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ManlyMix: An R Package for Manly
Mixture Modeling
by Xuwen Zhu, Volodymyr Melnykov

Abstract Model-based clustering is a popular technique for grouping objects based on a finite mixture
model. It has countless applications in different fields of study. The R package ManlyMix implements
the Manly mixture model that allows modeling skewness within data groups and performs cluster
analysis. ManlyMix is a powerful diagnostics tool that is capable of conducting investigation con-
cerning the normality of variables upon fitting of a Manly forward or backward model. Theoretical
foundations as well as description of functions are provided. All features of the package are illus-
trated with examples in great detail. The analysis of real-life datasets demonstrates the flexibility and
usefulness of the package.

Introduction

Finite mixture models provide a powerful tool to model heterogeneous data. Their flexibility, close
connection to cluster analysis, and interpretability make them increasingly appealing to researchers
and practitioners these days. The applications of finite mixture modeling can be found in all fields,
including medicine (Schlattmann, 2009), transportation (Park and Lord, 2009), dendrochronology
(Michael and Melnykov, 2016), and environment science (Gillespie and Neale, 2006), just to name a
few.

The Bayes decision rule, applied to posterior probabilities obtained in the course of fitting a
mixture model, yields a clustering result. Such a procedure is called model-based clustering. It
assumes the existence of a one-to-one correspondence between each distribution in the mixture model
and underlying data group.

If all components in the model are Gaussian distributions, the mixture is called a Gaussian mixture
model. Gaussian mixtures are very popular among practitioners due to their interpretability and
simplicity. However, when there is severe skewness in data, Gaussian mixtures models do not provide
a good fit to the data. As a result, model-based clustering might produce unsatisfactory results. In such
cases, more flexible mixtures should be adopted. Some existing software packages that provide such
functionality are listed in Table 1. Here, mixsmsn, EMMIXskew, and EMMIXuskew packages are
based on skew-normal and skew-t distributions, which are popular choices for modeling skewed data.
On the other hand, flowClust is the only package that implements a transformation-based mixture
model. It relies on the celebrated Box-Cox transformation to near-normality applied to all dimensions
within the same mixture component. This leads to extra K parameters λk in the resulting mixture.
The package is shown to model flow cytometry data effectively. In many applications, however, it is
reasonable to assume that transformation parameters can vary not only from component to component
but also from variable to variable. In this paper, we introduce the R package ManlyMix (Zhu and
Melnykov, 2016b), which provides readers with an alternative approach to modeling and clustering
skewed data. Manly mixture models (Zhu and Melnykov, 2016a) are constructed based on the Manly
back-transformation applied to each variable in multivariate Gaussian components.

The ManlyMix package implements several functions associated with Manly mixture models
including the core function for running the EM algorithm, the forward and backward model selection
procedure for eliminating unnecessary transformation parameters, and the Manly K-means algorithm,
which serves as an extension of the traditional K-means. Other capabilities of the package include
computing a Manly mixture overlap, simulating datasets from a Manly mixture, constructing density
or contour plots for a fitted model, and assessing the variability of estimated parameters. The highlights
of ManlyMix include:

Package Mixture components
flowClust (Lo et al., 2009) t mixture with Box-Cox transformation
mixsmsn (Prates et al., 2013) scale skew-normal and skew-t
EMMIXskew (Wang et al., 2013) restricted skew-normal and skew-t
EMMIXuskew (Lee and McLachlan, 2014) unrestricted skew-t

Table 1: Existing R packages for mixture modeling of skewed data.
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• providing an alternative approach to modeling heterogeneous skewed data;

• calling core functions from C for speed;

• providing excellent model interpretability through output of skewness parameters;

• preventing overfitting of the data by implementing model selection algorithms;

• offering effective assessment of mixture characteristics through the overlap calculation and
variability assessment.

This paper is organized in the following way. A brief introduction to the Expectation-Maximization
(EM) algorithm for Manly mixture models as well as the classification Expectation-Maximization (CEM)
algorithm for Manly K-means is provided in the second section. In section "Package functionality and
illustrative examples", a comprehensive description of all functions in ManlyMix is given along with
the analysis of two real-life datasets. All features of the package are illustrated in great detail. Demo
examples are constructed in section four for users to conduct further investigation of ManlyMix. In
the last section, we provide a brief summary for the paper.

Methodological and algorithmic details

Manly mixture model

Consider a dataset X1, . . . , Xn of size n, where X i’s are p-variate independent observations that are
identically distributed. The exponential (Manly) transformation to near normality is defined by

M(X; λ) =

(
eλ1X1 − 1

λ1
, . . . ,

eλp Xp − 1
λp

)T

,

where the distribution ofM(X; λk) can be effectively approximated by multivariate normal distribu-
tion for an appropriate choice of λ (Manly, 1976). M−1 represents the Manly back-transformation.
This leads to a so-called Manly mixture model given by

g(x; Ψ) =
K

∑
k=1

τkφ(M(x; λk); µk, Σk) exp{λT
k x}, (1)

where K is the number of components in the model, τk’s are mixing proportions such that ∑K
k=1 τk = 1,

and λk =
(

λk1, . . . , λkp

)T
is a p-dimensional skewness vector which controls the transformation of

the kth component. φ(·; µk, Σk) is the p-variate normal probability density function. µk and Σk are
the mean vector and variance-covariance matrix of the kth component after transformation. Ψ, as the
entire parameter vector, includes τk’s, µk’s and Σk’s.

To find the MLE of the parameter vector Ψ, the Expectation-Maximization (EM) algorithm (Demp-
ster et al., 1977; McLachlan and Krishnan, 2008) needs to be employed. Each iteration of the EM
algorithm consists of two steps, the E-step and M-step. Let s denote the iteration number. The E-step
computes the posterior probabilities

π
(s)
ik =

τ
(s−1)
k φ(M(xi; λ

(s−1)
k ); µ

(s−1)
k , Σ

(s−1)
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k′ )T xi}
(2)

based on the the parameter vector from the previous step, Ψ(s−1). The M-step updates the parameters

in each iteration. The closed-form expressions are available for the parameters τ
(s)
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(s)
k , Σ
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k and are

given by
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(3)
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For λk, closed-form solution is not available and Nelder-Mead numerical optimization of the function

Qk(λk|Ψ(s))(λk) =
n

∑
i=1

π
(s)
ik

{
log φ

(
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n
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}
+ const

(4)

gives us the estimated parameter vector.

The EM algorithm could be started with an initial partition of the data passed into the M-step.

Or the E-step is run first with initial parameters τ
(0)
k , µ

(0)
k , Σ

(0)
k , λ

(0)
k . The algorithm stops when the

convergence criterion is met. In the R package ManlyMix, we monitor the relative difference between
Q-function values from two consecutive steps. If it is smaller than a user specified tolerance level,
1e − 5 by default, the algorithm stops. This is a speedier choice due to the fact that Q-function
values are immediately available after numeric optimization of Equation 4. Such criterion is similar
to monitoring the relative difference between log-likelihood values. Upon convergence, the Bayes
decision rule assigns each observation to its cluster according to the maximized posterior probabilities
from the last E-step. The estimated label of the ith observation is given by

Ẑi = argmaxkπ̂ik. (5)

In ManlyMix, the function Manly.EM() runs the EM algorithm for a Manly mixture model and
returns estimated model parameters, posterior probabilities, as well as a classification vector. This
function is constructed in C for computational efficiency.

Pairwise overlap

Pairwise overlap, introduced by Maitra and Melnykov (2010), is a measure of the interaction between
two mixture components. If we denote ωk1,k2 as the pairwise overlap of components k1 and k2, it is
defined as the sum of two misclassification probabilities

ωk1,k2 = ωk1|k2
+ ωk2|k1

, (6)

where ωk1|k2
represents the probability that a random variable X is mistakenly classified to group k1

while it came from the component k2. For a Manly mixture, ωk1|k2
can be written as

ωk1|k2
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(7)

In ManlyMix, function Manly.overlap() estimates ωk1|k2
by sampling from corresponding distribu-

tions.

