Spatial statistics for infectious diseases are important because the spatial and temporal scale over which transmission operates determine the dynamics of disease spread. Many methods for quantifying the distribution and clustering of spatial point patterns have been developed (e.g.
The transmission process which drives an epidemic can be characterized
by the spatial distance separating linked cases. When these transmission
events accumulate over time, they are observed as areas of elevated
disease prevalence. Knowledge of the extent of the affected area and
where new cases may arise is crucial for many disease control strategies
(e.g. ring vaccination, vector control etc). In epidemiology, case
occurrence data—(
In the broader field of spatial statistics, there are many methods that
measure the spatial intensity or clustering of a generic point process
on a Cartesian (
These classic spatial measures are limited in their ability to describe
infectious disease dynamics primarily because they treat case occurrence
data as a generic point process. The FOFM and FOSM measures use
quadrature, which make them vulnerable to error associated with data
aggregation (Robinson 2009) and the modifiable areal unit
problem (Openshaw and Taylor 1979). The SOSM measures, like the
We describe these two measures of spatial dependence for infectious
diseases and show how they can be calculated with the
IDSpatialStats R
package in the following three sections. First, we introduce a function
which simulates infectious disease spread as a spatial branching
process. This function is primarily intended to simulate example
datasets for the est.transdist
family of functions and
We have implemented these tools in the IDSpatialStats R package
version 0.3.5 and above. The latest stable release depends on the
doParallel
and foreach
packages
(Microsoft and Weston 2017; Corporation and Weston 2018) and can be downloaded from CRAN.
A development version of the package is also available on Github at
https://github.com/HopkinsIDD/IDSpatialStats.
Package | Description | Citation |
---|---|---|
ads | K function for enclosed point patterns | (Pélissier and Goreaud 2015) |
DCluster | disease clustering for count data | (Gómez-Rubio et al. 2005) |
lgcp | modeling point patterns | (Taylor et al. 2013, 2015) |
with log-Gaussian Cox processes | ||
ppmlasso | modeling point patterns | (Renner and Warton 2013) |
with LASSO regularization | ||
SGCS | third order clustering of point processes | (Rajala 2017) |
sparr | spatial relative risk functions with kernel smoothing | (Davies et al. 2011) |
spatstat | comprehensive tools for analyzing | (Baddeley et al. 2016) |
point patterns in many dimensions | ||
spdep | classic statistics to test for spatial dependence | (Bivand and Piras 2015) |
splancs | kernel smoothing and Poisson cluster processes | (Rowlingson and Diggle 2017) |
We use a stochastic spatial branching process to simulate
epidemiological data in the sim.epidemic
function. Simulations begin
with an index case at trans.kern.func
argument expects a list object containing a probability distribution
function and its named arguments. For example, to simulate an epidemic
where transmission typically occurs at the local level, but long
distance transmission events sometimes occur, an exponential
transmission kernel might be used because of its long tail.
Alternatively, if transmission is expected to consistently occur within
a given range, then a normal kernel may be more appropriate.
In simulations where the basic reproductive number sim.epidemic
function accepts
either a scalar value for a constant tot.generations
, allowing simulations with a
variable
# Epidemic simulations with variable R value
R1 <- 2
R2 <- 0.5
tot.gen <- 12
R.vec <- seq(R1, R2, (R2 - R1)/(tot.gen - 1))
dist.func <- alist(n=1, a=1/100, rexp(n, a))
sim <- sim.epidemic(R=R.vec, gen.t.mean=7, gen.t.sd=2, min.cases=100,
tot.generations=tot.gen, trans.kern.func=dist.func)
head(sim, n=4)
x y t
1 0.00000 0.000000 0
2 24.46125 3.280527 3
3 -60.73475 184.885784 7
4 -12.79933 -57.798696 4
sim.plot(sim)
In (Salje et al. 2016b), we introduced a method to estimate the mean
and standard deviation of the spatial transmission kernel using case
occurrence data. These data include location
We have implemented four nested functions that are used to estimate
est.wt.matrix.weights
, est.wt.matrix
,
get.transdist.theta
, and est.transdist.theta.weights
. Although,
these functions are documented separately, they are all driven by the
est.transdist
family of functions and do not need to be run manually
unless desired.
