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RNGforGPD: An R Package for
Generation of Univariate and Multivariate
Generalized Poisson Data
by Hesen Li, Hakan Demirtas, and Ruizhe Chen

Abstract This article describes the R package RNGforGPD, which is designed for the generation of
univariate and multivariate generalized Poisson data. Some illustrative examples are given, the utility
and functionality of the package are demonstrated; and its performance is assessed via simulations
that are devised around both artificial and real data.

1 Introduction and motivation

It is well known that the variance of a Poisson variable equals to its mean. However, over- and under-
dispersion in count data could make this mean-variance equality assumption unrealistically simplistic.
This situation is often caused by the heterogeneity in the population, while we implicitly assume
that the weights assigned to each event are equal when we employ the regular Poisson distribution.
This problem can be addressed by modeling count data using the generalized Poisson distribution
(GPD), which enables us to assign varying weights to events (Satterthwaite, 1942). The GPD includes
a dispersion parameter λ, which accommodates over- or under-dispersion relative to the Poisson
distribution in addition to the rate parameter θ in the regular Poisson distribution.

Scientific background

As discussed in the book of Consul (1989), the GPD has two parameters, rate and dispersion. It can be
regarded as a mixture of Poisson distributions according to Joe and Zhu (2005).

The GPD can be described mathematically as follows: Let X be a discrete random variable defined
over non-negative integers, and let Px(θ, λ) be its probability mass function (pmf). X is said to follow
the GPD with rate parameter θ and dispersion parameter λ if

Px(θ, λ) =

{
θ (θ + λx)x−1 e−θ−λx/x!, for x = 0, 1, 2...
0, for x > m if λ < 0

and zero otherwise, where θ > 0, max(−1,−θ/m) ≤ λ < 1, and m(≥ 4) is the largest positive integer
for which θ + mλ > 0 when λ < 0. The parameters θ and λ are independent, but the lower limits on λ
and m are imposed to ensure that there are at least five classes with non-zero probability when λ is
negative. λ = 0 corresponds to the Poisson distribution, while λ > 0 and λ < 0 correspond to over-
and under-dispersion relative to the regular Poisson, respectively.

Besides, if we regard the weights of each event in a time period as independent and formulate the
summation of the weights as a characteristic function, the distribution function of the sum of weights
has all the properties of the GPD after the application of the Fourier transformation (Satterthwaite,
1942).

According to Vernic (2000), the pmf for the multivariate GPD can be derived using the multivariate
reduction method. In her derivation, an m-dimensional GPD (MGP) is obtained by taking (m + 1)
independent univariate generalized Poisson random variables, Xi ∼ GPD(θi, λi), for i = 0, ..., m,
and let Y1 = X1 + X0, Y2 = X2 + X0, ..., Ym = Xm + X0, Then (Y1, ..., Ym) ∼ MGP(Θ, Λ), where
Θ = (θ0, ..., θm) and Λ = (λ1, ..., λm). The joint pmf of (Y1, ..., Ym) is

P(y1, ..., ym) = P(Y1 = y1, ..., Ym = ym)

=
min(y1,...,ym)

∑
k=0

p1(y1 − k) · ... · pm(ym − k)p0(k),

where pi is the pmf of the random variable Xi. Plugging in the pmf of Xi’s, we get
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P(y1, ..., ym) =

 m

∏
j=0

θj

 exp

−θ −
m

∑
j=1

yjλj

 ·
min(y1,...,ym)

∑
k=0

 m

∏
j=1

[θj + (yj − k)λj]
yj−k−1

(yj − k)!

 ·

· (θ0 + kλ0)
k−1

k!
exp

k

 m

∑
j=1

λj − λ0

 ,

where θ = ∑m
j=0 θj and 0! = 1.

Application fields

The applications of the GPD in science and business vary in a wide range that spans life insurance,
physics, genetic biology, and public health. Satterthwaite (1942) mentioned a case where insurance
companies model the average financial cost per claim with the GPD, which allows the weights (costs
of different claims) to be heterogeneous. Vernic (1997) modeled the joint distribution of the yearly
frequencies of hurricanes affecting the first and the third zones of the north Atlantic coastal states in
the USA as a bivariate GPD.

Consul and Famoye (2006) gave an example regarding the induction and restitution process of
chromosomes. Chromosomes can be damaged in the induction process, and repaired in the restitution
process. The dispersion parameter λ in the GPD represents an equilibrium constant which is the limit
of the ratio of the rate of induction to the rate of restitution, and thus the GPD can be used to estimate
the net free energy for the production of induced chromosome aberrations (damaged chromosomes).