Variability assessment

The variability assessment of parameter estimates from Manly mixture model can be made by taking
the inverse of the empirical observed information matrix Ie(Ψ̂) (McLachlan and Basford, 1988) given
by

Ie(Ψ̂) =
n

∑
i=1
∇qi(Ψ̂)∇qT

i (Ψ̂), (8)
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where qi(Ψ) = ∑K
k=1 πik [log τk + log φ(M(xi; λk); µk, Σk) +λkxi] and ∇ stands for the gradient oper-

ator. We take partial derivatives in the gradient vector ∇qi(Ψ) and obtain

∂qi(Ψ)

∂τk
=

πik
τk
− πiK

τK
,

∂qi(Ψ)

∂µk
= πikΣ−1

k (M(xi; λk)− µk) ,

∂qi(Ψ)

∂vech{Σk}
= GTvec

{πik
2

Σ−1
k

(
(M(xi; λk)− µk)(M(xi; λk)− µk)

TΣ−1
k − Ip

)}
,

∂qi(Ψ)

∂λk
= −πikDkΣ−1

k (M(xi; λk)− µk) + πikxi,

where Ip is the identity matrix of size p, vech{·} operator extracts the unique elements out of a
symmetric p× p matrix and constructs a vector of length p(p + 1)/2. G is a matrix with zero’s and
one’s that enables the adoption of unique elements in a symmetric matrix (Melnykov, 2013). vec{·} is
an operator which lines up all columns of a matrix one by one to form a vector. Finally,

Dk = diag{(1 + (xi1λk1 − 1)eλk1xi1 )/λ2
k1, . . . , (1 + (xipλkp − 1)eλkp xip )/λ2

kp}.

The estimated covariance matrix can be found as I−1
e (Ψ̂), i.e., by inverting the information matrix.

Function Manly.var() in the package calculates the covariance matrix based on an estimated model
provided by function Manly.EM().

Forward and backward selection

In the Manly mixture model, there are K× p skewness parameters λkj corresponding to K components
and p variables. Such a mixture is called a full Manly mixture model. Oftentimes, some coordinates
are close to being normally distributed and the corresponding skewness parameters are unnecessary.
Forward and backward selection procedures are adopted to eliminate such parameters and improve the
model efficiency. These algorithms also prevent model-overfitting and conduct diagnostics with fitted
skewness parameters. If underlying data groups are normally distributed, the selection procedures
produce Gaussian mixture models.

The selection is based on the Bayesian information criterion (BIC) (Schwarz, 1978), which is the
most commonly used criterion in finite mixture modeling (McLachlan and Peel, 2000). The smaller BIC
is, the better fit provided by a mixture is. The forward selection procedure starts from the Gaussian
mixture model and adds one λkj at a time until no improvement in BIC value can be obtained.
The produced model is called Manly forward model (denoted as Manly F in this paper) with the
details of the method outlined in Algorithm 1. The backward model selection algorithm given in
Algorithm 2 works in the opposite direction. It starts with the full Manly mixture and drops one
skewness parameter λkj at a time until no lower BIC can be reached. The obtained model is called

Data: X1, . . . , Xn
Result: estimated model parameters by Manly forward model
Initialization: Gaussian mixture model
while the current model Mcurrent has not reached the full Manly mixture model do

1. find all zero skewness parameters in the current model Mcurrent, λ1, . . . , λt;
2. construct new models Mnew,1, . . . , Mnew,t to compare with;
3. Mnew,j sets the previous nonzero K× p− t skewness parameters and λj to be
non-zero;

4. call function Manly.EM() to run the EM algorithm for each new model;
5. initialize with the parameters of model Mcurrent to speed the algorithm;
if at least one new model has lower BIC than the original model Mcurrent then

find the smallest BIC among the new models;
the corresponding new model Mnewis selected and let Mcurrent ← Mnew.

else
break;
the current model Mcurrent is the final solution reached by Manly forward
algorithm.

end
end

Algorithm 1: Manly forward selection algorithm.
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Data: X1, . . . , Xn
Result: estimated model parameters by Manly backward model
Initialization: full Manly mixture model M f ull with K× p non-zero skewness
parameters
while the current model Mcurrent has not reached Gaussian mixture model do

1. find all non-zero skewness parameters in the current model Mcurrent, λ1, . . . , λs;
2. construct new models Mnew,1, . . . , Mnew,s to compare with;
3. Mnew,j sets the previous K× p− s skewness parameters and λj to be zero;
4. call function Manly.EM() to run the EM algorithm for each new model;
5. initialize with the parameters of model Mcurrent to speed the algorithm;
if at least one new model has lower BIC than the original model Mcurrent then

find the smallest BIC among the new models; the corresponding new model
Mnew is selected and let Mcurrent ← Mnew.

else
break;
the current model Mcurrent is the final solution reached by Manly backward
algorithm.

end
end

Algorithm 2: Manly backward selection algorithm.

the Manly backward model (Manly B). The selection algorithms are available in ManlyMix through
setting method = "forward" or method = "backward" in the Manly.select() function.

Manly K-means clustering

Manly K-means clustering is constructed based on the classification EM (CEM) algorithm (Celeux
and Govaert, 1992), which is a modification of the EM algorithm with an additional classification step.

This step involves the Bayesian decision rule (i.e., z(s)i = argmaxk π
(s)
ik ) introduced immediately after

the E-step.

It can be noticed that the traditional K-means algorithm is equivalent to the CEM algorithm based
on the mixture model provided by

g(x; Ψ) =
1
K

K

∑
k=1

φ(x; µk, σ2 I).

The model underlying the traditional K-means imposes very restrictive assumptions of the ho-
moscedasticity and spherical structure of components. We alleviate these assumptions by allowing
each component to have the covariance matrix σ2

k I and applying Manly transformation to the data.
These changes result in the model given by

g(x; Ψ) =
1
K

K

∑
k=1

φ(M(x; λk); µk, σ2
k I) exp{λT

k x}. (9)

Following the same procedure as the Manly mixture EM algorithm, each λk can be obtained separately
by straightforward numeric optimization of the function Q̃k written as

Q̃k(λk|Ψ(s−1)) =−
pn(s)

k
2

log


n

∑
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ξ
(s)
ik

n(s)
k M(xi; λk)−
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∑
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ξ
(s)
jk M(xj; λk)

T

×

n(s)
k M(xi; λk)−

n

∑
j=1

ξ
(s)
jk M(xj; λk)

+ λT
k

n

∑
i=1

ξ
(s)
ik xi + const,

where fuzzy classifications π
(s)
ik are replaced by hard assignments in the form of indicators ξ

(s)
ik =

I(z(s)i = k). If z(s)i = k holds true, ξ
(s)
ik takes a value of 1; otherwise ξ

(s)
ik is equal to 0. The current size

of the kth cluster is n(s)
k = ∑n

i=1 ξ
(s)
ik .

In this way, each step of the Manly K-means algorithm updates the partition and parameter
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estimates. The partition update is given by

z(s)i = argmin
k

{
||M(xi; λ

(s−1)
k )− µ

(s−1)
k ||2/(2(σ2

k )
(s−1))− (λ

(s−1)
k )T xi +

p
2

log(σ2
k )

(s−1)
}

,

while the parameters are estimated through the following expressions:

λ
(s)
k = argmax
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k (λk), µ
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ξ
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(s)
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(s)
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(s)
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(10)

The Manly K-means algorithm is incorporated in the R package ManlyMix through the function
Manly.Kmeans(). It can be used when the number of data points in each cluster is about the same and
the transformed clusters are close to being spherical. It shows faster performance as the inversion of
potentially large covariance matrices is not needed.

Package functionality and illustrative examples

All functions available in the package ManlyMix are listed with brief descriptions in Table 2. In this
section, we demonstrate the utility of each function through a synthetic dataset and the analysis of
two real-life datasets: Iris (Anderson, 1935; Fisher, 1936) and AIS (Cook and Weisberg, 1994).

