, subset = id <= 200,
id.var = "id",
alt.var = "alt",
choice = "quant")

#> Sorting data by id.var then alt...
#> Checking data...
#> Data is good

We might think that older people prefer gardening to other activities and so we can include an
interaction term between the activity garden and the variable ageindex. There are no alternative-
specific variables besides constant terms to include in ψ and therefore the formula can be specified
as

data_model$age_garden = ifelse(data_model$alt == "garden",
data_model$ageindex,0)

f5 = ~ age_garden

We specify the γ-profile of the MDCEV model specification where a single α1 is estimated for the
numeraire alternative and all non-numeraire alternatives are fixed at zero by setting model = "gamma".
We use maximum likelihood estimation by setting algorithm = "MLE".

The syntax for the model is the following:
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mdcev_mle <- mdcev(~ age_garden,
data = data_model,
model = "gamma",
algorithm = "MLE",
print_iterations = FALSE)

#> Using MLE to estimate KT model

Setting print_iterations = TRUE will print out intermediate iteration results as the model
converges.

The output of the function can be accessed by calling summary.

summary(mdcev_mle)

#> Model run using rmdcev for R, version 1.2.4
#> Estimation method : MLE
#> Model type : gamma specification
#> Number of classes : 1
#> Number of individuals : 200
#> Number of non-numeraire alts : 17
#> Estimated parameters : 36
#> LL : -5119.11
#> AIC : 10310.21
#> BIC : 10428.95
#> Standard errors calculated using : Delta method
#> Exit of MLE : successful convergence
#> Time taken (hh:mm:ss) : 00:00:0.5
#>
#> Average consumption of non-numeraire alternatives:
#> beach birding camping cycling fish
#> 6.70 12.75 2.60 7.89 4.00
#> garden golf hiking hunt_birds hunt_large
#> 23.18 5.42 41.62 0.58 1.03
#> hunt_trap hunt_waterfowl motor_land motor_water photo
#> 0.80 0.24 5.92 3.53 11.00
#> ski_cross ski_down
#> 3.12 1.85
#>
#> Parameter estimates --------------------------------
#> Estimate Std.err z.stat
#> psi_birding -0.762 0.113 -6.75
#> psi_camping -0.534 0.115 -4.64
#> psi_cycling -0.455 0.110 -4.13
#> psi_fish -0.162 0.116 -1.39
#> psi_garden -0.537 0.176 -3.05
#> psi_golf 0.553 0.112 4.94
#> psi_hiking -0.039 0.107 -0.36
#> psi_hunt_birds -1.034 0.194 -5.33
#> psi_hunt_large -0.234 0.160 -1.46
#> psi_hunt_trap -1.280 0.208 -6.16
#> psi_hunt_waterfowl -0.886 0.254 -3.49
#> psi_motor_land 0.119 0.126 0.94
#> psi_motor_water 0.458 0.115 3.98
#> psi_photo 0.011 0.105 0.11
#> psi_ski_cross -1.164 0.122 -9.54
#> psi_ski_down 0.229 0.134 1.71
#> psi_age_garden 0.513 0.155 3.31
#> gamma_beach 8.662 1.457 5.95
#> gamma_birding 22.366 4.945 4.52
#> gamma_camping 7.546 1.482 5.09
#> gamma_cycling 16.182 3.115 5.19
#> gamma_fish 11.831 2.277 5.20
#> gamma_garden 17.763 2.711 6.55
#> gamma_golf 11.082 2.393 4.63
#> gamma_hiking 17.467 2.872 6.08
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#> gamma_hunt_birds 9.669 3.688 2.62
#> gamma_hunt_large 12.561 3.589 3.50
#> gamma_hunt_trap 12.714 5.656 2.25
#> gamma_hunt_waterfowl 7.739 4.167 1.86
#> gamma_motor_land 16.277 4.009 4.06
#> gamma_motor_water 11.247 2.352 4.78
#> gamma_photo 14.478 2.635 5.49
#> gamma_ski_cross 10.365 2.387 4.34
#> gamma_ski_down 9.051 2.403 3.77
#> alpha_num 0.667 0.008 83.43
#> scale 0.607 0.027 22.47
#> Note: All non-numeraire alpha's fixed to 0.

The summary includes overall model and estimation information and the parameter estimates.
All parameters have been transformed to their original form.5 Interpreting the parameter estimates of
KT models directly is challenging due to the non-linearities implied by the utility function and the
partial confounding of αk and γk parameters (see Bhat (2008) for a in-depth discussion). Examining
the ψk parameters first which represent the marginal utility when consumption is zero, we can see
that relative to the beach recreation activity (i.e. the omitted reference category), hunting and trapping
and cross country skiing have the largest negative ASCs suggesting these activities are less preferred
starting from zero consumption levels. The interaction parameter between age and gardening is
positive and significant suggesting that older people gain a higher utility from gardening compared
to younger people. Because all non-numeraire α parameters are fixed at zero, the γk parameters can
be interpreted as capturing satiation and these satiation effects are lowest for the activities with the
highest γk parameter values such as birding, cycling, and motorized land vehicles. The α1 is estimated
to be less than 1 which also implies satiation in the numeraire good. Bhat (2008); Lloyd-Smith et al.
(2019) provide empirical applications of this model.

In the next example, we estimate the α-profile of the MDCEV utility function by changing the
model argument to "alpha".

mdcev_mle <- mdcev(~ age_garden,
data = data_model,
model = "alpha",
algorithm = "MLE",
print_iterations = FALSE)

summary(mdcev_mle)
#> Model run using rmdcev for R, version 1.2.4
#> Estimation method : MLE
#> Model type : alpha specification
#> Number of classes : 1
#> Number of individuals : 200
#> Number of non-numeraire alts : 17
#> Estimated parameters : 36
#> LL : -5354.33
#> AIC : 10780.67
#> BIC : 10899.41
#> Standard errors calculated using : Delta method
#> Exit of MLE : successful convergence
#> Time taken (hh:mm:ss) : 00:00:0.59
#>
#> Average consumption of non-numeraire alternatives:
#> beach birding camping cycling fish
#> 6.70 12.75 2.60 7.89 4.00
#> garden golf hiking hunt_birds hunt_large
#> 23.18 5.42 41.62 0.58 1.03
#> hunt_trap hunt_waterfowl motor_land motor_water photo
#> 0.80 0.24 5.92 3.53 11.00
#> ski_cross ski_down
#> 3.12 1.85
#>

