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Bayesian Regression Models for
Interval-censored Data in R
by Clifford Anderson-Bergman

Abstract The package icenReg provides classic survival regression models for interval-censored data.
We present an update to the package that extends the parametric models into the Bayesian framework.
Core additions include functionality to define the regression model with the standard regression
syntax while providing a custom prior function. Several other utility functions are presented that
allow for simplified examination of the posterior distribution.

Introduction

Interval-censoring occurs when observations are not known exactly, but rather up to an interval.
For example, suppose a component of a machine is inspected at time c1 and c2. The component
is observed to be operational at c1, but broken at c2. In such a case, while the exact failure time
is not known, it is known that the event occurred inside the interval (c1, c2]. In some cases, these
intervals are small and the interval-censored aspect of the data can be ignored with only minor
biases. For example, if age is reported in years, it is likely to be interval-censored due to binning, i.e.
reporting "28 years old" typically implies age is in the interval [28, 29). Similarly, if the intervals are
non-overlapping, such as reported income brackets, one can simply treat the data as ordinal data and
use appropriate models. However, if the data set contains moderate sized overlapping intervals, then
interval-censoring methods should be used for valid inference. Note that a right censored observation
can be represented as (C, ∞), where C is the censoring time, left censoring can be represented as [0, C)
and an uncensored observation occurring at time t can be represented as [t, t].

Although interval-censoring is not strictly a survival analysis problem (for example, the Tobit
model (Tobin, 1958)), this work focuses on the survival analysis setting in which the outcome of
interest is time to event. A common assumption in many interval censored models, including those
provided by icenReg, is that the distribution of the inspection times is independent of the event time
of interest (Gruger et al., 1991). This can be framed as each subject having an event time of interest, ti,
and a set of inspections ci0 = 0 < ci1 < ... < ciki

= ∞ where the subject is inspected to determine if the
event has occurred. The interval [cij, cij+1) such that ti ∈ [cij, cij+1) is then recorded as the interval for
subject i. The independence assumption states that ti is independent of cij.

The standard univariate estimator is the non-parametric maximum likelihood estimator (NPMLE)
(Turnbull, 1976), which can be viewed as a generalization of the Kaplan-Meier curves (Kaplan and
Meier, 1958) that allow for interval-censoring (Ng, 2002). Many of the standard survival regression
models can be extended to the interval-censored such as the proportional hazards, accelerated failure
time (AFT) model and proportional odds. Semi-parametric models in which the baseline distribution
is fit with the NPMLE are often used to avoid the need to specify the baseline distribution (Finkelstein,
1986), (Rossini and Tsiatis, 1996). While it has been shown that the regression coefficients are asymptot-
ically normal and bootstrap procedures can be used for inference on the regression parameters (Huang,
1995), it is also noted that the asymptotic distribution of the baseline survival curve is currently an
open question. This implies that while standard errors can be produced for the regression coefficients,
quantifying the uncertainty in estimated survival probabilities when using the semi-parametric models
is not currently available; even the bootstrap estimator has been shown to be inconsistent (Sen and
Xu, 2015). It has also been noted that while the regression coefficients are consistent, a non-trivial
upward bias in the coefficient estimates has been observed (Pan, 1999). Fully parametric regression
survival models can also be used and are fairly straightforward to implement (Rabinowitz et al., 1995).
In contrast to semi-parametric models, fully parametric models provide more efficient inference and
allow for quantification of uncertainty of survival estimates at the cost of requiring assumptions of
the family of baseline distribution, although it has been shown empirically that inference is fairly
robust to mis-specification of the baseline distribution (Lindsey, 1998). Fully parametric models can
be easily extended to the Bayesian framework (Gómez et al., 2004). For a thorough review of the
non-parametric, semi-parametric and fully-parametric models in the interval-censoring context, see
(Sun, 2007). In this work, we focus on parametric regression models in the Bayesian framework.