The est.wt.matrix.weights
function builds upon code from the R0
package (Obadia et al. 2012) to calculate the basic WT matrix
(Wallinga and Teunis 2004). This matrix gives the probability that a
case at time est.wt.matrix.weights
gives a
The est.wt.matrix
function produces a WT type matrix for all
infector-infectee case pairs. Given the WT matrix produced by
est.wt.matrix.weights
and total case count est.wt.matrix
via the basic.wt.weights
argument, or if
this argument is NULL
, the est.wt.matrix.weights
function is called
automatically.
# Calculating Wallinga-Teunis matrices
case.times <- c(1,2,2,3,3) # times each case occurs
g.x <- c(0, 2/3, 1/3, 0, 0) # hypothetical generation time of a pathogen
mat.wts <- est.wt.matrix.weights(case.times=case.times, gen.t.dist=g.x)
# Calculate infector-infectee Wallinga-Teunis matrix
wt.mat1 <- est.wt.matrix(case.times=case.times, gen.t.dist=g.x,
basic.wt.weights=mat.wts)
wt.mat2 <- est.wt.matrix(case.times=case.times, gen.t.dist=g.x)
identical(wt.mat1, wt.mat2) # the two methods are equivalent
[1] TRUE
The get.transdist.theta
function estimates the number of transmission
events est.wt.matrix
function.
Sampling all possible transmission trees is impractical for most
datasets, so this function constructs a transmission tree by randomly
selecting the infector of each case in the epidemic and then
The object theta.wts
(in the code segment below) contains a
three-dimensional array [get.transdist.theta
function samples a single
randomized transmission tree from the epidemic data, therefore we want
to simulate many iterations of this random sampling to get a better
estimate of the true distribution of
The est.transdist.theta.weights
function estimates the distribution of
get.transdist.theta
function. Its output is the same as the get.transdist.theta
function,
however, it represents the normalized probabilities after n.rep
number
of simulations.
# Estimate theta weights
case.times <- c(1,2,2,3,3) # times each case occurs
g.x <- c(0, 2/3, 1/3, 0, 0) # hypothetical generation time distribution of a pathogen
gen.time <- 1 # mean generation time
n.gen <- round((max(case.times) - min(case.times)) / gen.time) + 1 # total generations
# Calculate infector-infectee Wallinga-Teunis matrix
wt.mat <- est.wt.matrix(case.times=case.times, gen.t.dist=g.x)
# Estimated theta weights from five randomized transmission trees
theta.wts <- est.transdist.theta.weights(case.times=case.times, n.rep=5,
gen.t.mean=gen.time, t1=0, t.density=g.x)
theta.wts[,,1]
[,1] [,2] [,3]
[1,] 0.000 NaN NaN
[2,] 0.625 0.0000 NaN
[3,] 0.000 0.4375 0
To estimate the mean transmission distance over the duration of the
epidemic we must use the observed distances between case pairs given the
time they occurred est.trandsdist
estimates the overall mean est.wt.matrix.weights
, est.wt.matrix
,
get.transdist.theta
, and est.transdist.theta.weights
functions
described above to estimate the distribution of est.transdist
function calculates
The est.trandist
function requires case occurrence data—a matrix
with three columns [t1
), the maximum number of time steps (max.sep
) and maximum spatial
distance (max.dist
) to consider when estimating n.transtree.reps
).
To estimate the uncertainty around est.transdist.bootstrap.ci
that performs bootstrap iterations using
the est.transdist
function. Upon each iteration, the epidemiological
data are resampled with replacement and est.transdist.bootstrap.ci
function contains all the same arguments as
the est.transdist
function, with additional arguments defining the
number of bootstrapped iterations to perform, the high and low
boundaries of the desired confidence interval, and options for running
the bootstrap analysis in parallel.