5γk = exp(γ∗
k ), α1 = exp(α∗1)/(1 + exp(α∗1)), and σ = exp(σ∗), where γ∗

k , α∗1 , and σ∗ are estimated but the
transformed parameters are returned to users.
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#> Parameter estimates --------------------------------
#> Estimate Std.err z.stat
#> psi_birding -0.821 0.115 -7.13
#> psi_camping -0.582 0.117 -4.97
#> psi_cycling -0.501 0.111 -4.51
#> psi_fish -0.208 0.117 -1.78
#> psi_garden -0.481 0.176 -2.73
#> psi_golf 0.492 0.114 4.32
#> psi_hiking 0.127 0.109 1.17
#> psi_hunt_birds -1.121 0.199 -5.64
#> psi_hunt_large -0.309 0.164 -1.88
#> psi_hunt_trap -1.359 0.213 -6.38
#> psi_hunt_waterfowl -0.976 0.261 -3.74
#> psi_motor_land 0.040 0.129 0.31
#> psi_motor_water 0.396 0.117 3.38
#> psi_photo -0.031 0.105 -0.29
#> psi_ski_cross -1.229 0.125 -9.83
#> psi_ski_down 0.158 0.138 1.14
#> psi_age_garden 0.494 0.156 3.17
#> alpha_num 0.658 0.008 82.21
#> alpha_beach 0.593 0.040 14.82
#> alpha_birding 0.720 0.038 18.94
#> alpha_camping 0.596 0.049 12.16
#> alpha_cycling 0.700 0.039 17.94
#> alpha_fish 0.660 0.043 15.34
#> alpha_garden 0.647 0.030 21.55
#> alpha_golf 0.669 0.045 14.87
#> alpha_hiking 0.595 0.030 19.82
#> alpha_hunt_birds 0.665 0.090 7.39
#> alpha_hunt_large 0.701 0.068 10.31
#> alpha_hunt_trap 0.710 0.094 7.55
#> alpha_hunt_waterfowl 0.651 0.132 4.93
#> alpha_motor_land 0.721 0.048 15.02
#> alpha_motor_water 0.663 0.047 14.12
#> alpha_photo 0.680 0.037 18.37
#> alpha_ski_cross 0.661 0.051 12.97
#> alpha_ski_down 0.658 0.060 10.97
#> scale 0.602 0.034 17.71
#> Note: All non-numeraire gamma's fixed to 1.

Estimating alternative-specific αk parameters and fixing all the non-numeraire γ parameters at 1,
allows us to see the heterogeneity in αk parameters across recreation activities.

The hybrid model specification of the MDCEV model where a single α is estimated for the
numeraire and non-numeraire alternatives can be estimated by setting model = "hybrid" as the next
example demonstrates.

mdcev_mle <- mdcev(~ age_garden,
data = data_model,
model = "hybrid",
algorithm = "MLE",
print_iterations = FALSE)

#> Using MLE to estimate KT model

summary(mdcev_mle)

#> Model run using rmdcev for R, version 1.2.4
#> Estimation method : MLE
#> Model type : hybrid specification
#> Number of classes : 1
#> Number of individuals : 200
#> Number of non-numeraire alts : 17
#> Estimated parameters : 36
#> LL : -5230.91
#> AIC : 10533.81
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#> BIC : 10652.55
#> Standard errors calculated using : Delta method
#> Exit of MLE : successful convergence
#> Time taken (hh:mm:ss) : 00:00:0.6
#>
#> Average consumption of non-numeraire alternatives:
#> beach birding camping cycling fish
#> 6.70 12.75 2.60 7.89 4.00
#> garden golf hiking hunt_birds hunt_large
#> 23.18 5.42 41.62 0.58 1.03
#> hunt_trap hunt_waterfowl motor_land motor_water photo
#> 0.80 0.24 5.92 3.53 11.00
#> ski_cross ski_down
#> 3.12 1.85
#>
#> Parameter estimates --------------------------------
#> Estimate Std.err z.stat
#> psi_birding -0.783 0.081 -9.67
#> psi_camping -0.570 0.082 -6.95
#> psi_cycling -0.488 0.078 -6.25
#> psi_fish -0.206 0.083 -2.48
#> psi_garden -0.580 0.128 -4.53
#> psi_golf 0.565 0.080 7.06
#> psi_hiking -0.285 0.076 -3.75
#> psi_hunt_birds -0.832 0.137 -6.08
#> psi_hunt_large -0.095 0.113 -0.84
#> psi_hunt_trap -1.029 0.146 -7.05
#> psi_hunt_waterfowl -0.524 0.178 -2.94
#> psi_motor_land 0.172 0.090 1.91
#> psi_motor_water 0.449 0.082 5.48
#> psi_photo -0.103 0.074 -1.39
#> psi_ski_cross -1.112 0.087 -12.78
#> psi_ski_down 0.345 0.095 3.63
#> psi_age_garden 0.312 0.112 2.79
#> gamma_beach 2.198 0.446 4.93
#> gamma_birding 5.722 1.484 3.86
#> gamma_camping 2.669 0.649 4.11
#> gamma_cycling 5.745 1.307 4.40
#> gamma_fish 4.162 1.007 4.13
#> gamma_garden 4.776 0.910 5.25
#> gamma_golf 3.446 0.873 3.95
#> gamma_hiking 3.315 0.719 4.61
#> gamma_hunt_birds 3.719 1.704 2.18
#> gamma_hunt_large 5.533 1.922 2.88
#> gamma_hunt_trap 4.605 2.446 1.88
#> gamma_hunt_waterfowl 3.227 2.029 1.59
#> gamma_motor_land 5.691 1.642 3.47
#> gamma_motor_water 3.941 1.011 3.90
#> gamma_photo 4.723 1.012 4.67
#> gamma_ski_cross 3.593 0.994 3.61
#> gamma_ski_down 3.265 1.027 3.18
#> alpha 0.648 0.005 129.53
#> scale 0.431 0.014 30.78
#> Note: Alpha parameter is equal for all alternatives.

The same number of parameters are estimated in all three models and the log-likelihood is highest
for the γ-profile specification. The ease of estimating different MDCEV model specifications can
be used to compare models quickly and help the analyst pick their preferred specification for each
empirical application.