Function Description
Manly.EM() Runs the EM algorithm for a Manly mixture model

Manly.select()
Runs forward and backward selection methods for a Manly mixture
model

Manly.Kmeans() Runs the Manly K-means clustering
Manly.overlap() Estimates the overlap values for a Manly mixture
Manly.sim() Simulates datasets from Manly mixture models

Manly.var()
Performs variability assessment of Manly mixture model parameter
estimates and returns confidence intervals

Manly.plot() Constructs a plot to display model-fitting and clustering
ClassAgree() Calculates the confusion matrix and number of misclassifications
Manly.model() Serves as a wrapper function for Manly mixture modeling

Table 2: Summary of functions implemented in ManlyMix.

Illustrative example 1

In this subsection, a Manly mixture is constructed with user-specified parameters. The overlap values
of this mixture is estimated through function Manly.overlap(). Then function Manly.sim() simulates
a dataset from the mixture along with a true membership vector.

Step a: Mixture specification

Now we demonstrate the procedure to construct a Manly mixture step by step. First, the user need
to specify the number of components (assigned to K) and variables (assigned to p). In this case, we
have a three-component bivariate mixture.

library(ManlyMix)
K <- 3
p <- 2
set.seed(123)

If the mixture probability density function of interest is written as

g(x) =0.25e0.2x1+0.25x2 φ

((
e0.2x1−1

0.2
e0.25x2−1

0.25

)
;
(

4.5
7

)
,
(

0.4 0
0 0.4

))

+0.3e0.5x1+0.35x2 φ

((
e0.5x1−1

0.5
e0.35x2−1

0.35

)
;
(

4
8

)
,
(

1 −0.2
−0.2 0.6

))

+0.45e0.3x1+0.4x2 φ

((
0.3ex1−1

0.3
e0.4x2−1

0.4

)
;
(

5
5.5

)
,
(

2 −1
−1 2

))
,

(11)
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we construct the mixture by assigning the model parameter values to la (matrix input of size K× p),
tau (vector input of length K), Mu (matrix input of size K × p) and S (array input of dimensionality
p× p× K), respectively.

tau <- c(0.25, 0.3, 0.45)
Mu <- matrix(c(4.5, 4, 5, 7, 8, 5.5),3)
la <- matrix(c(0.2, 0.5, 0.3, 0.25, 0.35, 0.4),3)
S <- array(NA, dim = c(p, p, K))
S[,,1] <- matrix(c(0.4, 0, 0, 0.4), 2)
S[,,2] <- matrix(c(1, -0.2, -0.2, 0.6), 2)
S[,,3] <- matrix(c(2, -1, -1, 2), 2)

Step b: Overlap assessment

It is desirable to be capable of understanding the degree of interaction among mixing components
to assess clustering complexity. Function Manly.overlap(), employing the measure of pairwise
overlap, is implemented for this purpose. It has the following syntax:

Manly.overlap(tau, Mu, S, la, N = 1000)

with arguments la, tau, Mu, S and N. Here, N represents the number of samples simulated from the given
mixture for pairwise overlap estimation. The larger N is, the more precise the calculation is. By default,
1000 samples are employed. Four objects are returned by the function, including the misclassification
probability matrix $OmegaMap, pairwise overlap $OverlapMap, average mixture overlap $BarOmega,
and maximum mixture overlap $MaxOmega. Here, element $OmegaMap[k2,k1] corresponds to ωk1|k2

in
Equation 7. In this case, for example, ω3|2 = 0.046 means that a random variable coming from the
second component has approximate probability of 0.046 to be misclassified to group 3. ω3|3 = 0.933
represents the probability that a point belonging to group 3 is correctly assigned to this group. Each
row of $OmegaMap sums up to 1. Then, pairwise overlaps ωk1,k2 given in Equation 6 are provided in
the $OverlapMap. Among all pairwise overlaps (ω1,2, ω1,3 and ω2,3), ω2,3 yields the maximum value
of 0.097 and produces $MaxOmega. The average of these three values, on the other hand, results in
$BarOmega being 0.08066667.

A <- Manly.overlap(tau, Mu, S, la)
print(A)
## $OmegaMap
## [,1] [,2] [,3]
## [1,] 0.909 0.058 0.033
## [2,] 0.038 0.916 0.046
## [3,] 0.016 0.051 0.933
##
## $OverlapMap
## Components Overlap
## 1 (1, 2) 0.096
## 2 (1, 3) 0.049
## 3 (2, 3) 0.097
##
## $BarOmega
## [1] 0.08066667
##
## $MaxOmega
## [1] 0.097

It can be seen that in the considered case, function Manly.overlap() calculates all characteris-
tics based on the input of true model parameters. If parameters la, tau, Mu and S are estimated,
Manly.overlap() provides estimates of misclassification probabilities and overlap values. As for
high-dimensional data, we can not readily visually assess the interaction between data groups, such
output helps approximate the proximity of clusters and discover properties associated with them.

Step c: Data generation

Function Manly.sim() simulates Manly mixture datasets based on user-specified model parameters.
It employs the built-in R function rmultinom() for assigning data points to K mixture components
according to the mixing proportion τk’s. Then the function simulates normally distributed data
points by function rnorm(). The covariance structures Σk are applied to the data points before back-
transforming them to Manly distributed components.

The Manly.sim() command has the following syntax:
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Manly.sim(n, la, tau, Mu, S)

The user can input n as the desired sample size. Here, a dataset of 30 observations is simulated
from Equation 11 and data matrix $X as well as its true membership vector $id are returned.

n <- 30
B <- Manly.sim(n, la, tau, Mu, S)
print(B)
## $X
## [,1] [,2]
## [1,] 3.259485 3.882271
## [2,] 3.247362 4.269247

Part of the output is intentionally omitted.

## [30,] 3.310186 2.974554
##
## $id
## [1] 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3

Illustrative example 2: Iris dataset

The Iris dataset (Anderson, 1935; Fisher, 1936) has 150 observations and 4 variables that represent
sepal length, sepal width, petal length, and petal width. Three species, Iris setosa, Iris versicolor, and Iris
virginica, have equal representation, consisting of 50 observations each. The function Manly.EM() fits a
Manly mixture to the Iris dataset and 95% confidence intervals of the model MLE are provided by
Manly.var(). The Manly F and Manly B models are obtained by Manly.select(). The Manly K-means
algorithm clusters the dataset through Manly.Kmeans().

Step a: Data preparation

Manly.EM() requires input of a matrix object X, where rows of X represent p-variate observations.
If X is univariate data with vector input, it will be automatically transformed into a matrix of just one
column. Thus, X has the dimensionality n× p. In this case, we transform the Iris dataset into a matrix
of dimensionality 150× 4 and assign it to X.

library(ManlyMix)
K <- 3
p <- 4
X <- as.matrix(iris[,-5])

Step b: Initialization of the EM algorithm

Good initialization strategy of the EM algorithm is important to improve chances of finding a
correct result. There are two ways for the user to initialize the Manly.EM() function. One is by means
of providing the initial partition of the data id (vector input of length n) and skewness parameters
la. Here, it needs to be noticed that the specification of la matrix serves as an indicator of whether
the transformation is applied to a specific variable and component or not. For example, for the Iris
dataset, assumes that all variables in all components enjoy normality except for the first variable in
the first component, la needs to be set as la <-matrix(c(0.1,rep(0,11)),3,4), with 0.1 (that can be
any non-zero value) serving as the starting point in Nelder-Mead optimization. If no la is provided,
the skewness parameters are all set equal to 0 and a Gaussian mixture model will be fitted. The other
way of starting the algorithm is to enter initial model parameters, including la, tau, Mu, and S. The
algorithm employs these parameters to compute the posterior probabilities in the first E-step.