When parallel computation is enabled (the default is
parallel = FALSE
), the function uses the makeCluster()
function of
the parallel
package to make the appropriate cluster type for the
operating system of the local machine (SOCK cluster for Windows or a
Fork cluster for Unix-like machines). The cluster is then registered as
the parallel backend for the foreach
package, which is used to run the
bootstraps in parallel. The user can define the number of cores to use
when running in parallel using the n.cores
argument. If
parallel = TRUE
and n.cores = NULL
, the function will use half the
total cores on the local machine.
# Estimate transmission distance for simulated data
set.seed(123)
dist.func <- alist(n=1, a=1/100, rexp(n, a)) # Dispersal kernel
sim <- sim.epidemic(R=2, gen.t.mean=7, gen.t.sd=2, min.cases=100,
tot.generations=8, trans.kern.func=dist.func)
# Estimate mean transmission distance
sim.transdist <- est.transdist(epi.data=sim, gen.t.mean=7, gen.t.sd=2, t1=0,
max.sep=1e10, max.dist=1e10, n.transtree.reps=10)
sim.transdist
$mu.est
[1] 92.79699
$sigma.est
[1] 91.45614
$bound.mu.est
[1] 131.2348
$bound.sigma.est
[1] 129.3385
# Estimate confidence intervals around mean
sim.transdist.ci <- est.transdist.bootstrap.ci(epi.data=sim,
gen.t.mean=7,
gen.t.sd=2,
t1=0,
max.sep=1e10,
max.dist=1e10,
n.transtree.reps=10,
boot.iter=5,
ci.low=0.025,
ci.high=0.975)
sim.transdist.ci
$mu.est
[1] 131.2124
$mu.ci.low
2.5%
128.2505
$mu.ci.high
97.5%
134.3312
An estimate of est.transdist.temporal
and est.transdist.temporal.bootstrap.ci
functions, which estimate the
change in
When applying the temporal versions of the est.transdist
functions, it
is important to consider the sample size at each time step because the
est.transdist.temporal
function estimates NA
if there are not enough unique cases
to estimate t1
argument to the first time step that
contains a sufficient sample size, or plotting results along with
cumulative sample size as we have done in Figure 3.
# Estimate temporal transmission distance for simulated data
set.seed(123)
dist.func <- alist(n=1, a=1/100, rexp(n, a)) # Dispersal kernel
sim <- sim.epidemic(R=2, gen.t.mean=7, gen.t.sd=2, min.cases=100,
tot.generations=8, trans.kern.func=dist.func)
# Estimate mean and confidence intervals at each time step
sim.temp.transdist.ci <- est.transdist.temporal.bootstrap.ci(epi.data=sim,
gen.t.mean=7,
gen.t.sd=2,
t1=0,
max.sep=1e10,
max.dist=1e10,
n.transtree.reps=10,
boot.iter=5,
ci.low=0.025,
ci.high=0.975)
head(sim.temp.transdist.ci)
t pt.est ci.low ci.high n
1 0 NA NA NA 1
2 3 NA NA NA 2
3 8 NA NA NA 3
4 9 44.61359 35.52047 52.24099 4
5 10 101.55313 43.99469 203.11247 5
6 11 189.29767 113.79560 224.79960 6
To provide an example of how the functions shown above can be applied to
real data, we estimate the mean transmission distance for the 2001
foot-and-mouth epidemic among farms in Cumbria, UK. These data can be
found in the fmd
data object included in the sparr
package
(Davies et al. 2011). It contains transformed (gen.t.mean
and gen.t.sd
arguments in the est.transdist.temporal.bootstrap.ci
function.