Although the importance of generating the multivariate generalized Poisson data is evident, there
has not been a comprehensive computational tool specifically targeted for this particular distribution.
Demirtas (2017) compared a few random variate generation techniques for univariate GPD, and
mentioned the potential for the generation of multivariate GPD variates via correlation mapping
procedure in a similar fashion to the method of Yahav and Shmueli (2012), which is concerned with
correlated regular Poisson data generation. The R package RNGforGPD (Li et al., 2020) is developed
to provide the accommodating tools for the expanded versions of the methods that appear in Demirtas
(2017) and Yahav and Shmueli (2012), where the augmentation is mostly about allowing over- and
under-dispersion for count data in a correlated setting.

The rest of the article is organized as follows: In Section 2, we outline the algorithms for the
generation of univariate and multivariate generalized Poisson data. In Section 3, we describe the
technical details of the R package RNGforGPD. In Section 4, we present the results of simulation
studies that are designed around both artificial and real data. Finally, we conclude the paper with a
brief discussion in Section 5.

2 Algorithm

First, we describe the prerequisites for the generation of GPD data. Then, we discuss the five algorithms
for generating univariate GPD data, and the algorithm for generating multivariate GPD data, which is
based on an adaptation of Yahav and Shmueli (2012)’s method for generating multivariate regular
Poisson data. In addition, we provide guidance on how to choose an appropriate data generation
function for generating univariate GPD data at the end of this section.

Generating univariate GPD data

In general, an appropriate choice from the five algorithms in generating univariate GPD data depends
on the values of the rate (θ) and dispersion (λ) parameters. Descriptions of each of the five algorithms
(Demirtas, 2017) are given in Table 1:
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Table 1: Table of algorithms.

Algorithms Steps Notes

Inversion

1. Set ω = e−λ, X = 0, S = e−θ and
P = S

2. Generate U ∼ U(0, 1)

3. While U > S, do

(a) X = X + 1

(b) C = θ − λ + λX

(c) P = ωC(1 + λ/C)X−1P/X

(d) S = S + P

4. Deliver X

This algorithm is a general purpose
univariate random number genera-
tion method that depends on the re-
cursive relationship between consec-
utive GPD probabilities:

Px(θ, λ) =
θ − λ + λx

x
×(

1 +
λ

θ − λ + λx

)x−1
×

e−λPx−1(θ, λ),

for x ≥ 1 with P0(θ, λ) = e−λ.

Branching

1. Generate Y ∼ Pois(θ)

2. Set X = Y, if X = 0, deliver X

3. Generate Z ∼ Pois(λY)

4. Set X = X + Z and Y = Z, if Y = 0,
deliver X, otherwise go to the previ-
ous step

This algorithm is a distribution spe-
cific algorithm and it only works
for positive λ values. Consul and
Shoukri (1988) showed that when
X0 ∼ Pois(θ) and Xj ∼ Pois(λ),
where j = 1, 2, ...n, Y = ∑n

k=0 Xk fol-
lows the GPD with rate parameter θ
and dispersion parameter λ.

Normal
Approximation

1. Initialize m = θ(1 − λ)−1 and ν =√
θ(1 − λ)−3

2. Generate Y from a standard normal
distribution

3. X = max(0, ⌊m + νY + 0.5⌋), where
⌊.⌋ is the floor function

4. Deliver X

This algorithm uses the first two mo-
ments and a continuity correction in
generating univariate GPD data.

Build-Up

1. Set t = e−θ , X = 0, Px = t and S = Px

2. Generate U ∼ U(0, 1)

3. If U ≤ S then deliver X, otherwise
set X = X + 1, compute Px by the
probability mass function, set S = S+
Px, and return to the previous step

The cumulative distribution func-
tion (cdf) is built up by the recursive
computation of the mass probabili-
ties (Kemp, 1981).

Chop-Down

1. Set t = e−θ , X = 0 and Px = t

2. Generate U ∼ U(0, 1)

3. If U ≤ PX then deliver X, otherwise
set U = U − Px, X = X + 1, and com-
pute Px by the probability mass func-
tion, and return to the previous step

The generated uniform variate is de-
creased by an amount equal to the
cdf (Kemp, 1981).
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Generating multivariate GPD data

Yahav and Shmueli (2012) developed an algorithm for generating multivariate Poisson data using
an improved version of the NORTA method (NORmal To Anything). The NORTA method can be
used for generating multivariate regular Poisson data by simulating a p-dimensional multivariate
Normal distribution with a correlation structure RN , and then transform it into a regular Poisson
distribution using the inverse cumulative distribution function (Chen, 2001). However, Yahav and
Shmueli (2012) realized a drawback of the NORTA method for generating multivariate Poisson variates.
For lower values of rates (θ), the desired correlation matrix (ρPois) deviates seriously from the normal
approximating correlation matrix (ρN) under the NORTA method, and this problem still persists in
generating multivariate GPD data. However, the bias can be approximately corrected through an
exponential function:

ρPois = a × ebρN + c,

where

a = −
ρ̄ × ρ

ρ + ρ
, b = log

(
ρ̄ + a

a

)
, c = −a,

and ρ̄ and ρ represent the upper and lower bounds of the pair correlation, which can be calculated
using their defined equations, respectively:

ρ = corr
(

Ξ−1
λi

(U) , Ξ−1
λj

(1 − U)
)

,

ρ̄ = corr
(

Ξ−1
λi

(U) , Ξ−1
λj

(U)
)

.