Here, we adopt the first strategy. The initial partition of the Iris data is obtained by running the
traditional K-means algorithm and specifying la is a matrix of size 3× 4, with all elements set to a
non-zero value of 0.1.

set.seed(123)
id.km <- kmeans(X, K)$cluster
la <- matrix(0.1, K, p)

Step c: EM algorithm for Manly mixture modeling

Manly.EM() runs the EM algorithm for modeling based on Manly mixtures given in Equation 1.
The command has the following syntax:

Manly.EM(X, id = NULL, la = NULL, tau = NULL, Mu = NULL, S = NULL,
tol = 1e-5, max.iter = 1000).
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The parameters tol and iter correspond to the stopping rule for the EM algorithm. tol specifies
the tolerance level of the EM algorithm. If the relative difference of the Q function values from two
consecutive steps is smaller than tol, the EM algorithm is terminated. By default, tol is set equal
to 10−5. max.iter stands for the maximum number of iterations allowed for the EM algorithm. The
default value of max.iter is 1000. We fit the Iris dataset by both Gaussian mixture (assigned to object
G) and Manly mixture (assigned to object M).

G <- Manly.EM(X, id = id.km)
colnames(G$la) <- colnames(X)
print(G$la)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## [1,] 0 0 0 0
## [2,] 0 0 0 0
## [3,] 0 0 0 0

M <- Manly.EM(X, id.km, la)
colnames(M$la) <- colnames(X)
print(M$la)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## [1,] -0.1158602 0.05907443 -0.2382086 -4.033529
## [2,] -0.1254022 -0.65079974 -0.3848938 0.479587
## [3,] -0.1282339 0.64271380 0.3343054 -1.134275

print(M$id)
## [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [75] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 3
## [112] 2 2 2 2 2 2 2 2 3 2 2 2 3 2 2 3 3 2 2 2 2 2 3 2 2 2 2 3 3 2 3 2 2 2 3 3 3
## [149] 2 2

The estimated model parameters returned by the function Manly.EM() include $la (matrix output
of size K× p), $tau (vector output of length K), $Mu (matrix output of size K× p) and $S (array output
of dimensionality p × p × K). They correspond to the parameters λk, τk, µk and Σk in Equation 3
and 4, respectively. In this example, it can be observed that the returned $la for the Gaussian mixture
have all elements fixed at zero, while the Manly mixture has estimated the skewness parameters for
each component and variable. For example, the skewness parameter associated with the sepal length
variable of the first cluster is estimated to be −0.1158602. It can be observed that most of the estimated
parameters are relatively close to zero, which indicates approximate normality of the Iris data.

Some other parameters returned by Manly.EM() are the n× K matrix of posterior probabilities
$gamma calculated from Equation 2 in the last E-step and the membership vector $id assigned by
the Bayes decision rule in Equation 5. In this case, the output of $id demonstrates the model-based
clustering solution of the Iris dataset.

The characteristics of the fitted model are demonstrated in terms of the model log-likelihood $ll
and BIC $bic. The number of iterations run by the EM algorithm until convergence is recorded through
$iter. In this example, the EM algorithm reaches convergence after 13 iterations and the model BIC is
618.46. Finally, a dummy indicator $flag reports the validity of the fitted model, where 0 represents
the successful convergence of the EM algorithm and 1 stands for the failure of convergence. A warning
message is given if $flag is equal to 1. It may happen when one cluster disappears or shrinks so that
some parameter estimates are NA’s. Such issue is related to spurious solutions (McLachlan and Peel,
2000) where one or more components model a local pattern in data rather than a systematic one.

Step d: Variability assessment of Manly mixture model

Variability assessment of the model parameters allows practitioners to study the specific nature
of the fitted model as well as detected clustering solutions. We provide the user with function
Manly.var(), which calculates the inverse of the empirical observed information matrix given in
Equation 8 and returns the variance-covariance matrix of the estimated MLE from Manly.EM() function.
It also outputs the confidence intervals of each parameter.

The command has the following syntax:

Manly.var(X, model = NULL, conf.CI = NULL)

X represents the data matrix and model is the object of class "ManlyMix". conf.CI is user-specified
confidence level, which needs to take a value between 0 and 1. Here by setting model = M, we take
the MLE of the fitted Manly mixture obtained from step c and evaluate its variability. The number
of unique model parameters is K− 1 + 2K× p + K× p(p + 1)/2 = 56 for the Iris dataset. conf.CI =
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0.95 calculates 95% confidence intervals for these 56 parameters. Thus Manly.var() function returns
a 56× 56 covariance matrix (assigned to V) and 56 confidence intervals (assigned to CI).

result <- Manly.var(X, model = M, conf.CI = 0.95)

In the code output of 95% confidence intervals, the first column represents the point estimates of
the 56 model parameters, while the second and third columns stand for the lower and upper bounds
of confidence intervals, respectively.

print(result$CI)
## Estimates Lower Upper
## [1,] 0.333333333 0.257887628 0.408779039
## [2,] 0.264119102 0.175676489 0.352561716
## [3,] 3.794594378 -8.303528084 15.892716840

Part of the output is intentionally omitted.

## [54,] 0.642713799 -0.407079526 1.692507125
## [55,] 0.334305435 -0.128841410 0.797452280
## [56,] -1.134275340 -2.079185136 -0.189365544

Step e: Forward and backward selection algorithms

Step e targets detecting the normally distributed variables in Iris. Manly.select() provides
the selection algorithm for eliminating unnecessary skewness parameters in M$la. These skewness
parameters are fixed to be equal to zero and the log-likelihood is maximized based on the rest of
parameters. The use of the function is shown below:

Manly.select(X, model, method, tol = 1e-5, max.iter = 1000,
silent = FALSE)

The argument model is the initial model to start the selection procedure with. method is set to
either "forward" or "backward" for the implementation of Algorithm 1 or Algorithm 2, respectively.
The selection criterion for each step is based on $bic values obtained from all candidate models that
are of class "ManlyMix". silent is an argument that controls the code output. By default, silent
provides the steps of selection and BIC values for all candidate models. Thus, the user can monitor
the selection procedures. The output can be turned off by setting silent = TRUE. We first discuss
the implementation of the forward selection on the Iris dataset. The algorithm is initialized by the
Gaussian mixture model G obtained in step c.

MF <- Manly.select(X, model = G, method = "forward")
## step 1 :
## current BIC = 580.8389
## alternative BICs = 585.6791 585.0607 582.1893 585.7369 585.2193 583.7374
## 585.7081 583.963 579.8978 573.4626 585.8161 585.8407
## step 2 :
## current BIC = 573.4626
## alternative BICs = 578.3191 577.6844 574.813 578.3719 577.843 576.3611
## 578.3282 576.5866 572.5215 578.4397 578.4643
## step 3 :
## current BIC = 572.5215
## alternative BICs = 577.378 576.7713 575.8067 577.4308 576.8833 575.3526
## 577.3871 575.6213 577.4799 577.3221

The forward selection takes three steps for the algorithm to find the best model (assigned to MF).
In step 3, there is no alternative BIC value that is smaller than the current model BIC, so the forward
selection algorithm stops searching over non-zero λkj’s. Compared to the Gaussian mixture fit, Manly
F model improves by 8 in BIC value.

On the contrary, the backward selection starts with the full Manly mixture M and drops one
skewness parameter at a time.

MB <- Manly.select(X, model = M, method = "backward")
## step 1 :
## current BIC = 618.4553
## alternative BICs = 613.5161 612.7184 613.8658 613.448 614.3828 616.6445
## 613.5442 616.3626 617.0157 625.7431 613.1927 610.7879
## step 2 :
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## current BIC = 610.7879
## alternative BICs = 605.9157 605.9075 607.3512 605.8475 606.3851 607.8112
## 605.9437 607.0513 609.9457 618.1426 605.7915

Part of the output is intentionally omitted.

## step 10 :
## current BIC = 575.3526
## alternative BICs = 572.5215 576.3611 582.729
## step 11 :
## current BIC = 572.5215
## alternative BICs = 573.4626 579.8978

After 11 steps, the backward selection produces the Manly B model, which enjoys the same BIC
value as the Manly F model.