library(sparr)
data(fmd)
fmd <- cbind(fmd$cases$x, fmd$cases$y, fmd$cases$marks)
head(fmd, n=3)
[,1] [,2] [,3]
[1,] 333.0328 541.3405 52
[2,] 336.1428 543.3462 46
[3,] 341.4762 551.1794 38
sim.plot(fmd)
sim.plot
function. The x
and y
axis in the left plot represent
transformations of UTM coordinates in kilometers. On the right, case
counts are plotted by days since the index case. Data are provided by
the sparr
package
(Davies et al. 2011).# NOTE: this function may take a while depending on the data set
fmd.trans <- est.transdist.temporal.bootstrap.ci(epi.data=fmd,
gen.t.mean=6.1,
gen.t.sd=4.6,
t1=0,
max.sep=1e10,
max.dist=1e10,
n.transtree.reps=5,
boot.iter=10,
ci.low=0.025,
ci.high=0.975,
parallel=TRUE,
n.cores=detectCores())
par(mfrow=c(1,1))
fmd.trans[,2:4] <- fmd.trans[,2:4]/1000 # Convert to km
plot(fmd.trans$t, fmd.trans$pt.est, pch=19, col='grey', ylim=range(fmd.trans[,3:4], na.rm=T),
xlab='Time step', ylab='Estimated mean of transmission kernel (km)')
tmp <- seq(1, nrow(fmd.trans), 5)
axis(3, tmp, fmd.trans[tmp,5])
mtext('Sample size (n)', side=3, line=3)
tmp <- which(fmd.trans$n >= 30)[1]
abline(v=tmp, lty=2)
text(16, 1, 'n = 30')
tmp <- tmp:nrow(fmd.trans)
lty <- c(NA,1,2,2)
for(i in 2:4) {
low <- loess(fmd.trans[tmp,i] ~ as.vector(tmp), span=0.3)
low <- predict(low, newdata=data.frame(as.vector(tmp)))
lines(c(rep(NA, tmp[1]), low), lwd=2, lty=lty[i], col='blue')
}
est.transdist.temporal.bootstrap.ci
function showing the change in the mean transmission distance over the
course of the 2001 foot-and-mouth disease epidemic for case farms in the
fmd
data set in the sparr
package. The point estimates are plotted
as grey circles and a loess smooth of the mean estimate is plotted (blue
line) along with its 95% bootstrapped confidence intervals (dashed blue
lines). The loess smooth begins with the first time step that contains a
cumulative sample size of 30, indicated by the dashed
line.Using our approach described above, we estimated the mean transmission
distance between case farms in the sparr
package foot-and-mouth
disease data to be sparr
data set,
on the other hand, contains all case farms from only Cumbria.
Estimating the mean of the spatial transmission kernel (above) provides
information on the small spatial scale of individual transmission
events. After subsequent generations of transmission where different
transmission chains overlap in space, a larger area of elevated disease
prevalence will be observed. To describe this larger-scale process, we
introduced the
Formulation of the
To incorporate other metrics of global clustering, the IDSpatialStats
package provides wrapper functions for calculating both the cross Kcross
and PCFcross
functions from the spatstat package (Baddeley et al. 2016). These
wrapper functions allow for straightforward calculation of these
statistics using typed epidemiological data that is formatted for
IDSpatialStats functions (Figure 4).
# Calculate cross-K and cross pair correlation functions with simulated data
data(DengueSimRepresentative)
r.vals <- seq(0, 1000, 20)
labs <- seq(0, 1000, 200)
k <- get.cross.K(epi.data=DengueSimRepresentative, type=5, hom=1, het=NULL,
r=r.vals, correction='border')
head(k, n=3)
r theo border
1 0 0.000 0.000
2 20 1256.637 2166.362
3 40 5026.548 5956.887
g <- get.cross.PCF(epi.data=DengueSimRepresentative, type=5, hom=1, het=NULL,
r=r.vals, correction='border')
head(g, n=3)
r theo pcf
1 0 1 1.000000
2 20 1 1.720848
3 40 1 1.178406
par(mfrow=c(1,2))
plot(k[,3], type='l', lwd=2, xaxt='n', xlab='distance (m)', ylab='cross K function')
lines(k[,2], col='red', lty=2, lwd=2)
axis(1, at=which(r.vals %in% labs), labels=labs)
legend(-3, 4.15e6, legend=c("Theoretical Poisson process", "Observed function"),
col=c("red", "black"), lty=2:1, box.lty=0, bg='transparent',
x.intersp=0.7, y.intersp = 1.2)
plot(g$pcf, type='l', lwd=2, xaxt='n', xlab='distance (m)',
ylab='cross pair correlation function')
abline(h=1, col='red', lty=2, lwd=2)
axis(1, at=which(r.vals %in% labs), labels=labs)