We can also estimate the KT-EE specification by changing the formula call and the model call to
"kt_ee".

kt_mle <- mdcev(~ age_garden | 0 | 0,
data = data_model,
model = "kt_ee",
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algorithm = "MLE",
print_iterations = FALSE)

summary(kt_mle)

#> Model run using rmdcev for R, version 1.2.4
#> Estimation method : MLE
#> Model type : kt_ee specification
#> Number of classes : 1
#> Number of individuals : 200
#> Number of non-numeraire alts : 17
#> Estimated parameters : 20
#> LL : -5360.46
#> AIC : 10760.93
#> BIC : 10826.89
#> Standard errors calculated using : Delta method
#> Exit of MLE : successful convergence
#> Time taken (hh:mm:ss) : 00:00:0.27
#>
#> Average consumption of non-numeraire alternatives:
#> beach birding camping cycling fish
#> 6.70 12.75 2.60 7.89 4.00
#> garden golf hiking hunt_birds hunt_large
#> 23.18 5.42 41.62 0.58 1.03
#> hunt_trap hunt_waterfowl motor_land motor_water photo
#> 0.80 0.24 5.92 3.53 11.00
#> ski_cross ski_down
#> 3.12 1.85
#>
#> Parameter estimates --------------------------------
#> Estimate Std.err z.stat
#> psi_age_garden 0.395 0.110 3.59
#> gamma_beach 10.552 1.083 9.74
#> gamma_birding 22.278 2.485 8.97
#> gamma_camping 16.210 1.778 9.12
#> gamma_cycling 16.247 1.744 9.32
#> gamma_fish 12.245 1.360 9.00
#> gamma_garden 16.651 2.167 7.68
#> gamma_golf 6.241 0.700 8.92
#> gamma_hiking 11.918 1.322 9.02
#> gamma_hunt_birds 25.826 4.427 5.83
#> gamma_hunt_large 13.803 2.020 6.83
#> gamma_hunt_trap 32.843 6.100 5.38
#> gamma_hunt_waterfowl 24.635 5.550 4.44
#> gamma_motor_land 10.405 1.282 8.12
#> gamma_motor_water 7.117 0.812 8.76
#> gamma_photo 11.160 1.184 9.43
#> gamma_ski_cross 28.693 3.201 8.96
#> gamma_ski_down 8.405 1.065 7.89
#> alpha_num 0.475 0.007 67.92
#> scale 0.713 0.025 28.53

This model does not include ASCs in the psik parameters due to concerns about weak complemen-
tarity.

Estimating KT models using Bayesian techniques

The exact same models can be fit using Bayesian estimation by changing the algorithm call to "Bayes".
Bayesian estimation is implemented using the Stan programming language (Carpenter et al., 2017).
The Bayesian framework requires careful choice of priors for the parameters, especially in data sparse
contexts. The specific prior distributions for the fixed parameter specifications is presented below. The
user has the ability to change the standard deviation and shape of these priors through these options
in the mdcev function:

• prior_psi_sd standard deviation for normal prior with mean 0.
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• prior_phi_sd standard deviation for normal prior with mean 0.
• prior_gamma_sd standard deviation for half-normal prior with mean 1.
• prior_alpha_shape shape parameter for beta distribution.
• prior_scale_sd standard deviation for half-normal prior with mean 0.

For the random parameter model specifications, the priors for the means of all random parameters
follow a normal distribution with mean 0 on the unconstrained space.

There are also a number of further options for Bayesian estimation. For example, the number
of iterations (n_iterations), number of chains (n_chains), and number of cores (n_cores) for parallel
implementation of the chains can also be chosen. The full set of options for Bayesian estimation are
presented below.

• random_parameters The form of the covariance matrix for the parameters. Options are

– ‘fixed’ for no random parameters,
– ’uncorr for uncorrelated random parameters, or
– ‘corr’ for correlated random parameters.

• n_iterations The number of iterations to use in Bayesian estimation. The default is for the
number of iterations to be split evenly between warmup and posterior draws. The number of
warmup draws can be directly controlled using the warmup argument (see rstan::sampling)

• n_chains The number of independent Markov chains in Bayesian estimation.

• n_cores The number of cores used to execute the Markov chains in parallel in Bayesian estima-
tion. Can set using options(mc.cores = parallel::detectCores()).

• lkj_shape_prior Prior for Cholesky matrix for correlated random parameters.

In this example, we estimate the γ-profile of the MDCEV specification using Bayesian techniques.
We set the number of iterations to 200 and use 4 independent chains across 4 cores.

mdcev_bayes <- mdcev(~ age_garden,
data = data_model,
model = "gamma",
algorithm = "Bayes",
n_iterations = 200,
n_chains = 4,
n_cores = 4,
print_iterations = FALSE)

The output of the function can be accessed by calling summary.

summary(mdcev_bayes)

#> Model run using rmdcev for R, version 1.2.4
#> Estimation method : Bayes
#> Model type : gamma specification
#> Number of classes : 1
#> Number of individuals : 200
#> Number of non-numeraire alts : 17
#> Estimated parameters : 36
#> LL : -5137.78
#> Number of chains : 4
#> Number of warmup draws per chain : 100
#> Total post-warmup sample : 400
#> Time taken (hh:mm:ss) : 00:00:41
#>
#> Average consumption of non-numeraire alternatives:
#> beach birding camping cycling fish
#> 6.70 12.75 2.60 7.89 4.00
#> garden golf hiking hunt_birds hunt_large
#> 23.18 5.42 41.62 0.58 1.03
#> hunt_trap hunt_waterfowl motor_land motor_water photo
#> 0.80 0.24 5.92 3.53 11.00
#> ski_cross ski_down
#> 3.12 1.85
#>
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#> Parameter estimates --------------------------------
#> Estimate Std.dev z.stat n_eff Rhat
#> psi_birding -0.789 0.113 -7.00 255 0.99
#> psi_camping -0.574 0.123 -4.67 258 1.01
#> psi_cycling -0.489 0.118 -4.16 276 1.00
#> psi_fish -0.206 0.123 -1.68 157 1.01
#> psi_garden -0.562 0.196 -2.86 347 1.01
#> psi_golf 0.501 0.134 3.74 201 1.01
#> psi_hiking 0.025 0.117 0.21 429 1.00
#> psi_hunt_birds -1.159 0.200 -5.80 235 1.01
#> psi_hunt_large -0.344 0.179 -1.91 189 1.02
#> psi_hunt_trap -1.436 0.245 -5.87 271 1.00
#> psi_hunt_waterfowl -1.098 0.291 -3.77 187 1.00
#> psi_motor_land 0.060 0.136 0.44 301 1.00
#> psi_motor_water 0.420 0.125 3.37 277 1.00
#> psi_photo -0.010 0.125 -0.08 312 1.00
#> psi_ski_cross -1.222 0.135 -9.06 207 1.01
#> psi_ski_down 0.153 0.147 1.04 362 1.00
#> psi_age_garden 0.563 0.175 3.22 481 1.00
#> gamma_beach 8.013 1.362 5.88 261 1.01
#> gamma_birding 17.715 3.298 5.37 516 1.00
#> gamma_camping 7.128 1.347 5.29 459 1.00
#> gamma_cycling 14.506 2.756 5.26 614 1.00
#> gamma_fish 11.002 2.110 5.21 636 1.00
#> gamma_garden 15.587 2.546 6.12 685 0.99
#> gamma_golf 10.145 2.029 5.00 399 1.00
#> gamma_hiking 15.158 2.444 6.20 687 1.00
#> gamma_hunt_birds 9.479 3.372 2.81 254 1.00
#> gamma_hunt_large 11.702 3.016 3.88 320 1.01
#> gamma_hunt_trap 11.582 3.582 3.23 252 1.01
#> gamma_hunt_waterfowl 8.269 3.551 2.33 141 1.01
#> gamma_motor_land 14.258 3.252 4.39 511 1.00
#> gamma_motor_water 10.392 2.260 4.60 485 1.00
#> gamma_photo 13.013 2.398 5.43 595 0.99
#> gamma_ski_cross 9.652 2.310 4.18 527 1.00
#> gamma_ski_down 8.814 2.344 3.76 357 1.00
#> alpha_num 0.668 0.008 82.15 296 1.00
#> scale 0.654 0.029 22.75 187 1.01
#> Note: All non-numeraire alpha's fixed to 0.
#> Note from Rstan: 'For each parameter, n_eff is a crude measure of effective sample
#> size, and Rhat is the potential scale reduction factor on split chains (at
#> convergence, Rhat=1)'