In our package, we keep the corrections of correlation matrix and adapt the calculations of ρ̄ and ρ
using a simple but accurate sorting technique, which is described in Demirtas and Hedeker (2011).
We adapt Yahav and Shmueli (2012)’s method and develop the algorithm for generating multivariate
generalized Poisson data. Suppose we want to generate a p-dimensional generalized Poisson data
with an arbitrary correlation matrix RGpois (which we refer to as the target correlation matrix), rate

parameter vector
−→
Θ =

{
θ1, θ2, ..., θp

}
and dispersion parameter vector

−→
Λ =

{
λ1, λ2, ..., λp

}
:

(1) Compute the intermediate correlation matrix RN from the target correlation matrix using Equation
2.2.2.

(2) Generate a p-dimensional normal vector
−→
XN with mean −→µ = 0 , variance

−→
σ2 = 1, and a correlation

matrix RN .

(3) For each value XNi , i ∈ 1, 2, ..., p, calculate the normal cdf:

Φ (XNi ) .

(4) For each Φ(XNi ), calculate the Poisson inverse cdf (quantile) with rate parameter vector
−→
Θ and

dispersion parameter vector
−→
Λ

XGpoisi = Ξ−1 (Φ (XNi )) ,

where

Φ(x) =
∫ x

−∞

1√
2σ2

e
−u2

2 du,

Ξ(x) =
x

∑
i=0

θ (θ + λi)i−1 e−θ−λi/i!.

The resulting vector
−→
X Gpois is a p-dimensional generalized Poisson vector with correlation matrix

RGpois, rate vector
−→
Θ and dispersion vector

−→
Λ .

Comparisons of five univariate methods

In designing our package, we give our users the freedom to choose their preferred methods for
generating univariate GPD data. However, users who are not familiar with the mechanisms of
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generating univariate GPD might not know how to choose the best method for their simulation
scenarios. Demirtas (2017) evaluated the relative advantages and disadvantages of the five methods
for generating univariate GPD data in terms of unbiasedness, variability, and speed in simulation
studies. We find the results he found are instructive on choosing the appropriate methods for package
users, so we summarize his findings as follows:

• When the rate parameter θ is large, Inversion method and Branching method have the best
accuracy.

• When the dispersion parameter λ is large, Inversion method and Branching method have better
accuracy, while Build-Up method and Chop-Down method have better precision.

• When the population mean is large, Normal Approximation method has better precision.

• When the population variance is large, Inversion method and Branching method have better
accuracy, Build-Up method, Chop-Down method and Normal Approximation method have better
precision.

• When the population skewness is large, Inversion method and Branching method have better
accuracy, Build-Up method and Chop-Down method have better precision.

3 The RNGforGPD package

The RNGforGPD package provides functions for generating univariate and multivariate data that
follow the generalized Poisson distribution. The package is available via the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=RNGforGPD. Once the package has been
appropriately installed on a local machine, the results presented in this paper can be reproduced. The
R code used in this manuscript can be accessed at https://demirtas.people.uic.edu/RNGforGPD_
paper_LDC_R_Journal.R.

This package includes two data generating functions: GenUniGpois and GenMVGpois. The data
generating functions are supported by five core functions: CmatStarGpois, ComputeCorrGpois, Corr-
NNGpois, QuantileGpois, and ValidCorrGpois, that provide essential support to the two data gen-
erating functions. Throughout this article, we use the following input arguments as given in Table
2:

Table 2: Table of input arguments.

Input Argument Description

sample.size Number of rows to be generated in multivariate generalized Poisson
data.

no.gpois Dimension of the multivariate generalized Poisson distribution.
n Number of data points to be generated in univariate generalized

Poisson data.
p Percentile of the generalized Poisson distribution.
cmat.star Intermediate correlation matrix to be used in generating multivariate

generalized Poisson data.
corMat A positive definite target correlation matrix whose entries are within

the valid limits.
theta.vec A vector of rate parameters in the multivariate generalized Poisson

distribution.
lambda.vec A vector of dispersion parameters in the multivariate generalized

Poisson distribution.
theta Rate parameter in the univariate generalized Poisson distribution.
lambda Dispersion parameter in the univariate generalized Poisson distribu-

tion.
method Method to be used in generating univariate generalized Poisson data.
details Boolean parameter for users to decide whether to display the specified

and empirical values of parameters.
verbose Boolean parameter for users to decide whether to display traces or

not.