A measure of relative risk that does not assume knowledge of the
underlying population distribution was developed for point pattern data
in veterinary epidemiology (Diggle et al. 2005). This function,
which is implemented in the sparr
(Davies et al. 2011) and spatstat
(Baddeley et al. 2016) packages, uses spatial kernel functions to
calculate a ratio of spatial intensity for two different point types
The get.pi
function or by using the generalized get.tau
function with
comparison.type = ’representative’
argument. The get.pi.typed
and get.tau.typed
functions can be used to assign case types based on a type
column
supplied by the data matrix. When defined dynamically, an indicator
function
# Calculate tau-statistic using get.pi.typed functions
data(DengueSimRepresentative)
type <- 2 - (DengueSimRepresentative[,'serotype'] == 1)
typed.data <- cbind(DengueSimRepresentative, type=type)
d2 <- seq(20, 1000, 20)
d1 <- d2 - 20
# Static definition of case type homology
num <- get.pi.typed(typed.data, typeA=1, typeB=2, r.low=d1, r=d2)
den <- get.pi.typed(typed.data, typeA=1, typeB=2, r.low=0, r=1e10)
head(num$pi/den$pi, n=4)
[1] 0.2641154 0.2104828 0.2451847 0.2487042
tau <- get.tau.typed(typed.data, typeA=1, typeB=2, r.low=d1, r=d2,
comparison.type = "representative") # Equivalent
head(tau, n=4)
r.low r tau
1 0 20 0.2641154
2 20 40 0.2104828
3 40 60 0.2451847
4 60 80 0.2487042
# Calculate tau-statistic using dynamic expression indicating serotype homology
ind.func <- function(a, b){
if (a[5] == 1 & b[5] == 1) {
x <- 1
} else {
x <- 2
}
return(x)
}
num <- get.pi(posmat=DengueSimRepresentative, fun=ind.func, r.low=d1, r=d2)
den <- get.pi(posmat=DengueSimRepresentative, fun=ind.func, r.low=0, r=Inf)
head(num$pi/den$pi, n=4)
[1] 5.084735 4.967885 4.605805 4.409876
tau <- get.tau(posmat=DengueSimRepresentative, fun=ind.func, r.low=d1, r=d2,
comparison.type="representative") # Equivalent
head(tau, n=4)
r.low r tau
1 0 20 5.084735
2 20 40 4.967885
3 40 60 4.605805
4 60 80 4.409876
plot(tau$r.low+tau$r/2, tau$tau, type='l', lwd=2, col='blue', xlab='distance (m)')
abline(h=1, lty=2, lwd=2, col='red')
abline(v=100)
get.tau
function
(blue line) with the theoretical value of no relative difference in
disease risk shown by the dashed red line. The vertical black line
indicates the mean of the spatial dispersal kernel (100m) used to
simulate the DengueSimRepresentative
data
set.The interpretation of the
If the underlying population distribution is unknown, then the
# Calculate tau-statistic using serotype homology and time
data(DengueSimR01)
d2 <- seq(20, 1000, 20)
d1 <- d2 - 20
# Dynamic expression indicating serotype homology and temporal proximity
ind.func <- function(a, b, t.limit=20){
if (a[5] == b[5] & (abs(a[3] - b[3]) <= t.limit)){
x <- 1
} else {
x <- 2
}
return(x)
}
num <- get.theta(DengueSimR01, ind.func, r.low=d1, r=d2)
den <- get.theta(DengueSimR01, ind.func, r.low=0, r=Inf)
head(num$theta/den$theta, n=4)
[1] 3.9148969 3.5145802 4.5963608 5.1082210
tau <- get.tau(posmat=DengueSimR01, fun=ind.func, r.low=d1, r=d2,
comparison.type="independent") # Equivalent
head(tau, n=4)
r.low r tau
1 0 20 3.914897
2 20 40 3.514580
3 40 60 4.596361
4 60 80 5.108221
plot(tau$r, tau$tau, type='l', lwd=2, col='blue', xlab='distance (m)')
abline(h=1, lty=2, lwd=2, col='red')
abline(v=100)
get.tau
with an
indicator function based on serotype homology and temporal proximity
(blue line) with the theoretical value of no relative difference in
disease risk shown by the dashed red line. The vertical black line
indicates the mean of the spatial dispersal kernel (100m) used to
simulate the DengueSimR01
data set.In the examples above, the get.pi
, get.theta
, and get.tau
function
families calculate point estimates for .bootstrap
suffix, which generates point
estimates for boot.iter
number of bootstrapped samples of the data
(Efron and Tibshirani 1994). Functions ending with a .ci
suffix are
wrappers that calculate user specified confidence intervals based on the
bootstrapped samples (Figure 7).