Comparing these parameter values to the maximum likelihood estimates of the γ-profile MDCEV
specification, the values are quite similar. As the data set is rather small with only 200 individuals, the
priors play a role in reducing the estimates closer to 1 for the γk, but this role will lessen in larger data
applications.

One benefit of using the Bayesian approach is that one can take advantage of the postestimation
commands, interactive diagnostics, and posterior analysis in rstan, bayesplot (Gabry et al., 2019), and
shinystan (Muth et al., 2018). For example, the effective sample size reports the estimated number
of independent draws from the posterior distribution for each parameter (Stan Development Team,
2019). The interested reader is referred to these packages for additional details.

Estimating LC-KT models

In this example, we estimate a LC-KT model using the Recreation data. We set the number of classes
equal to 2 and we use data on 1000 individuals. We would like to include the university, ageindex,
and urban in the membership equation and we include them in the formula interface. The constant
for the membership equation is included automatically. The LC model is automatically estimated as
long as the prespecified number of classes (n_classes) is set greater than 1. The scale parameters are
fixed at 1 using fixed_scale1 = 1.

data_model <- mdcev.data(data_rec, subset = id <= 1000,
id.var = "id",
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alt.var = "alt",
choice = "quant")

mdcev_lc <- mdcev(~ 0 | university + ageindex + urban,
data = data_model,
n_classes = 2,
model = "gamma",
fixed_scale1 = 1,
algorithm = "MLE",
print_iterations = FALSE)

summary(mdcev_lc)
#> Model run using rmdcev for R, version 1.2.4
#> Estimation method : MLE
#> Model type : gamma specification
#> Number of classes : 2
#> Number of individuals : 1000
#> Number of non-numeraire alts : 17
#> Estimated parameters : 72
#> LL : -23298.65
#> AIC : 46741.3
#> BIC : 47094.66
#> Standard errors calculated using : Delta method
#> Exit of MLE : successful convergence
#> Time taken (hh:mm:ss) : 00:00:11.39
#>
#> Average consumption of non-numeraire alternatives:
#> beach birding camping cycling
#> 6.44 14.34 2.31 8.06
#> fish garden golf hiking
#> 3.15 21.61 4.45 40.03
#> hunt_birds hunt_large hunt_trap hunt_waterfowl
#> 0.49 1.01 0.59 0.20
#> motor_land motor_water photo ski_cross
#> 4.03 2.96 9.00 2.48
#> ski_down
#> 1.18
#>
#>
#> Class average probabilities:
#> class1 class2
#> 0.86 0.14
#> Parameter estimates --------------------------------
#> Estimate Std.err z.stat
#> class1.psi_birding -1.268 0.095 -13.35
#> class2.psi_birding -1.178 0.095 -12.40
#> class1.psi_camping -0.948 0.089 -10.65
#> class2.psi_camping -0.646 0.117 -5.52
#> class1.psi_cycling -0.754 0.080 -9.42
#> class2.psi_cycling -1.094 0.099 -11.05
#> class1.psi_fish -1.075 0.085 -12.64
#> class2.psi_fish 1.179 0.546 2.16
#> class1.psi_garden 0.032 0.656 0.05
#> class2.psi_garden -0.200 1.491 -0.13
#> class1.psi_golf -0.122 0.549 -0.22
#> class2.psi_golf 0.406 0.118 3.44
#> class1.psi_hiking 0.444 0.111 4.00
#> class2.psi_hiking 0.201 0.086 2.34
#> class1.psi_hunt_birds -4.348 0.103 -42.21
#> class2.psi_hunt_birds 0.298 0.111 2.69
#> class1.psi_hunt_large -3.783 0.249 -15.19
#> class2.psi_hunt_large 1.295 0.235 5.51
#> class1.psi_hunt_trap -6.475 0.253 -25.59