Step f: Diagnostics

The skewness parameters of the Manly F and Manly B models are investigated in the following
example. It is observed that the forward selection adopts only two λkj’s in the model. They correspond
to the petal width variable of the first species and the petal length variable of the third one. For all
other components and variables, the data appear to be nearly normally distributed. The same two
skewness parameters are found by the backward selection. It is worth mentioning, however, that
Manly F and Manly B models can produce different results.

colnames(MF$la) <- colnames(X)
print(MF$la)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## [1,] 0 0 0.0000000 -4.04
## [2,] 0 0 0.0000000 0.00
## [3,] 0 0 0.5615625 0.00
colnames(MB$la) <- colnames(X)
print(MB$la)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## [1,] 0 0 0.0000000 -4.034815
## [2,] 0 0 0.0000000 0.000000
## [3,] 0 0 0.5619671 0.000000

Step g: Manly K-means algorithm

The Manly K-means algorithm written in Equation 9 is implemented in function Manly.Kmeans(),
which has the following syntax:

Manly.Kmeans(X, id = NULL, la = NULL, Mu = NULL, S = NULL,
initial = "k-means", K = NULL, nstart = 100,
method = "ward.D", tol = 1e-5, max.iter = 1000).

Manly.Kmeans() has most of the arguments and returned values the same as those of the function
Manly.EM(). As the Manly K-means algorithm assumes that all clusters are of the same size, the mixing
proportions tau are not needed in this function. S is a vector of length K that represents variance within
each cluster, as the transformed data groups are assumed to be spherical. The parameters returned by
the function $la, $Mu, and $S correspond to λk, µk and σ2

k given in Equation 10. The log-likelihood and
BIC values are not provided since the parameter estimates are not MLE’s. Manly.Kmeans() has several
initialization choices: (1) by providing id and la; (2) by providing la, Mu, and S; (3) by specifying
the number of clusters K and letting initial = "k-means"; It takes the default traditional K-means
clustering result and passes it into the CEM algorithm; (4) by specifying the number of clusters K and
letting initial = "hierarchical"; It adopts the hierarchical clustering solution as the initial dataset
partition. nstart is responsible for controlling the number of random starts tried in initialization
choice (3) with a default value equal to 100. method sets the linkage method in initialization choice
(4) with a default of method = "ward.D", which represents the Ward’s linkage (Ward, 1963). Here, the
initialization choice of Manly.Kmeans() is (1), which is the same as that of Manly.EM().

MK <- Manly.Kmeans(X, id.km, la)
colnames(MK$la) <- colnames(X)
print(MK$la)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## [1,] -0.37975529 -0.5815382 -0.81530022 -2.5572830
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## [2,] -0.27067058 -0.4103692 -0.31001602 -0.5367999
## [3,] -0.02896526 0.1138177 -0.05694487 0.2617650

print(MK$S)
## [1] 0.002717844 0.006156015 0.160435910

Illustrative example 3: AIS dataset

In this subsection, dataset AIS (Cook and Weisberg, 1994) is studied for illustrative purposes. The
Australian Institute of Sports (AIS) dataset was first introduced by Cook and Weisberg (1994). It
contains information collected from 202 athletes, among which 100 are females and 102 are males.
There are 13 variables, including the gender, sport kind and 11 numeric measurements of the athletes.
We adopt the same variables and analysis as Lee and McLachlan (2013). The goal of the analysis is
to cluster the athletes into two groups: males and females by constructing models based on three
measurements: the body mass index (“BMI”), lean body mass (“LBM”), and the percentage of body fat
(“Bfat”). Function ClassAgree() compares the estimated and true partitions. Function Manly.plot()
is introduced for visual analysis of Manly mixture fitted results.

Step a: model fit

The AIS dataset is analyzed by six mixture models: the traditional K-means (kmeans()), Manly K-
means (Manly.Kmeans()), Gaussian mixture model (Manly.EM()), Manly mixture model (Manly.EM()),
Manly forward model and Manly backward model (both available through Manly.select()).

library(ManlyMix)
data("ais"); set.seed(123)
X <- as.matrix(ais[,c(8, 10, 11)])
id <- as.numeric(ais[,1])
n <- dim(X)[1]
p <- dim(X)[2]
K <- max(id)
Kmeans <- kmeans(X, K)
id.km <- Kmeans$cluster

By running the following code, we not only obtain the fitted models, but also test the package
from different aspects. The number of parameters in the models are 7 (K-means), 19 (Gaussian), 25
(Manly), 23 (Manly F), 22 (Manly B) and 14 (Manly K-means). The computing times are 0.001, 0.004,
0.083, 0.8, 1.143, 0.024, respectively. These results are rather efficient compared to those from other
packages (see Appendix).

MK <- Manly.Kmeans(X, id = id.km, la = matrix(0.1, K, p))
G <- Manly.EM(X, id = id.km, la = matrix(0, K, p))
M <- Manly.EM(X, id = id.km, la = matrix(0.1, K, p))
MF <- Manly.select(X, G, method = "forward", silent = TRUE)
MB <- Manly.select(X, M, method = "backward", silent = TRUE)

Now we consider the fitted model parameters to perform a comprehensive analysis and diagnostics
of the AIS dataset. From the following output, it is observed that the Manly F model drops two
skewness parameters from the full Manly mixture model while Manly B drops three. This yields the
conclusion that the “Bfat” variable in the first group and “LBM” variable in the second one are close
to be normal. Through the one-to-one correspondence between skewness parameters and dataset
variables, ManlyMix is proved to be particularly useful for model variable diagnostics.

colnames(MF$la) <- colnames(X)
MF$la
## BMI Bfat LBM
## [1,] -0.08671894 0.0000000 0.01002851
## [2,] -0.12882354 -0.1902031 0.00000000

colnames(MB$la) <- colnames(X)
MB$la
## BMI Bfat LBM
## [1,] -0.09362427 0.0000000 0
## [2,] -0.12720459 -0.1933216 0

BIC values for the four models are 3595.35 (Gaussian), 3543.00 (Manly), 3538.42 (Manly F) and
3533.63 (Manly B). It shows considerable improvement in terms of BIC from Manly mixture models.
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They provide better fits for the data, among which Manly backward is the best model selected
according to BIC.

Step b: classification table

Classification results from the six models are compared using function ClassAgree() in step b.
Function ClassAgree() adopts input of both the estimated and true id vectors with the following
syntax:

ClassAgree(est.id, trueid)

ClassAgree() permutes the partition labels to achieve the lowest number of misclassifications.
Then, based on the switched labels, it returns the confusion matrix and number of misclassifications.
In the analysis of the AIS dataset, the following output is produced by ClassAgree().

ClassAgree(id.km, id)
## $ClassificationTable
## est.id
## trueid 1 2
## 1 98 2
## 2 12 90
##
## $MisclassificationNum
## [1] 14

ClassAgree(MK$id, id)
## $ClassificationTable
## est.id
## trueid 1 2
## 1 95 5
## 2 7 95
##
## $MisclassificationNum
## [1] 12

ClassAgree(G$id, id)
## $ClassificationTable
## est.id
## trueid 1 2
## 1 100 0
## 2 8 94
##
## $MisclassificationNum
## [1] 8

ClassAgree(M$id, id)
## $ClassificationTable
## est.id
## trueid 1 2
## 1 98 2
## 2 2 100
##
## $MisclassificationNum
## [1] 4

ClassAgree(MF$id, id)
## $ClassificationTable
## est.id
## trueid 1 2
## 1 99 1
## 2 3 99
##
## $MisclassificationNum
## [1] 4

ClassAgree(MB$id, id)
## $ClassificationTable
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## est.id
## trueid 1 2
## 1 99 1
## 2 4 98
##
## $MisclassificationNum
## [1] 5

Rows and columns represent the true and estimated partitions, respectively. The diagonal and off-
diagonal elements in the table correspond to correct and incorrect classifications, respectively. The
lowest number of misclassifications (4 misclassifications) is obtained by the Manly mixture and Manly
forward models. One worth-mentioning fact is that these two models enjoy the clustering solution as
good as the unrestricted skew-t mixture, which is reported to be the best model by Lee and McLachlan
(2013). The Manly backward model comes second with 5 misclassifications. The remaining three
models, traditional K-means, Manly K-means and Gaussian mixture model show worse performance.