Table 3 summarizes each function in the RNGforGPD package:

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=RNGforGPD
https://demirtas.people.uic.edu/RNGforGPD_paper_LDC_R_Journal.R
https://demirtas.people.uic.edu/RNGforGPD_paper_LDC_R_Journal.R


CONTRIBUTED RESEARCH ARTICLE 178

Table 3: Table of functions.

Function type Function name Description

Data generating
functions

GenUniGpois Generates univariate GPD variables
GenMVGpois Generates univariate GPD variables

Core functions

CmatStarGpois Computes the intermediate correlation matrix
ComputeCorrGpois Computes correlation bounds
CorrNNGpois Adjusts the target correlation
QuantileGpois Computes the quantile for GPD
ValidCorrGpois Validates the correlation matrix

Their functionality, in the context of generalized Poisson data generation, is described in the next
several subsections:

GenUniGpois

GenUniGpois generates univariate data that follow the GPD with pre-specified rate and dispersion
parameters using appropriate methods according to different values of θ and λ as described in the
previous section. It takes theta, lambda, n, details, and method as input arguments. A warning will
be displayed if the method chosen by user is inappropriate considering the characteristics of each
method. For example, the Normal Approximation method does not work well for θ < 10. In that case,
a warning message shows up suggesting the user to choose a working method according to their
specific θ and λ parameters. Also, Branching method only works for positive λ values.

GenMVGpois

GenMVGpois, also referred to as the "engine" function in our package, generates multivariate GPD data.
It generates multivariate data that follow the GPD with pre-specified rate parameter vector, dispersion
parameter vector, and an intermediate correlation matrix. Its functionality depends on all the other
functions in the package (except for GenUniGpois). Besides, it requires the rmvnorm function from the
mvtnorm (Genz et al., 2020) package, the is.positive.definite function from the corpcor (Schafer
et al., 2017) package, and the nearPD function from the Matrix (Bates and Maechler, 2019) package.
It takes sample.size, no.gpois, cmat.star, theta.vec, lambda.vec, and details as input arguments.
The cmat.star argument is the intermediate correlation matrix, and is later used to obtain the target
correlation matrix using the inverse cdf transformation method in GenMVGpois. This argument needs
to be executed using the CmatStarGpois function before it can be used by the GenMVGpois function.

Generation of the multivariate GPD data is more complex than that of the univariate GPD data
due to the restrictions on the correlation matrix. These requirements can also be verified by the core
functions as explained below.

CmatStarGpois and CorrNNGpois

CmatStarGpois function computes an intermediate correlation matrix, that will be used to obtain the
target correlation matrix, using the inverse cdf transformation method in GenMVGpois. Because the
target correlation matrix has to be positive definite and its entries must be within the correlation
bounds, therefore CmatStarGpois requires the functionality of both ValidCorrGpois and CorrNNGpois.
ValidCorrGpois checks the validity of the values of pairwise correlations including positive definite-
ness, symmetry, and correctness of the dimensions. CorrNNGpois adjusts the realized correlation to the
target correlation bounds.

The following example shows the use of CorrNNGpois for adjusting the realized correlation to
the targeted correlation bounds, and CmatStarGpois for computing intermediate values of pairwise
correlations between three GPD variates.

set.seed(3406)
CorrNNGpois(c(0.1, 10), c(0.1, 0.2), 0.5)
#> [1] 0.8016437
lambda.vec <- c(-0.2, 0.2, -0.3)
theta.vec <- c(1, 3, 4)
M <- c(0.352, 0.265, 0.342)
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N <- diag(3)
N[lower.tri(N)] <- M
TV <- N + t(N)
diag(TV) <- 1
cstar <- CmatStarGpois(TV, theta.vec, lambda.vec, verbose = FALSE)
cstar
#> [,1] [,2] [,3]
#> [1,] 1.0000000 0.3943785 0.2946171
#> [2,] 0.3943785 1.0000000 0.3601862
#> [3,] 0.2946171 0.3601862 1.0000000

If the intermediate correlation matrix is not positive definite, the nearest positive definite matrix
will be used.

QuantileGpois

QuantileGpois function computes the quantile for the generalized Poisson distribution for specified
values of percentile, θ and λ parameters. This function is of great importance because it realizes
the NORTA method (Chen, 2001) by inversely transforming the normal cdf to GPD quantiles. The
example below shows the use of QuantileGpois for computing the quantile of a generalized Poisson
distribution given θ, λ, and the percentile of the variate.