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 282

#> class2.psi_hunt_trap -0.570 0.224 -2.55
#> class1.psi_hunt_waterfowl -4.140 0.217 -19.08
#> class2.psi_hunt_waterfowl -0.328 0.234 -1.40
#> class1.psi_motor_land -0.776 0.212 -3.66
#> class2.psi_motor_land 1.147 0.229 5.01
#> class1.psi_motor_water -0.397 0.233 -1.70
#> class2.psi_motor_water 1.399 0.246 5.69
#> class1.psi_photo -0.207 0.266 -0.78
#> class2.psi_photo -0.653 0.221 -2.95
#> class1.psi_ski_cross -1.772 0.209 -8.48
#> class2.psi_ski_cross -1.288 0.247 -5.21
#> class1.psi_ski_down -0.473 0.245 -1.93
#> class2.psi_ski_down -0.388 0.282 -1.38
#> class1.gamma_beach 4.112 0.372 11.05
#> class2.gamma_beach 6.337 0.850 7.45
#> class1.gamma_birding 15.129 1.727 8.76
#> class2.gamma_birding 7.732 0.833 9.28
#> class1.gamma_camping 3.497 0.520 6.73
#> class2.gamma_camping 7.827 0.650 12.04
#> class1.gamma_cycling 9.862 1.299 7.59
#> class2.gamma_cycling 13.344 1.185 11.26
#> class1.gamma_fish 4.854 3.539 1.37
#> class2.gamma_fish 3.496 2.701 1.29
#> class1.gamma_garden 9.858 16.725 0.59
#> class2.gamma_garden 8.924 7.287 1.22
#> class1.gamma_golf 7.178 1.151 6.24
#> class2.gamma_golf 4.562 0.662 6.89
#> class1.gamma_hiking 7.107 0.705 10.08
#> class2.gamma_hiking 10.823 1.472 7.35
#> class1.gamma_hunt_birds 2.989 0.445 6.72
#> class2.gamma_hunt_birds 2.673 0.639 4.18
#> class1.gamma_hunt_large 4.752 1.764 2.69
#> class2.gamma_hunt_large 3.361 0.924 3.64
#> class1.gamma_hunt_trap 0.975 0.305 3.20
#> class2.gamma_hunt_trap 5.343 1.146 4.66
#> class1.gamma_hunt_waterfowl 3.842 0.910 4.22
#> class2.gamma_hunt_waterfowl 3.626 1.017 3.57
#> class1.gamma_motor_land 5.807 1.331 4.36
#> class2.gamma_motor_land 7.884 1.757 4.49
#> class1.gamma_motor_water 3.894 0.817 4.77
#> class2.gamma_motor_water 5.414 1.523 3.55
#> class1.gamma_photo 6.970 2.271 3.07
#> class2.gamma_photo 7.877 1.674 4.71
#> class1.gamma_ski_cross 4.951 1.039 4.77
#> class2.gamma_ski_cross 4.932 1.480 3.33
#> class1.gamma_ski_down 3.887 1.107 3.51
#> class2.gamma_ski_down 4.667 1.677 2.78
#> class1.alpha_num 0.679 0.006 113.18
#> class2.alpha_num 0.676 0.017 39.78
#> class2.(Intercept) -1.187 0.366 -3.24
#> class2.university -0.506 0.257 -1.97
#> class2.ageindex 0.129 0.281 0.46
#> class2.urban -0.752 0.260 -2.89
#> Note: Scale parameter fixed to 1.
#> Note: All non-numeraire alpha's fixed to 0.
#> Note: The membership equation parameters for class 1 are normalized to 0.

In this LC example, we assume that there are two types of people that have different preferences
for recreation. The probability of class assignment depends on unobserved factors and the three
sociodemographic factors included in the membership equation with only urban having a statistically
significant effect on class probability. People living in urban areas are less likely to be in class 2. The
summary output reports the average class probabilities as being 85% for class 1 and 15% for class 2.
The ψ parameters across classes are similar although there are some noticeable differences such as the
hunting and trapping preferences. The γ parameters, on the other hand, show that satiation between
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classes is quite different. Sobhani et al. (2013); Kuriyama et al. (2010) provide empirical applications of
these models.

If initial.parameter are not provided, the default is to use slightly adjusted parameter estimates
of the MDCEV model as starting values when estimating the LC-MDCEV model to assist speed and
convergence issues.6 The MDCEV model output can be accessed from mdcev_lc[["mdcev_fit"]]
object for comparison.

Estimating RP-KT models

Random parameter models require defining and parameterizing the variance covariance matrix.
For uncorrelated random parameters, the diagonal elements of the variance covariance matrix are
estimated and the off-diagonal elements are assumed to be zero. For correlated random parameters,
the variance covariance matrix is fully estimated and can be parameterized in many ways. The rmdcev
package defines the variance covariance matrix in terms of Cholesky factors of the correlation matrix
and a vector of standard deviations for numerical stability. Thus the variance covariance matrix is
specified as

∑ = diag(τ) x LLT x diag(τ), (17)

where τ is a vector of standard deviations, and L is the cholesky factors of the correlation matrix.

In this example, we estimate an uncorrelated random parameters γ-specification of the MDCEV
model without any ψk parameters. We set the argument random_parameters = "uncorr" to indicate
that uncorrelated random parameters will be estimated. As noted earlier, all random parameters
follow a normal distribution. We change the psi_ascs = 0 to omit the ASCs in the ψk parameters.

data_model <- mdcev.data(data_rec, subset = id <= 200,
id.var = "id",
alt.var = "alt",
choice = "quant")

mdcev_rp <- mdcev(~ 0,
data = data_model,
model = "gamma",
algorithm = "Bayes",
n_chains = 4,
psi_ascs = 0,
fixed_scale1 = 1,
n_iterations = 200,
random_parameters = "uncorr",
print_iterations = FALSE)

summary(mdcev_rp)

#> Model run using rmdcev for R, version 1.2.4
#> Estimation method : Bayes
#> Model type : gamma specification
#> Number of classes : 1
#> Number of individuals : 200
#> Number of non-numeraire alts : 17
#> Estimated parameters : 36
#> LL : -5363.25
#> Random parameters : uncorrelated random parameters
#> Number of chains : 4
#> Number of warmup draws per chain : 100
#> Total post-warmup sample : 400
#> Time taken (hh:mm:ss) : 00:01:51.2
#>
#> Average consumption of non-numeraire alternatives:
#> beach birding camping cycling fish
#> 6.70 12.75 2.60 7.89 4.00
#> garden golf hiking hunt_birds hunt_large
#> 23.18 5.42 41.62 0.58 1.03