Step c: visualization tool

In order to investigate the behavior of each model, contour plots with classified data points need to
be analyzed. Manly.plot() allows conducting the visual analysis of a dataset fitted by Manly mixture
model. The command has the following syntax:

Manly.plot(X, var1 = NULL, var2 = NULL, model = NULL, x.slice = 100,
y.slice = 100, x.mar = 1, y.mar = 1, col = "lightgrey", ...).

If both var1 and var2 are provided, they represent variables on the X-axis and Y-axis of a contour
plot, respectively. Argument model is the object of class "ManlyMix". The parameters of model object
are used to calculate the density and draw contour lines. The estimated membership vector model$id
is reflected through different colors. x.slice and y.slice options control the number of grid points
for which a density is calculated. The larger these two values are, the more grid values are considered.
Thus, the contour lines look smoother. x.mar and y.mar specify plot margins. The parameter col
specifies the color of contour lines with the default color being light grey. Other variables in the built-in
R function contour() can also be used as specified. On the other hand, if only var1 is provided, a
density plot of this variable is constructed. x.slice and x.mar have the same functionality as those in
the contour plot. The parameter col stands for density line color with the default being light grey. ...
allows other arguments from the built-in R function hist() to be passed.

In this case, we conduct the same analysis as that in Lee and McLachlan (2013) and adopt the two
variables “LBM” and “Bfat” for constructing contour plots. The margins of the plots are set to be 3
on the X-axis and 13 on the Y-axis. The light grey contour lines have width equal to 3.2. Labels and
axes are suppressed. The function is first applied to the four fitted models Gaussian mixture, Manly
mixture, Manly F and Manly B in step a.

Manly.plot(X, var1 = 3, var2 = 2, model = G, x.mar = 3, y.mar = 13,
xaxs="i", yaxs="i", xaxt="n", yaxt="n", xlab="", ylab = "",
nlevels = 10, drawlabels = FALSE, lwd = 3.2,
col = "lightgrey", pch = 19)

Manly.plot(X, var1 = 3, var2 = 2, model = M, x.mar = 3, y.mar = 13,
xaxs="i", yaxs="i", xaxt="n", yaxt="n", xlab="", ylab = "",
nlevels = 10, drawlabels = FALSE, lwd = 3.2,
col = "lightgrey", pch = 19)

Manly.plot(X, var1 = 3, var2 = 2, model = MF, x.mar = 3, y.mar = 13,
xaxs="i", yaxs="i", xaxt="n", yaxt="n", xlab="", ylab = "",
nlevels = 10, drawlabels = FALSE, lwd = 3.2,
col = "lightgrey", pch = 19)

Manly.plot(X, var1 = 3, var2 = 2, model = MB, x.mar = 3, y.mar = 13,
xaxs="i", yaxs="i", xaxt="n", yaxt="n", xlab="", ylab = "",
nlevels = 10, drawlabels = FALSE, lwd = 3.2,
col = "lightgrey", pch = 19)

Function Manly.plot() enjoys sufficient flexibility to adopt other parsimonious models. Parame-
ters obtained by traditional K-means and Manly K-means can be adjusted according to the object of
class "ManlyMix" so that $id, $tau, $Mu, $la, $S are extracted in their correct forms.

Kmeans$id <- id.km
Kmeans$tau <- MK$tau <- rep(1 / K, K)
Kmeans$Mu <- Kmeans$centers
Kmeans$la <- matrix(0, K, p)
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Kmeans$S <- array(0, dim = c(p, p, K))
for(k in 1:K)
diag(Kmeans$S[,,k]) <- Kmeans$tot.withinss / n / p

s2 <- MK$S
MK$S <- array(0, dim = c(p, p, K))
for(k in 1:K)
diag(MK$S[,,k]) <- s2[k]

Manly.plot(X, var1 = 3, var2 = 2, model = Kmeans, x.mar = 3, y.mar = 13,
xaxs="i", yaxs="i", xaxt="n", yaxt="n", xlab="", ylab = "",
nlevels = 4, drawlabels = FALSE, lwd = 3.2,
col = "lightgrey", pch = 19)

Manly.plot(X, var1 = 3, var2 = 2, model = MK, x.mar = 3, y.mar = 13,
xaxs="i", yaxs="i", xaxt="n", yaxt="n", xlab="", ylab = "",
nlevels = 10, drawlabels = FALSE, lwd = 3.2,
col = "lightgrey", pch = 19)

Figure 1 combines all output plots from Manly.plot().

It can be observed that the two components have a slight overlap, so the clustering problem is
not over-complicated. However, the red cluster is highly skewed and has a heavy tail. This imposes
difficulties for the traditional K-means, Manly K-means, and Gaussian mixture model. Manly mixture
model shows great flexibility and captures the skewness pattern in both components. Manly forward
drops the skewness parameters associated with variable “Bfat” in the female cluster (black component)
and “LBM” in the male group (red component). Manly backward drops both skewness parameters
that correspond to the female cluster and uses a black ellipsoid. It also drops the “LBM” variable in the
male cluster (red component). The above results reveal the applicability and effectiveness of function
Manly.plot() on real-life datasets.

Alternative coding d: wrapper function

Wrapper function Manly.model() enables practitioners to run analysis in a simple and convenient
way. The function has the following syntax:

Manly.model(X, K = 1:5, Gaussian = FALSE, initial = "k-means",
nstart = 100, method = "ward.D", short.iter = 5,
select = "none", silent = TRUE, plot = FALSE,
var1 = NULL, var2 = NULL, VarAssess = FALSE,
conf.CI = NULL, overlap = FALSE, N = 1000, tol = 1e-5,
max.iter = 1000, ...).

Argument K is an integer vector providing the numbers of clusters to be tested for the data. The
default setting tests 1, 2, 3, 4, or 5 clusters. It calls the Manly.EM() function to fit all five models. The
one with the lowest BIC value is chosen to be the best model. Gaussian option specifies whether
skewness parameters are adopted or not. If TRUE, Gaussian mixtures are fitted. With the default value
being FALSE, it runs full Manly mixture models. initial specifies the initialization strategy used. It
has three input options: (1) initial = "k-means" is the default initialization strategy, which passes
the traditional K-means result into the EM algorithm as the initial partition. nstart is passed into the
built-in R function kmeans for specifying the number of random starts (the default nstart = 100); (2)
if initial = "hierarchical", the hierarchical clustering initialization is used. The linkage method is
passed by method argument into R function hclust. The default is Ward’s linkage; (3) if initial =
"emEM", the emEM (Biernacki et al., 2003) initialization is run. Short runs of EM are conducted based
on random starts and the one that corresponds to the highest log-likelihood is picked for running until
convergence. nstart controls the number of random starts. The number of iterations for the short EM
is specified by short.iter with a default value set to 5 iterations.

select argument has three input values: "none", "forward" and "backward". If select = "none",
then the object returned by function Manly.EM() is adopted directly. If select = "forward", the
Gaussian option is automatically adjusted to Gaussian = TRUE. It calls function Manly.select(...,method
= "forward") to improve the original Gaussian fit. On the other hand, if select = "backward",
Gaussian option is automatically set to Gaussian = FALSE. The full Manly mixture is followed by the
backward selection Manly.select(...,method = "backward"). silent argument controls the output
in function Manly.select(). The default setting suppresses the output. plot determines whether
Manly.plot() function is called or not. If plot = TRUE, then Manly.plot() runs and arguments var1
and var2 allow user to specify which variable(s) to plot. Argument VarAssess provides the option
of using Manly.var() for variability assessment. Notice here that it only provides assessment for a
full Manly mixture model. conf.CI specifies the confidence level of the confidence intervals returned.
The overlap option, if specified to be TRUE, adopts the Manly.overlap() function and estimates pair-
wise overlap values for the returned model. N is the number of Monte Carlo simulations run in
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Figure 1: AIS dataset: fitted contour plots from function Manly.plot() based on the two variables
“LBM” (X-axis) and “Bfat” (Y-axis). The model locations are: K-means (first row left), Manly K-means
(first row right), Gaussian mixture (second row left), Manly mixture (second row right), Manly forward
(third row left) and Manly backward (third row right).
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Manly.overlap().