QuantileGpois(0.98, 1, -0.2, details = TRUE)
#> x = 0, P(X = x) = 0.3678794, P(X <= x) = 0.3678794
#> x = 1, P(X = x) = 0.449329, P(X <= x) = 0.8172084
#> x = 2, P(X = x) = 0.1646435, P(X <= x) = 0.9818519
#> When lambda is negative, we need to account for truncation error
#> The adjusted CDF are: 0.3746792 0.8323133 1
#> [1] 2

The corresponding cdf are adjusted to account for truncation error when λ < 0 as the warning
shows above. Besides, λ must be greater than or equal to − θ/4 when λ < 0.

ComputeCorrGpois and ValidCorrGpois

Theoretically, correlation bounds (both Pearson and Spearman correlations) for pairwise random
variables are between -1 and 1. However, correlation bounds in practice are often narrower than their
theoretical limits due to the restrictions imposed by the marginal distributions. Given vectors of θ and λ
values, ComputeCorrGpois computes the pairwise correlation bounds between any pair of generalized
Poisson variables using the Generate, Sort, and Correlate (GSC) algorithm described in Demirtas and
Hedeker (2011). It is also an integral part of ValidCorrGpois function that examines whether values
of pairwise correlation matrix fall within the limits imposed by the marginal distributions. Besides,
ValidCorrGpois checks positive definiteness, symmetry, correctness of the dimensions of the input
correlation matrix. The following example demonstrates the use of both functions:

set.seed(86634)
ComputeCorrGpois(c(3, 2, 5,4), c(0.3, 0.2, 0.5, 0.6), verbose = FALSE)
#> $min
#> [,1] [,2] [,3] [,4]
#> [1,] NA -0.8441959 -0.8523301 -0.8040863
#> [2,] -0.8441959 NA -0.8364747 -0.7861681
#> [3,] -0.8523301 -0.8364747 NA -0.7966635
#> [4,] -0.8040863 -0.7861681 -0.7966635 NA

#> $max
#> [,1] [,2] [,3] [,4]
#> [1,] NA 0.9838969 0.9937024 0.9869316
#> [2,] 0.9838969 NA 0.9872343 0.9819031
#> [3,] 0.9937024 0.9872343 NA 0.9941324
#> [4,] 0.9869316 0.9819031 0.9941324 NA

ValidCorrGpois(matrix(c(1, 0.9, 0.9, 1), byrow = TRUE, nrow = 2),
c(0.5, 0.5), c(0.1, 0.105), verbose = FALSE)

#>[1] TRUE
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The following diagram shows the dependencies of the functions in the RNGforGPD package, the
arrows suggest that the function on the tail of each arrow depends on the function on its head:

GenMVGpois −→



GenUniGpois

ValidCorrGpois −→


GenUniGpois

ComputeCorrGpois −→ GenUniGpois

is.positive.definite*

CorrNNGpois −→ GenUniGpois

CmatStarGpois −→


ValidCorrGpois

CorrNNGpois

is.positive.definite*

nearPD*

QuantileGpois

rmvnorm*

* indicates that the function is from another R package.

4 Simulation studies

In this section, we present three examples that hinge upon one artificial and two real data-based
scenarios. We demonstrate the functionality of the package through simulating GPD data based on
the parameter estimates (rate parameter θ and dispersion parameter λ) and compare the simulated
empirical estimates with the specified parameters,

θ =

√
µ3

σ2 , λ = 1 −
√

µ

σ
. (1)

The most intuitive way to check the legitimacy of the simulation results is to compare the estimated
rate and dispersion parameters to the specified quantities. Moreover, to further verify the simulation
results for multivariate GPD, we calculate the first four moments via simulated data and compare them
with the theoretical (specified) moments since most real life distributions are typically characterized
by their first four moments. The expressions for the mean (µ), variance (σ2), skewness (ν1) and excess
kurtosis (ν2) derived by Consul and Famoye (2006) are as follows:

µ = θ (1 − λ)−1 , σ2 = θ (1 − λ)−3 , ν1 =
1 + 2λ

(θ (1 − λ))1/2 , ν2 =
1 + 8λ + 6λ2

θ (1 − λ)
. (2)

As can be seen from the variance expression, λ = 0 corresponds to the standard Poisson dis-
tribution, λ > 0 and λ < 0 signify over- and under-dispersed count data relative to the Poisson,
respectively.

Artificial data modeled via multivariate GPD

In this example, we generate a four-dimensional Poisson data of size 2,000 based on 1,000 replications.