# Calculate variance around point estimates of the tau-statistic
data(DengueSimR02)
d2 <- seq(20, 1000, 20)
d1 <- d2 - 20
# Function indicating genotype homology
ind.func <- function(a, b){
if(a[4] == b[4]){
x = 1
} else{
x = 2
}
return(x)
}
# Bootstrapped estimates of tau
tau.boot <- get.tau.bootstrap(DengueSimR02, ind.func, r.low=d1, r=d2, boot.iter=5)
head(tau.boot, n=4)
r.low r X1 X2 X3 X4 X5
1 0 20 51.04283 49.17736 60.45922 43.36588 37.26332
2 20 40 20.80095 29.62483 26.54935 34.11416 31.32279
3 40 60 34.05415 35.66984 40.21975 31.02943 32.77966
4 60 80 30.52361 35.46972 27.77247 36.64628 32.43156
# Wrapper function of get.tau.bootstrap calculates confidence intervals
tau.ci <- get.tau.ci(DengueSimR02, ind.func, r.low=d1, r=d2, boot.iter=25)
head(tau.ci, n=4)
r.low r pt.est ci.low ci.high
1 0 20 44.05161 22.73147 59.44465
2 20 40 30.83943 19.68758 42.05249
3 40 60 37.57434 30.48664 45.78121
4 60 80 33.54134 28.12390 38.76330
plot(tau.ci$r, tau.ci$pt.est, ylim=range(tau.ci[,4:5]), type="l", lwd=2, col='blue',
xlab='distance (m)', ylab='tau')
lines(tau.ci$r, tau.ci$ci.low, lty=2, lwd=1, col='blue')
lines(tau.ci$r, tau.ci$ci.high, lty=2, lwd=1, col='blue')
abline(h=1, lty=2, lwd=2, col='red')
get.tau
with an
indicator function based on genotype homology (blue line). The dashed
blue lines show the bounds for the 95% confidence intervals calculated
by the get.tau.ci
function. The theoretical value of no relative
difference in disease risk shown by the dashed red
line.A common approach for interpreting spatial clustering statistics
includes hypothesis testing using simulation envelopes to assess whether
an observed spatial measure is statistically significant
(Ripley 1979; Baddeley et al. 2014). To enable null hypothesis
tests, we have implemented a permutation method (Good 2010)
to simulate the nonparametric distribution of .permute
suffix and then plotted with observed measures to
assess statistical significance as a function of distance (Figure
8).