Three objects are returned by function Manly.model(): $model, $VarAssess, and $Overlap. $model
is the final model of class "ManlyMix" by Manly.EM() or Manly.select(). $VarAssess returns the
variance-covariance matrix and confidence intervals by Manly.var() function. $Overlap returns the
object by Manly.overlap().

For AIS dataset, suppose the user wants to obtain the Manly F or Manly B model and take a look
at their contour plots. A compact version of the code is given by:

MF <- Manly.model(X, K = 2, initial = "k-means", nstart = 100,
select = "forward", plot = TRUE, var1 = 3, var2 = 2,
x.mar = 3, y.mar = 13, xaxs="i", yaxs="i",
xaxt="n", yaxt="n", xlab="", ylab = "",
nlevels = 4, drawlabels = FALSE, lwd = 3.2,
col = "lightgrey", pch = 19)

MB <- Manly.model(X, K = 2, initial = "k-means", nstart = 100,
select = "backward", plot = TRUE, var1 = 3, var2 = 2,
x.mar = 3, y.mar = 13, xaxs="i", yaxs="i",
xaxt="n", yaxt="n", xlab="", ylab = "",
nlevels = 4, drawlabels = FALSE, lwd = 3.2,
col = "lightgrey", pch = 19)

Here, MF$model and MB$model obtained are the same as those in step a. The contour plots are generated
automatically and can be found in Figure 1.

Alternative coding e: initialization with model parameters

Functions Manly.EM() can take initial model parameters as initialization of the algorithm. It is
especially useful for the emEM initialization. The practitioner can construct a large number of short
EM runs, select the one with the highest log-likelihood and obtain its estimated parameters. Then, the
EM algorithm initialized by these parameters is run until convergence. Here is a small example on the
AIS dataset. 100 short EM algorithms run for 5 iterations each. As we can see, the obtained object M is
the same as that from step a.

ll <- -Inf
init <- NULL
nstart <- 100
iter <- 0
repeat {

id.km <- kmeans(X, centers = K, iter.max = 1)$cluster
temp <- Manly.EM(X, id = id.km, la = matrix(0.1, K, p), max.iter = 5)
if(temp$ll > ll) {

ll <- temp$ll
init <- temp

}
iter <- iter + 1
if(iter == nstart)

break
}
M <- Manly.EM(X, tau = init$tau, Mu = init$Mu, S = init$S, la = init$la)

Illustrative example 4: acidity dataset

Since one reviewer is interested in seeing a showcase of a univariate Manly mixture, we illustrate
its utility on the acidity dataset (Crawford, 1994). It provides the acidity measure of 155 lakes in the
Northeastern United States. There are two clusters, but the true partition is unknown.

Step a: model fit

We run the following models: the traditional K-means (kmeans()), Manly K-means (Manly.Kmeans()),
Gaussian mixture model (Manly.EM()), Manly mixture model (Manly.EM()), Manly forward model,
and Manly backward model (both available through Manly.select()).

library(ManlyMix)
data("acidity"); set.seed(123)
K <- 2
p <- 1
X <- acidity
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Kmeans <- kmeans(X, K)
id.km <- Kmeans$cluster
MK <- Manly.Kmeans(X, id = id.km, la = matrix(0.1, K, p))
G <- Manly.EM(X, id = id.km, la = matrix(0, K, p))
M <- Manly.EM(X, id = id.km, la = matrix(0.1, K, p))
MF <- Manly.select(X, G, method = "forward", silent = TRUE)
MB <- Manly.select(X, M, method = "backward", silent = TRUE)

The model BIC values for Gaussian, Manly, Manly F and Manly B are 394.51, 389.84, 389.84 and
389.84, respectively. There is an indication of skewness as both the Manly F and Manly B models fail
to drop any skewness parameters. The Manly models improve by 5 in the BIC value.

Step b: visualization tool

To visually assess the fit provided by all models, we use the command Manly.plot() with univari-
ate input. The fitted density plots associated with histogram of the data are provided in Figure 2.

Kmeans$id <- id.km
Kmeans$tau <- MK$tau <- rep(1 / K, K)
Kmeans$Mu <- Kmeans$centers
Kmeans$la <- matrix(0, K, p)
Kmeans$S <- array(0, dim = c(p, p, K))
for(k in 1:K)

Kmeans$S[,,k] <- Kmeans$tot.withinss / n / p
s2 <- MK$S
MK$S <- array(0, dim = c(p, p, K))
for(k in 1:K)

MK$S[,,k] <- s2[k]
Manly.plot(X = acidity, model = Kmeans, var1 = 1, main = "",

ylim = c(0, 0.75), xlab = "", xaxt = "n", ylab = "",
yaxt = "n", x.slice = 200, col = "red")

Manly.plot(X = acidity, model = MK, var1 = 1, main = "", ylim = c(0, 0.75),
xlab = "", xaxt = "n", ylab = "", yaxt = "n",
x.slice = 200, col = "red")

Manly.plot(X = acidity, model = G, var1 = 1, main = "", ylim = c(0, 0.75),
xlab = "", xaxt = "n", ylab = "", yaxt = "n",
x.slice = 200, col = "red")

Manly.plot(X = acidity, model = M, var1 = 1, main = "", ylim = c(0, 0.75),
xlab = "", xaxt = "n", ylab = "", yaxt = "n",
x.slice = 200, col = "red")

Manly.plot(X = acidity, model = MF, var1 = 1, main = "", ylim = c(0, 0.75),
xlab = "", xaxt = "n", ylab = "", yaxt = "n",
x.slice = 200, col = "red")

Manly.plot(X = acidity, model = MB, var1 = 1, main = "", ylim = c(0, 0.75),
xlab = "", xaxt = "n", ylab = "", yaxt = "n",
x.slice = 200, col = "red")

Manly models provide the most reasonable fit of the data. The first component is slightly skewed
to the right and only the Manly models pick up the high density at its peak. The second component is
slightly skewed to the left. The density fits provided by K-means and Manly K-means are insufficient
due to the assumption of equal size components.

Alternative coding c: wrapper function

The wrapper function Manly.model() is capable of combining steps a and b in one command. The
following code directly yields the Manly F or Manly B model:

MF <- Manly.model(X, K = 2, Gaussian = TRUE, initial = "k-means",
nstart = 100, select = "forward", plot = TRUE,
var1 = 1, main = "", ylim = c(0, 0.75),
xlab = "", xaxt = "n", ylab = "", yaxt = "n",
x.slice = 200, col = "red")

MB <- Manly.model(X, K = 2, Gaussian = FALSE, initial = "k-means",
nstart = 100, select = "backward", plot = TRUE,
var1 = 1, main = "", ylim = c(0, 0.75),
xlab = "", xaxt = "n", ylab = "", yaxt = "n",
x.slice = 200, col = "red")

The Manly F and Manly B density plots given in Figure 2 are generated automatically.
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Figure 2: acidity dataset: fitted density plots from function Manly.plot(): K-means (first row left),
Manly K-means (first row right), Gaussian mixture (second row left), Manly mixture (second row
right), Manly forward (third row left) and Manly backward (third row right).
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Demo examples

For users who need further information about the package, we have constructed 16 demo examples
listed in Table 3 that provide a comprehensive demonstration of ManlyMix capabilities. Among the
examples, 11 of them are designed to demonstrate the capability and utility of each function and 5 of
them run comprehensive analysis of classification datasets. Each demo can be accessed by its name
and the users can reproduce themselves.

As an illustration of how these demos can be employed, the code of the first example can be
approached through running the following code in R.

library(ManlyMix)
demo(EMalgorithm1)

Function Demo example(s)
Manly.EM() demo(EMalgorithm1), demo(EMalgorithm2)
Manly.select() demo(ForwardSelection), demo(BackwardSelection)
Manly.Kmeans() demo(ManlyKmeans1), demo(ManlyKmeans2)
Manly.overlap() demo(Overlap)
Manly.sim() demo(DataSimulation)
Manly.var() demo(VarAssess)
Manly.plot() demo(DensityPlot), demo(ContourPlot)
Comprehensive analysis demo(utility), demo(ais), demo(seeds), demo(bankruptcy)

demo(acidity)

Table 3: Summary of demo examples included in ManlyMix.