One of its marginal random variables is distributed as a regular Poisson distribution, and the other
three follow the GPD with different rate and dispersion parameters. The specifications on the rate and
dispersion parameters of the four Poisson distributions are listed below:

• Variable 1. Ordinary count data (regular Poisson data): mean 2.00, variance 2.00 with rate
parameter 2

• Variable 2. Over-dispersed count data (GPD): mean 5.00, variance 13.89 with rate parameter 3,
dispersion parameter 0.4

• Variable 3. Over-dispersed count data (GPD): mean 10.00, variance 40.00 with rate parameter 5,
dispersion parameter 0.5

• Variable 4. Under-dispersed count data (GPD): mean 44.00, variance 28.16 with rate parameter
55, dispersion parameter -0.25

As we are generating multivariate GPD data, we need to specify a positive definite correlation
matrix whose entries are within the feasible lower and upper bounds. The specified correlations
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and the empirical results that are obtained through averaging the correlation matrix across 1,000
replications are shown below:

Table 4: Artificial data: specified and empirical correlation matrices.

Specified Y1 Y2 Y3 Y4

Y1 1.0000 0.1521 0.2652 0.2428
Y2 0.1521 1.0000 -0.6475 0.1645
Y3 0.2652 -0.6475 1.0000 -0.2522
Y4 0.2428 0.1645 -0.2522 1.0000

Empirical Y1 Y2 Y3 Y4

Y1 1.0000 0.1520 0.2676 0.2445
Y2 0.1520 1.0000 -0.6499 0.1654
Y3 0.2676 -0.6499 1.0000 -0.2517
Y4 0.2445 0.1654 -0.2517 1.0000

Below is the table of empirical θ’s and λ’s for four marginals compared to the specified θ’s and λ’s
across 1,000 replications:

Table 5: Specified and empirical θ’s and λ’s for four marginals.

Parameter Comparison Variable 1 Variable 2 Variable 3 Variable 4

Specified 2.0000 3.0000 5.0000 55.0000
Rate (θ)

Empirical 1.9994 3.0041 4.9930 55.1155

Specified 0.0000 0.4000 0.5000 -0.2500
Dispersion (λ)

Empirical 0.0004 0.3996 0.5004 -0.2527

We can see that the empirical θ’s, λ’s and correlation matrix of the data generated using the
GenMVGpois function are very close to the specified true parameters. The table below compares their
first four moments:

Table 6: Artificial data: specified and empirical moments.

Moments Comparison Variable 1 Variable 2 Variable 3 Variable 4

Specified 2.0000 5.0000 10.0000 44.0000
Mean(µ)

Empirical 2.0001 5.0036 9.9949 43.9975

Specified 2.0000 13.8889 40.0000 28.1600
Variance(σ2)

Empirical 2.0016 13.8809 40.0505 28.0374

Specified 0.7071 1.3416 1.2649 0.0603
Skewness(ν1) Empirical 0.7079 1.3397 1.2669 0.0595

Specified 0.5000 2.8667 2.6000 -0.0091
Kurtosis(ν2) Empirical 0.5018 2.8581 2.6085 -0.0092

Tables 6 and 7 show that the empirical first four moments of the generated GPD data are very
close to the specified ones, indicating the algorithm of generating the data properly captures the true
parameter values with negligible deviations.
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Table 7: Artificial data: per cent difference between empirical and specified moments.

Moments Variable 1 Variable 2 Variable 3 Variable 4

Mean (µ) 0.01% 0.07% 0.05% 0.01%
Variance (σ2) 0.08% 0.06% 0.13% 0.44%
Skewness (ν1) 0.11% 0.14% 0.16% 1.29%
Kurtosis (ν2) 0.36% 0.30% 0.33% 1.72%

Figure 1: Artificial data example: Empirical values versus specified correlations across 1,000 replica-
tions (four out of six unique pairwise correlations). Trace plot of empirical correlations that appear to
closely approximate the specified correlations across 1,000 replications.

To further illustrate the precision of the algorithm, we use the entries (1, 2), (1, 3), (2, 3), (3, 4)
of the empirical correlation matrices to generate the plot as shown in Figure 1 using the R package
ggplot2 (Wickham, 2016). The dashed lines represent the specified correlation values, the figure shows
that the empirical correlation values across 1,000 iterations fluctuate around the specified ones within
reasonably small ranges.

Epilepsy rates modeled via univariate GPD

The epilepsy data (Thall and Vail, 1990) available from the R package robustbase (Maechler et al., 2020)
were collected from a randomized clinical trial investigating the treatment effect of an anti-epileptic
drug called Progabide, which was originally conducted by Leppik (1985). In this clinical trial study,
59 patients suffering from simple or complex partial seizures were randomized to groups receiving
either the anti-epileptic drug Progabide or a placebo in addition to standard chemotherapy. The
baseline number of seizures occurred was measured for each patient followed by four successive
post-randomization clinic visits with the number of seizures occurring over the previous two weeks
reported. Although all patients were crossed over to the other treatment, we are only interested
in modeling the number of seizures at baseline and the four pre-crossover follow-up responses for
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each patient as a realization of GPD using our package. The number of seizures that occur on a
patient follows a Poisson distribution by assuming that each patient is independent of each other,
and we regard them as fixed unit "intervals". In this scenario, the GPD is more appropriate than the
ordinary Poisson distribution in modeling the count data since the patients generally do not exhibit
the characteristics of homogeneity in real life.