6In particular, the estimated ψk and γk parameters from the MDCEV model are randomly adjusted by 0.02.
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#> hunt_trap hunt_waterfowl motor_land motor_water photo
#> 0.80 0.24 5.92 3.53 11.00
#> ski_cross ski_down
#> 3.12 1.85
#>
#> Parameter estimates --------------------------------
#> Estimate Std.dev z.stat n_eff Rhat
#> gamma_beach 5.678 1.066 5.32 302 1.00
#> gamma_birding 8.121 1.925 4.22 472 0.99
#> gamma_camping 3.791 0.812 4.67 463 1.00
#> gamma_cycling 8.235 1.615 5.10 416 0.99
#> gamma_fish 7.203 1.788 4.03 543 1.00
#> gamma_garden 12.485 1.889 6.61 362 0.99
#> gamma_golf 6.480 1.464 4.43 319 1.00
#> gamma_hiking 15.217 2.411 6.31 525 1.00
#> gamma_hunt_birds 4.108 2.014 2.04 341 1.01
#> gamma_hunt_large 7.419 2.542 2.92 352 1.00
#> gamma_hunt_trap 5.671 4.956 1.14 423 1.00
#> gamma_hunt_waterfowl 5.014 7.314 0.69 388 1.00
#> gamma_motor_land 8.620 2.381 3.62 526 1.00
#> gamma_motor_water 6.577 1.421 4.63 390 1.00
#> gamma_photo 8.662 1.777 4.88 197 1.04
#> gamma_ski_cross 3.333 0.785 4.25 440 1.00
#> gamma_ski_down 4.916 1.621 3.03 456 1.00
#> alpha_num 0.725 0.008 94.68 459 1.00
#> sd.gamma_beach 1.239 0.222 5.58 319 1.01
#> sd.gamma_birding 1.894 0.665 2.85 179 1.03
#> sd.gamma_camping 1.254 0.254 4.94 326 1.00
#> sd.gamma_cycling 1.293 0.262 4.93 404 1.00
#> sd.gamma_fish 1.268 0.234 5.43 640 1.00
#> sd.gamma_garden 1.262 0.234 5.40 268 1.02
#> sd.gamma_golf 1.532 0.453 3.38 306 0.99
#> sd.gamma_hiking 1.319 0.261 5.05 200 1.00
#> sd.gamma_hunt_birds 1.764 0.963 1.83 551 1.01
#> sd.gamma_hunt_large 1.418 0.445 3.19 840 0.99
#> sd.gamma_hunt_trap 2.359 2.573 0.92 362 1.00
#> sd.gamma_hunt_waterfowl 3.875 12.454 0.31 312 1.02
#> sd.gamma_motor_land 1.502 0.456 3.29 334 1.00
#> sd.gamma_motor_water 1.420 0.335 4.24 398 1.00
#> sd.gamma_photo 1.311 0.272 4.82 455 0.99
#> sd.gamma_ski_cross 1.439 0.367 3.92 276 1.00
#> sd.gamma_ski_down 1.569 0.544 2.88 419 1.00
#> sd.alpha_num 0.514 0.010 51.01 183 1.02
#> Note: Scale parameter fixed to 1.
#> Note: All non-numeraire alpha's fixed to 0.
#> Note from Rstan: 'For each parameter, n_eff is a crude measure of effective sample
#> size, and Rhat is the potential scale reduction factor on split chains (at
#> convergence, Rhat=1)'

The results show the means of the random parameters followed by the estimated standard devia-
tions. The standard deviations that are estimated to be different from zero suggest there is heterogeneity
in preference parameters. The correlated random parameters specification can be estimated by setting
random_parameters = "corr". Bhat and Sen (2006) provide an empirical application of this type of
model.

Computational and estimation issues

KT models are notoriously tricky to estimate relative to standard discrete choice models. This section
provides some guidance for estimating these models and common convergence issues:

• Starting values: Model parameter estimates can be sensitive to starting values, especially the
more complex LC-KT specification. Users should use several different initial parameter values
for model estimation to ensure robust results and a global maxima is found rather than a local
maxima. The default behaviour for LC-KT models is to use KT parameters as starting values.
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In practice the author has found this to be quite effective at finding global maxima. However,
users are encouraged to use random starting values as a robustness check.

• Identification issues: Depending on the model specification and included variables the model
may not be properly identified. If you receive an error such as Error in chol.default(-H)
: the leading minor of order 9 is not positive definite or In sqrt(diag(cov_mat))
: NaNs produced, this usually suggests an identification issue. Users should double check all
variables included in the model are appropriate. One solution is to start with a simpler model
first and then slowly add variables to help locate any problematic variables.

• Parameter estimates near boundaries: Interpret models with parameter estimates that are near
the boundaries (e.g. α close to 1) with caution. Users are recommended to re-estimate the model
with starting values far from this boundary.

• Bayesian estimation: For models estimated using Bayesian estimation, users should consult
the rstan User Guide for additional guidance on model estimation options and postestima-
tion checks (Stan Development Team, 2019). Additional information is available by typing
help(rstan).

Simulating KT demand and welfare scenarios

The rmdcev package includes simulation functions for calculating welfare measures and forecasting
demand under alternative policy scenarios. The overall approach used for simulation is first introduced
and then code examples are given.

Overview of simulation steps

Once the model parameters are estimated, there are two steps to simulation in KT models. In the
first step we draw simulated values for the unobserved heterogeneity term (ε) using Monte Carlo
techniques. The second step uses these error draws, the previously estimated model parameters, and
the underlying data to calculate Marshallian demands for forecasting or Hicksian demands for welfare
analysis. These two steps are described below.

Step 1: simulating unobserved heterogeneity

Monte Carlo simulation techniques can be employed to draw simulated values of the unobserved
heterogeneity (ε) using either unconditional or conditional draws.

1. Unconditional error draws: draw from the entire distribution of unobserved heterogeneity
using the following formula

εk = −log(−log(draw(0, 1))) ∗ σ, (18)

where draw(0, 1) is a draw between 0 and 1 and σ is the scale parameter. rmdcev allows errors
to be drawn using uniform draws or the Modified Latin Hypercube Sampling algorithm (Hess et al.,
2006).

2. Conditional error draws: draw errors terms to reflect behaviour and dependent on whether
alternative is consumed or not (von Haefen, 2003; von Haefen et al., 2004):

• If xk > 0, set εk = (V1 − Vk)/σ for the MDCEV specifications where V1 and Vk depend on
the model specification as detailed above. If using the environmental economics KT model
specification (“kt_ee”), set εk = gk(.) from Equation (12).

• If xk = 0, εk < (V1 −Vk)/σ and simulate εk from the truncated type I extreme value distribution
such that

εk = −log(−log(draw(0, 1) ∗ exp(−exp(
V1 − Vk

σ
)))) ∗ σ for the MDCEV specifications, or (19)

εk = −log(−log(draw(0, 1) ∗ exp(−exp(−gk(.))))) ∗ σ for the KT-EE specification. (20)

In the conditional error draw approach, we normalize ε1 = 0.

The main differences between these two error draw approaches is that in the conditional approach,
errors are drawn such that the model perfectly predicts the observed consumption patterns in the
baseline state (von Haefen and Phaneuf, 2005). The conditional approach uses observed behaviour by
individuals to characterize unobserved heterogeneity and can be useful for scenario simulation as the
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baseline matches observed behavior. This is especially true if poor in-sample behavioral predictions is
found using the unconditional approach (von Haefen, 2003). The unconditional approach draws all
errors based on distributional assumptions and is necessary for out-of-sample forecasting. If the model
correctly specifies the data generating process, the sample means of the conditional and unconditional
approaches should converge in expectation. Another difference between the two approaches is that
the unconditional approach uses more computation time as there is a need to calculate consumption
patterns in the baseline state as well as simulate the entire distribution of unobserved heterogeneity.