# Compare tau statistic to its null distribution using permutation
data(DengueSimR02)
set.seed(123)
d2 <- seq(20, 1000, 20)
d1 <- d2 - 20
# Compare spatial dependence by time case occurs
type <- 2 - (DengueSimR02[,"time"] < 120)
typed.data <- cbind(DengueSimR02, type=type)
typed.tau <- get.tau.typed(typed.data, typeA=1, typeB=2, r.low=d1, r=d2,
comparison.type = "independent")
head(typed.tau, n=4)
r.low r tau
1 0 20 0.4040661
2 20 40 0.5471728
3 40 60 0.7897655
4 60 80 0.8901166
# Perform permutations of observed case times and locations for null distribution
typed.tau.null <- get.tau.typed.permute(typed.data, typeA=1, typeB=2, r.low=d1, r=d2,
permutations=100,
comparison.type = "independent")
head(typed.tau.null[,1:7], n=4)
r.low r X1 X2 X3 X4 X5
1 0 20 1.2570945 0.8530284 3.5019060 1.0326133 1.0775095
2 20 40 1.1448539 0.7045255 0.7224212 2.0742058 0.8754765
3 40 60 0.6947101 0.8904419 0.8249682 0.6990984 0.5128531
4 60 80 1.6266250 1.0916873 0.8326210 0.8432683 1.4815756
# 95% confidence intervals of null distribution
null.ci <- apply(typed.tau.null[,-(1:2)], 1, quantile, probs=c(0.025, 0.975))
plot(typed.tau$r, typed.tau$tau, type='l', lwd=2, ylim=range(c(typed.tau$tau, null.ci)),
xlab="distance (m)", ylab="tau")
lines(typed.tau$r, null.ci[1,], lty=2)
lines(typed.tau$r, null.ci[2,], lty=2)
abline(h=1, lty=2, lwd=2, col='red')
get.tau.typed.permute
function. The point estimate for
Conventional spatial statistics are often used to describe the intensity
or clustering of point processes. Quantifying spatial dependence of
infectious disease spread, however, requires a modified approach that
considers overlapping transmission chains and the likelihood of case
linkage. Therefore, we have implemented two types of spatial statistics
in the IDSpatialStats package (the mean transmission distance
We showed how to simulate epidemiological data and estimate transdist
family of functions provides a measure of
fine-scale spatial dependence by estimating the mean of the transmission
distance get.tau
family of functions measure spatial dependence on a larger-scale by
estimating the
The generalized structure of the get.tau
family allows for diverse
applications of the
The IDSpatialStats package is undergoing continued development. Future
directions include expanding the implementation of the
Description | Citation |
---|---|
Spatial and temporal dependence of homotypic and heterotypic Dengue | (Salje et al. 2012) |
virus serotypes over a 5 year period in Bangkok, Thailand | |
Clustering of HIV prevalence and incidence around HIV-seropositive | (Grabowski et al. 2014) |
individuals using cohort data from rural Rakai District, Uganda | |
Overview of the |
(Lessler et al. 2016) |
and illustrations using Dengue, HIV, and Measles | |
Spatial dependence of seroconverted individuals in the 2012–2013 | (Salje et al. 2016a) |
Chikungunya outbreak in the Phillipines | |
Comparison of spatial dependence in endemic transmission of Dengue | (Quoc et al. 2016) |
virus serotypes in Bangkok and Ho Chi Min City, Thailand | |
Risk of Cholera transmission within spatial and temporal zones after case | (Azman et al. 2018) |
presentation during urban epidemics in Chad and D.R. Congo | |
Summary statistic to fit micro-simulations of Cholera interventions | (Finger et al. 2018) |
to epidemic data using Approximate Bayesian Computation | |
Temporal clustering of subclinical infections and homologous serotypes | (Salje et al. 2018) |
within schools using Dengue cohort data in Thailand |
lgcp, ppmlasso, spdep, ads, spatstat, splancs, IDSpatialStats, DCluster, SGCS, sparr
Spatial, SpatioTemporal, Survival
This article is converted from a Legacy LaTeX article using the texor package. The pdf version is the official version. To report a problem with the html, refer to CONTRIBUTE on the R Journal homepage.
Text and figures are licensed under Creative Commons Attribution CC BY 4.0. The figures that have been reused from other sources don't fall under this license and can be recognized by a note in their caption: "Figure from ...".
For attribution, please cite this work as
Giles, et al., "The IDSpatialStats R Package: Quantifying Spatial Dependence of Infectious Disease Spread", The R Journal, 2019
BibTeX citation
@article{RJ-2019-043, author = {Giles, John R and Salje, Henrik and Lessler, Justin}, title = {The IDSpatialStats R Package: Quantifying Spatial Dependence of Infectious Disease Spread}, journal = {The R Journal}, year = {2019}, note = {https://rjournal.github.io/}, volume = {11}, issue = {2}, issn = {2073-4859}, pages = {308-327} }