Univariate GPD simulation with small sample size

The data set has a relatively small sample size of 59, and we set the number of replications as 1,000.
First, we simulate univariate GPD data based on the baseline seizure counts measured. The true rate
(θ) and dispersion (λ) parameters used to generate univariate GPD data are calculated by the method
of moments in which the functions of parameters are set to equal to the moment estimates of the data.
The simulation results of the five univariate GPD generation algorithms are presented in the table
below:

Table 8: Epilepsy data (baseline seizure counts): specified and empirical parameters using the original
sample size of 59.

Parameters Specified Branching Inversion Build-Up Chop-Down Normal

Rate (θ) 6.4904 6.7701 6.7548 6.8478 6.8594 7.9017
Dispersion (λ) 0.7921 0.7817 0.7821 0.7773 0.7770 0.7597

The first column lists the true values of rate and dispersion parameters calculated by the method
of moments. Overall, the empirical rate parameters overestimate the true rate parameters, and the
empirical dispersion parameters underestimate the true dispersion parameters. We note that the
Normal Approximation method performs badly, perhaps due to the limitation of its approximation to
the Poisson distribution with a small rate parameter.

Estimation problems caused by simulating GPD data using a small sample size

We can infer from the above simulation results that θ̂ and λ̂ calculated using each of the five univariate
approaches overestimates and underestimates the true θ and true λ, respectively, under a small sample
size scenario. This behavior of the estimators can be explained by a close examination of the Equation
(1):

θ =

√
µ3

σ2 , λ = 1 −
√

µ

σ
.

Since under a small sample size, the sample variance σ̂2 underestimates the true variance σ2.

Assuming that µ̂ is a consistent estimator of µ, θ̂ =
√

µ̂3

σ̂2
overestimates the true θ, and λ̂ = 1 −

√
µ̂

σ̂

underestimates the true λ.

Univariate GPD simulation with large sample size

To alleviate this over/under estimation problem and demonstrate the performance of our package, we
use the true θ and λ parameters calculated from the epilepsy baseline seizure counts data to set up a
new simulation scenario where the sample size is increased from 59 to 2,000 while maintaining the
original distributional properties. The simulation results under this scenario are shown in the Table 9
below:

Table 9: Epilepsy data (baseline seizure counts): specified and empirical parameters using an aug-
mented sample size of 2,000.

Parameters Specified Branching Inversion Build-Up Chop-Down Normal

Rate (θ) 6.4904 6.4973 6.4953 6.6879 6.7043 7.8181
Dispersion (λ) 0.7921 0.7919 0.7920 0.7845 0.7841 0.7619
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We note that the Build-up and Chop-Down methods do not work as well as the Branching and
Inversion methods, which capture the true rate and dispersion parameters of the data. The Normal
Approximation method still does not perform well in the large sample scenario.

Physician visits modeled via multivariate GPD

Deb and Trivedi (1997) conducted research on 4,406 individuals, aged 66 and over, who are covered by
Medicare (a public insurance program). The data are available as DebTrivedi.rda in the R package
MixAll (Iovleff, 2019). For this data set, we consider the multivariate generation of two mutually
exclusive measures of utilization variables, one pathologic variable, and one demographic variable:
visits to a physician in an office setting (OFP), visits to a physician in a hospital outpatient setting
(OPP) adjusted by adding 1 to avoid computational complexities, the number of chronic diseases and
conditions (NUMCHRON), and the years of education received (SCHOOL). The simulation results
based on 1,000 replications are shown below:

Table 10: DebTrivedi data: specified and empirical θ’s and λ’s for four marginals.

Parameter Comparison OFP SCHOOL OPP + 1 NUMCHRON

Specified 2.0529 8.8291 0.6342 1.4188
Rate (θ)

Empirical 2.0545 8.8345 0.6357 1.4191

Specified 0.6445 0.1420 0.6378 0.0799
Dispersion (λ)

Empirical 0.6442 0.1416 0.6373 0.0801

Table 11: DebTrivedi data: specified and empirical correlation matrices.

Specified Y1 Y2 Y3 Y4

Y1 1.0000 0.0644 0.0681 0.2619
Y2 0.0644 1.0000 -0.0122 -0.0658
Y3 0.0681 -0.0122 1.0000 0.1008
Y4 0.2619 -0.0658 0.1008 1.0000

Empirical Y1 Y2 Y3 Y4

Y1 1.0000 0.0646 0.0743 0.2688
Y2 0.0646 1.0000 -0.0120 -0.0660
Y3 0.0743 -0.0120 1.0000 0.1066
Y4 0.2688 -0.0660 0.1066 1.0000

Table 12: DebTrivedi data: specified and empirical moments.