Step 2: Calculating welfare measures and demand forecasts

With the error draws in hand, the second step is to simulate demand or welfare changes. Compared
to welfare measures in discrete choice models, welfare calculation in KT models is more challenging
because of the two KT conditions in Equation (2). For a given policy scenario, a priori, we do not know
which alternatives have a positive or zero consumption level. rmdcev implements the Pinjari and Bhat
(2011) efficient demand forecasting routine for simulating demand behaviour for MDCEV models
which relies on calculating Marshallian demands. For welfare calculations, we need to calculate
the expenditure function in Equation (3) which relies on Hicksian demands. These are calculated
using the approach described by Lloyd-Smith (2018) and the rmdcev extends these approaches to the
environmental economics KT model specifications. The demand and welfare simulation approaches
share a lot of commonalities and thus only the approach used for welfare calculations are fully
described in the appendix. The specific steps for demand simulation is explained in-depth in Pinjari
and Bhat (2011) and the interested reader is encouraged to read Section 4 of the paper for the exact
details.

Welfare analysis

In rmdcev, the functions for welfare and demand simulation have been divided into 3 steps to allow
users to parallelize operations as necessary.

We first estimate the model using mdcev and we set std_errors = "mvn" to generate multivariate
normal draws as these will be required to generate standard errors for calculations.

mdcev_mle <- mdcev(~ageindex,
data = data_model,
model = "hybrid",
algorithm = "MLE",
std_errors = "mvn",
print_iterations = FALSE)

#> Using MLE to estimate KT model

1. Define policy scenarios In the first step, we define the number of alternative policy scenarios
to use in simulation and then specify changes to the ψ variables and prices of alternatives. The
CreateBlankPolicies function has been created to easily set-up the required lists for the simulation.
These policies can then be manually edited according to the specific policy scenario. For prices, rmdcev
is set up to accept additive changes in prices that impact all individuals the same. For the ψ and ϕ
variable changes, the package is set up to accept any new values for these variables. Depending on
the number of individuals and number of policies, the generated policies list can be quite large. If the
user is only interested in assessing price changes, then you can use price_change_only = TRUE which
ensures duplicate ψ and ϕ data is not created.

In this example, we are interested in two separate policies. The first policy increases the costs of all
recreation activities by $1 and the second policy increases the cost of all four hunting activities by $10.
The policy set-up for these two scenarios is demonstrated below.

nalts <- mdcev_mle$stan_data[["J"]]
npols <- 2

policies<- CreateBlankPolicies(npols = npols,
model = mdcev_mle,
price_change_only = TRUE)

policies$price_p[[1]] <- c(0, rep(1, nalts))
policies$price_p[[2]][10:13] <- rep(10, 4)

For policy scenarios that involve changes in the ψ or ϕ variables, the user can change the dat_psi
or dat_phi list of the policies object. For example, the following code will increase the value of the
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first ψ variable by 20% in policy scenario 2.

policies_2 <- CreateBlankPolicies(npols = npols,
model = mdcev_mle,
price_change_only = FALSE)

policies_2$dat_psi_p[[2]][, 1] <- policies_2$dat_psi_p[[2]][, 1] * 1.2

2. Prepare simulation data The second step is to combine the parameter estimates, data, and pol-
icy scenarios into a data format for simulation. The PrepareSimulationData function uses the model
fit and the user defined policy scenarios to create this specific data format. This function separates
the output into individual-specific data (df_indiv), data common to all individuals (df_common), and
simulation options (sim_options).

df_sim <- PrepareSimulationData(mdcev_mle, policies)

3. Simulate MDCEV model The third step is to simulate the policy scenario using the formatted
data and the mdcev.sim function. The specific steps for the simulation algorithms are described in
Appendix A. The user chooses the type of error draws (unconditional or conditional as described
above), the number of error draws, and whether to simulate the demand or welfare changes.

welfare <- mdcev.sim(df_sim$df_indiv,
df_common = df_sim$df_common,
sim_options = df_sim$sim_options,
cond_err = 1,
nerrs = 25,
sim_type = "welfare")

#> Using hybrid approach in simulation...
#> 3.00e+05simulations finished in0.07minutes.(75377per second)

summary(welfare)

#> # A tibble: 2 x 5
#> policy mean std.dev `ci_lo2.5%` `ci_hi97.5%`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 policy1 -126. 0.189 -126. -126.
#> 2 policy2 -20.6 0.458 -21.3 -19.7

The output of the mdcev.sim for welfare analysis is an object of class mdcev.sim which contains a
list of matrices where each element of the list is for an individual and the matrix consists of rows for
each policy scenario and columns for each parameter simulation.

The summary function computes summary statistics across all individuals. For example, the
average welfare change for a $1 daily increase in all recreation costs (i.e. Policy 1) is -$126.

The reason these last two steps are separate is to allow users to parallelize the simulation step as
the last step can be computationally intensive. The number of simulations is a multiplicative function
of the number of individuals, number of policies, number of parameter estimate simulations, and the
number of error draws (I x npols x nsims x nerrs). Even for modestly sized data, the total number of
simulations can easily reach well into the millions or billions. All simulations are conducted at the
individual level which allows the user to easily parallelize the mdcev.sim function using the parallel
package or similar packages.

Demand forecasting

This section demonstrates the demand forecasting capabilities of rmdcev. Please refer to the previous
section for an overview of the three steps to simulation.

policies <- CreateBlankPolicies(npols = 2, model = mdcev_mle)

policies$price_p[[1]] <- c(0, rep(1, nalts))
policies$price_p[[2]][10:13] <- rep(10, 4)

df_sim <- PrepareSimulationData(mdcev_mle, policies)
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demand <- mdcev.sim(df_sim$df_indiv,
df_common = df_sim$df_common,
sim_options = df_sim$sim_options,
cond_err = 1,
nerrs = 25,
sim_type = "demand")

#> Using hybrid approach in simulation...
#> 5.40e+06simulations finished in0.07minutes.(1360202per second)

summary(demand)

#> # A tibble: 36 x 6
#> # Groups: policy [2]
#> policy alt mean std.dev `ci_lo2.5%` `ci_hi97.5%`
#> <chr> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 policy1 0 68946. 8.62 68933. 68962.
#> 2 policy1 1 6.24 0.02 6.2 6.28
#> 3 policy1 2 11.2 0.05 11.1 11.2
#> 4 policy1 3 2.34 0.02 2.31 2.37
#> 5 policy1 4 7.24 0.04 7.18 7.3
#> 6 policy1 5 3.76 0.02 3.72 3.78
#> 7 policy1 6 20.7 0.06 20.7 20.8
#> 8 policy1 7 5.29 0.01 5.28 5.3
#> 9 policy1 8 36.1 0.15 35.8 36.4
#> 10 policy1 9 0.55 0 0.53 0.55
#> # ... with 26 more rows

The output of the demand simulation a mdcev.sim object with a list of I elements, one for each
individual. Within each element there are nsim lists each containing a matrix of demands. The rows
of the matrix are for each policy scenario and the columns represent each alternative. The summary
function computes summary statistics.