Summary

The R package ManlyMix is discussed and illustrated in detail. The provided functions enable
practitioners to analyze heterogeneous data and conduct cluster analysis with Manly mixture models.
The algorithms behind functions are introduced and explained carefully. Illustrative examples based
on challenging real-life datasets are studied to demonstrate the usefulness and efficiency of the
package. Promising results suggest that ManlyMix is not only a powerful package for clustering and
classification, but also a diagnostic tool to investigate skewness and deviation from normality in data.
Demo examples are provided for each function in ManlyMix for the users to study.

Appendix

The six competitors for mixture modeling of skewed data given in Table 1 are applied to the AIS
dataset in Section 2.3.3, including t mixture with Box-Cox transformation (flowClust), scale skew-
normal (SSN) and skew-t (SST) mixtures, restricted skew-normal (rMSN) and skew-t (rMST) mixtures,
and unrestricted skew-t mixture (uMST). All models are initialized by the partition obtained by the
traditional K-means clustering. The algorithms stop when the stopping criterion meets the tolerance
level of 1e− 5. For more information about the behavior of different models, we refer the reader to the
recent paper by Zhu and Melnykov (2016a), where a comprehensive simulation study is conducted to
compare model performance.

Table 4 provides model-based clustering results. The number of parameters of the models are 20
(flowClust), 25 (SSN), 25 (SST), 25 (rMSN), 27 (rMST), and 27 (uMST). The computing times are 0.012,
1.553, 4.737, 0.024, 0.136, 3547.527, respectively. The BIC values of the models are 3551.125, 3576.886,
3558.227, 3566.007, 3562.151, 3591.241. flowClust enjoys the lowest BIC value, which is still higher
than that of Manly B. uMST yields the lowest number of misclassifications, which is as good as the full
Manly mixture model and Manly forward model.
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Table 4: Classification tables for the AIS dataset. Rows and columns represent the true and estimated
partitions, respectively. The bold font highlights correct classifications.

flowClust SSN SST
Group 1 2 1 2 1 2

1 99 1 99 1 99 1
2 8 94 7 95 5 97

rMSN rMST uMST
Group 1 2 1 2 1 2

1 100 0 99 1 98 2
2 8 94 6 96 2 100

Bibliography

E. Anderson. The Irises of the Gaspe peninsula. Bulletin of the American Iris Society, 59:2–5, 1935. [p181,
183]

C. Biernacki, G. Celeux, and G. Govaert. Choosing starting values for the EM algorithm for getting
the highest likelihood in multivariate Gaussian mixture models. Computational Statistics and Data
Analysis, 413:561–575, 2003. [p190]

G. Celeux and G. Govaert. A classification EM algorithm for clustering and two stochastic versions.
Computational Statistics and Data Analysis, 14:315–332, 1992. doi: 10.1016/0167-9473(92)90042-E.
[p180]

D. Cook and S. Weisberg. An Introduction to Regression Graphics. John Wiley & Sons, New York., 1994.
[p181, 187]

S. L. Crawford. An application of the laplace method to finite mixture distribution. Journal of the
American Statistical Association, pages 259–267, 1994. doi: 10.1080/01621459.1994.10476467. [p192]

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood for incomplete data via the EM
algorithm (with discussion). Journal of the Royal Statistical Society B, 39:1–38, 1977. [p177]

R. A. Fisher. The use of multiple measurements in taxonomic poblems. The Annals of Eugenics, 7:
179–188, 1936. doi: 10.1111/j.1469-1809.1936.tb02137.x. [p181, 183]

N. A. Gillespie and M. C. Neale. A finite mixture model for genotype and environment interactions:
Detecting latent population heterogeneity. Twin Res Hum Genet, 9(3):412–23, 2006. doi: 10.1375/
183242706777591380. [p176]

S. X. Lee and G. J. McLachlan. Model-based clustering and classification with non-normal mixture
distributions. Statistical Methods and Applications, 22(4):427–454, 2013. [p187, 189]

S. X. Lee and G. J. McLachlan. EMMIXuskew: Fitting unrestricted multivariate skew t mixture models.
Journal of Statistical Software, 55(12), 2014. doi: 10.1007/s11222-012-9362-4. [p176]

K. Lo, F. Hahne, R. R. Brinkman, and R. Gottardo. flowClust: a bioconductor package for automated
gating of flow cytometry data. BMC Bioinformatics, 10(145), 2009. doi: 10.1186/1471-2105-10-145.
[p176]

R. Maitra and V. Melnykov. Simulating data to study performance of finite mixture modeling and
clustering algorithms. Journal of Computational and Graphical Statistics, 19(2):354–376, 2010. doi:
10.1198/jcgs.2009.08054. [p178]

B. F. J. Manly. Exponential data transformations. Biometrics Unit, 25:37–42, 1976. [p177]

G. J. McLachlan and K. E. Basford. Mixture Models: Inference and Applications to Clustering. Marcel
Dekker, New York, 1988. doi: 10.2307/2348072. [p178]

G. J. McLachlan and T. Krishnan. The EM Algorithm and Extensions. Wiley, New York, 2nd edition, 2008.
doi: 10.1002/9780470191613. [p177]

G. J. McLachlan and D. Peel. Finite Mixture Models. John Wiley & Sons, New York, 2000. [p179, 184]

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 197

V. Melnykov. On the distribution of posterior probabilities in finite mixture models with application
in clustering. Journal of Multivariate Analysis, 122:175–189, 2013. doi: 10.1016/j.jmva.2013.07.014.
[p179]

S. Michael and V. Melnykov. Finite mixture modeling of gaussian regression time series with appli-
cation to dendrochronology. Journal of Classification, 33(3):412–441, 2016. doi: 10.1007/s00357-016-
9216-4. [p176]

B.-J. Park and D. Lord. Application of finite mixture models for vehicle crash data analysis. Accident
Analysis & Prevention, 41(4):683–691, 2009. doi: 10.1016/j.aap.2009.03.007. [p176]

M. Prates, C. Cabral, and V. Lachos. mixsmsn: Fitting finite mixture of scale mixture of skew-normal
distributions. Journal of Statistical Software, 54:1–20, 2013. doi: 10.18637/jss.v054.i12. [p176]

P. Schlattmann. Medical applications of finite mixture models. Springer, 2009. [p176]

G. Schwarz. Estimating the dimensions of a model. The Annals of Statistics, 6:461–464, 1978. [p179]

K. Wang, A. Ng, and G. McLachlan. EMMIXskew: The EM algorithm and skew mixture distribution,
2013. R package version 1.0.1. [p176]

J. H. Ward. Hierarchical grouping to optimize an objective function. Journal of the American Statistical
Association, 58:236–244, 1963. [p186]

X. Zhu and V. Melnykov. Manly transformation in finite mixture modeling. Computational Statistics
and Data Analysis, 2016a. doi: 10.1016/j.csda.2016.01.015. [p176, 195]

X. Zhu and V. Melnykov. ManlyMix: An R package for model-based clustering with manly mixture
models, 2016b. R package version 0.1.9. [p176]

Xuwen Zhu
Department of Mathematics, The University of Louisville
Louisville, KY 40208
USA
xuwen.zhu@louisville.edu

Volodymyr Melnykov
Department of Information Systems, Statistics, and Management Science, The University of Alabama
Tuscaloosa, AL 35487
USA
vmelnykov@cba.ua.edu

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

mailto:xuwen.zhu@louisville.edu
mailto:vmelnykov@cba.ua.edu

	ManlyMix: An R Package for Manly Mixture Modeling
	Introduction
	Methodological and algorithmic details
	Manly mixture model
	Pairwise overlap
	Variability assessment
	Forward and backward selection
	Manly K-means clustering

	Package functionality and illustrative examples
	Illustrative example 1
	Illustrative example 2: Iris dataset
	Illustrative example 3: AIS dataset
	Illustrative example 4: acidity dataset

	Demo examples
	Summary
	Appendix
	Acknowledgement