Moments Comparison OFP SCHOOL OPP + 1 NUMCHRON

Specified 5.7744 10.2903 1.7508 1.5420
Mean(µ)

Empirical 5.7745 10.2922 1.7528 1.5427

Specified 45.6871 13.9781 13.3426 1.8215
Variance(σ2)

Empirical 45.6190 13.9688 13.3244 1.8231

Specified 2.6794 0.4665 4.7475 1.0152
Skewness(ν1) Empirical 2.6767 0.4660 4.7371 1.0155

Specified 11.8495 0.2979 37.1841 1.2852
Kurtosis(ν2) Empirical 11.8255 0.2972 37.0193 1.2865
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Table 13: DebTrivedi data: per cent difference between empirical and specified moments.

Moments OFP SCHOOL OPP + 1 NUMCHRON

Mean (µ) 0.00% 0.02% 0.11% 0.05%
Variance (σ2) 0.15% 0.07% 0.14% 0.09%
Skewness (ν1) 0.10% 0.11% 0.22% 0.03%
Kurtosis (ν2) 0.20% 0.26% 0.44% 0.09%

Figure 2: DebTrivedi data example: Empirical values versus specified correlations across 1,000
replications (three out of six unique pairwise correlations). Trace plot of empirical correlations that
appear to closely approximate the specified correlations across 1,000 replications.

Graphical tools further verify the simulation results: In Figure 2, we see that a few randomly
selected empirical correlations (entries (1, 2), (1, 4), (2, 4)) across 1,000 replications fluctuate around the
specified quantities within reasonably small ranges, suggesting that the algorithm is consistent and
efficient in capturing the desired values.

We evaluate the performance of the package through a comparison between the theoretical
and empirical first four moments and parameters, as we reported earlier in the manuscript. As
correctly indicated by a reviewer, an additional assessment that involves identifying the proximity
between theoretical and empirical pmf’s may provide further support for the software tool under
consideration. In this spirit, we show two plots (Figure 3 and Figure 4) that visually validate the
feasibility of our multivariate GPD generating algorithm. In Figure 3, we compare the theoretical and
empirical marginal probabilities using each of the four random variables specified in the artificial data
example. The green and red dots represent the theoretical and empirical probabilities, respectively.
The theoretical probabilities are calculated based on the pmf of each univariate GPD when its rate
and dispersion parameters are specified. The empirical probabilities are marginally extracted from
the multivariate data simulated in the artificial data example. We observe that the empirical and
theoretical probabilities align closely, which suggests that our algorithm can accurately simulate data
that follow the specified GPD marginally. In Figure 4, we show a comparison plot between specified
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and empirical correlations in an attempt to examine if our multivariate GPD generating algorithm can
reasonably simulate the specified correlations. We specify a bivariate GPD using the variable 2 and
variable 4, as previously defined in the artificial data example. The specified correlations range from
-0.89 to 0.86 with an increasing step size of 0.05, which are within the lower and upper correlation
bounds, as verified using the ComputeCorrGpois function. For each specified correlation, we generate
a sample of 100 observations with 50 replications, and calculate the average empirical correlation. The
plot shows that empirical correlations closely approximate the specified correlations for all scenarios.

Figure 3: Comparison of theoretical and empirical marginal probabilities. The plot indicates that the
empirical marginal probabilities closely approximate the theoretical marginal probabilities.

Figure 4: Comparison of specified and empirical correlations. The slope of the red dashed line is one,
and is used for calibration. The blue solid line represents the empirical correlations plotted against the
specified correlations at varying specifications.
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5 Discussion

Throughout this paper, we have demonstrated the functionality and performance of the RNGforGPD
package. This package is an accurate and computationally efficient tool in random generation of
both univariate and multivariate data that follow the generalized Poisson distribution. Overall, the
performance of the algorithm is decent. Deviations between the specified and average empirical
parameter values are within tolerable limits in both the univariate and multivariate data generation
cases. Our simulation studies suggest that this package successfully implements the algorithms in
both artificial and real life scenarios as long as there are no specification errors and the correlations
are within the feasible limits (Demirtas and Hedeker, 2011). In situations such complications occur,
appropriate warning or error messages will be generated to alert the user. The simulation results we
present can be regarded as a compelling evidence for capturing the characteristics of both rate and
dispersion parameters (naturally the first four moments that are functions of these quantities) as well
as the true association structure in the multivariate cases with only minor differences. In summary, the
RNGforGPD package provides a valuable tool for investigators who need a generalized Poisson data
generation mechanism in their research.
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