Generating simulated data

The rmdcev package has the capability to simulate KT data. Simulated KT data can be easily created
for model assessment and Monte Carlo analysis using the GenerateMDCEVData function. The following
example will generate a simulated data set with 1,000 individuals, 10 non-numeraire alternatives, and
particular parameter values.

model = "gamma"
nobs = 1000
nalts = 10
sim.data <- GenerateMDCEVData(model = model,

nobs = nobs,
nalts = nalts,
psi_j_parms = c(-5, 0.5, 2), # alt-specific variables
psi_i_parms = c(-1.5, 3, -2, 1, 2), # individual-specific variables
gamma_parms = stats::runif(nalts, 1, 10),
alpha_parms = 0.5,
scale_parms = 1)

#> Sorting data by id.var then alt...
#> Checking data...
#> Data is good

Next, we can estimate the model using maximum likelihood techniques to recover the parameter
estimates.

mdcev_mle <- mdcev(formula = ~ b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8,
data = sim.data$data,
model = model,
psi_ascs = 0,
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algorithm = "MLE",
print_iterations = FALSE)

4 Conclusions

The rmdcev package implements several Kuhn-Tucker model specifications including MDCEV with
heterogeneity that can be continuous (i.e. random parameters) or discrete (i.e. latent classes). Models
can be estimated using maximum likelihood or Bayesian techniques. This paper demonstrates the use
of the package to estimate several model specifications and to derive demand forecasts and welfare
implications of policy scenarios. To my knowledge, there is no other available statistical package
that can estimate welfare implications of policy scenarios using MDCEV models. I hope that the
publication of rmdcev will make KT modeling available to a wider audience.

5 Appendix A: Specific steps for simulating KT models

Welfare and demand simulation follow similar approaches and this section details the welfare simula-
tion approach. There are two algorithms that differ depending on the model specification. If a single α
parameter is estimated (i.e. model = “hybrid” or “hybrid0”), then we can use the hybrid approach
to welfare simulation. If there are heterogeneous α parameters (i.e. model = “gamma”, “alpha”, or
“kt_ee”), then we can use the general approach to welfare simulation. The hybrid approach is less
computationally intensive and provides an exact analytical solution but the general approach can
be used with all utility specifications. The specific steps for both algorithms are described below.
Additional details are provided in Lloyd-Smith (2018).

Steps in algorithm for hybrid-profile MDCEV utility specifications

Step 0: Assume that only the numeraire alternative is chosen and let the number of chosen
alternatives equal one (M=1).

Step 1: Using the data, model parameters, and either conditional or unconditional simulated error
term draws, calculate the price-normalized baseline utility values (ψk/pk) for all alternatives. Sort the
K alternatives in the descending order of their price-normalized baseline utility values. Note that the
numeraire alternative is in the first place. Go to step 2.

Step 2: Compute the value of λE using the following equation:

1
λE =

 αŪ + ∑M
m=2 γmψm

∑M
m=2 γmψm

(
pm
ψm

) α
α−1

+ ψ1

(
p1
ψ1

) α
α−1


α−1

α

. (21)

Go to step 3.

Step 3: If 1
λE >

ψM+1
pM+1

, go to step 4. Else if 1
λE <

ψM+1
pM+1

, set M = M + 1. If M < K, go back to step 2.
If M = K, go to step 4.

Step 4: Compute the optimal Hicksian consumption levels for the first I alternatives in the above
descending order using the following equations

x1 =

(
p1

λEψ1

) 1
α1−1

, and (22)

xm =

[(
pm

λEψm

) 1
αm−1

− 1

]
γm, if xm > 0. (23)

Set the remaining alternative consumption levels to zero and stop.

Steps in algorithm for general utility specifications

In this context, there is no closed-form expressions for λE and we need to conduct a numerical
bisection routine. The following routine describes the approach for the MDCEV utility specifications.
The approach used for the KT-EE specification is omitted due to space, but the overall strategy is the
same with the only differences being the definitions for utility functions and optimal demands. Let λ̂E

and Û be estimates of λE and U and let tolλ and tolU be the tolerance levels for estimating λE and U
that can be arbitrarily small. The algorithm works as follows:

Step 0: Assume that only the numeraire is chosen and let the number of chosen alternatives equal
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one (M=1).

Step 1: Using the data, model parameters, and either conditional or unconditional simulated error
term draws, calculate the price-normalized baseline utility values (ψk/pk) for all alternatives. Sort the
K alternatives in the descending order of their price-normalized baseline utility values. Note that the
numeraire is in the first place. Go to step 2.

Step 2: Let 1
λ̂E

=
ψM+1
pM+1

and substitute λ̂E into the following equation to obtain an estimate of Û.

Ū =
M

∑
M=2

γm

αm
ψm

[(
pm

λEψm

) αm
αm−1

− 1

]
+

ψ1
α1

(
p1

λEψ1

) α1
α1−1

. (24)

Step 3: If Û < Ū, go to step 4. Else, if Û ≥ Ū, set 1
λE

l
=

ψM+1
pM+1

and 1
λE

u
=

ψM
pM

. Go to step 5.

Step 4: Set M = M + 1. If M < K, go to step 2. Else if M = K, set 1
λE

l
= 0 and 1

λE
u
=

ψK
pK

. Go to step

5.

Step 5: Let λ̂E = (λE
l + λE

u )/2 and substitute λ̂E into the equation of step 2 to obtain an estimate
of Û. Go to step 6.

Step 6: If |λE
l − λE

u | ≤ tolλ or |Û − Ū| ≤ tolU , go to step 7. Else if Û < Ū, update λE
u =

(λE
l + λE

u )/2 and go to step 5. Else if Û > Ū, update λE
l = (λE

l + λE
u )/2 and go to step 5.

Step 7: Compute the optimal Hicksian consumption levels for the first M alternatives in the above
descending order using Equation (22). Set the remaining alternative consumption levels to zero and
stop.
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