In general, interval-censored data is less informative than uncensored data. As such, incorporating
prior information into an analysis using Bayesian methods can be especially useful. Recent additions
to the R package icenReg (Anderson-Bergman, 2017) allow for simplified Bayesian analysis using
standard regression formulas and user written prior functions. In Section 2.2, the regression models
available in icenReg are mathematically formulated. In Section 2.3, the general form of the posterior
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distribution is presented and the MCMC sampler is briefly discussed. In Section 2.4, the core Bayesian
functions in icenReg are presented. In Section 2.5, an example analysis on a classic dataset is presented.

Regression models

To completely define a parametric survival regression model, one needs to specify the

• Baseline distribution

• Effect of the covariates on the baseline distribution

In icenReg, several classic survival baseline distributions are included: Weibull, gamma, exponen-
tial, log-normal and log-logistic.

At this time, three classic regression models are supported in icenReg: proportional hazards,
AFT and proportional odds. In describing these regression models, we use several standard survival
definitions. Defining f (t) and F(t) to represent the probability density function and cumulative
density function for a given distribution, the survival distribution is defined as S(t) = 1− F(t) and the
hazard function h(t) = f (t)

S(t) . The functions ho(t) and So(t) represent the baseline hazard and survival
function; i.e. the corresponding functions if all covariates are equal to 0. The vector X represents
a subject’s covariates, α represents a vector of parameters defining the baseline distribution and β
represents a vector of regression coefficients.

The proportional hazards model can be defined as having the relation

h(t|α, β, X) = ho(t|α) exp(XT β).

This definition can be used to interpret a regression coefficient β j as a one unit increase in xj is
associated with an exp(β j) fold increase in the hazard at any time.

The proportional odds model is defined as the relation

S(t|α, β, X)

1− S(t|α, β, X)
= exp(XT β)

So(t|α)
1− So(t|α)

.

This definition can be used interpret a regression coefficient β j as a one unit increase in xj is
associated with exp(β j) fold increase in the odds of survival at any given time.

The AFT model is defined by the relation

S(t|α, β, X) = So(t exp(XT β)|α).

This definition can be used to interpret a regression coefficient β j as a one unit increase in xj is
associated with events occuring exp(β j) fold faster.

To define the likelihood function, we let n1 be the number of uncensored subjects, n2 be the number
of interval-censored subjects (note that this can include left and right censored subjects), ti be subject
i’s event time if subject i is uncensored, {Li, Ri} be the left and right side of the interval containing
subject i’s event time if subject was censored and Xi be a vector of subject i’s covariates. Then the
likelihood can be written as

n1

∏
i=1

f (ti|α, β, Xi)×
n1+n2

∏
i=n1+1

S(Li|α, β, Xi)− S(Ri|α, β, Xi)

under the implication that if n1 or n2 are equal to 0, the corresponding term of the likelihood function
reduces to 1.

Bayesian inference

To perform Bayesian inference, the prior is multiplied by the likelihood function to form the posterior
distribution. For the Bayesian models included in icenReg, the posterior distribution is proportional
to

p(α, β)×
n1

∏
i=1

f (ti|α, β, Xi)×
n1+n2

∏
i=n1+1

S(Li|α, β, Xi)− S(Ri|α, β, Xi)
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where p is the prior distribution on the α and β parameters. Because the posterior is not in closed
form for these models, Markov Chain Monte Carlo (MCMC) methods are used to draw samples from
the posterior distribution.

In icenReg, MCMC sampling is carried out by an adaptive block updater (Haario et al., 2001).
Default behavior is to first calculate the maximum likelihood estimator (MLE)1, use the MLE point
estimates as initial values and the inverse Fisher’s information as an initial estimate for the posterior
covariance. During the burn-in period, the posterior covariance is updated. A default target acceptance
rate of 0.25 is used, as suggested in (Gelman et al., 1996).

Alternatively, the user can specify not to use the MLE and Fisher’s information to build the starting
proposal distribution. In this case, the starting proposal covariance matrix will be the identity matrix
multiplied by a user-provided scalar (by default 0.1), which then has the option to adaptively learn
the covariance matrix. While this is generally not recommended for efficiency purposes, it may be
beneficial when the prior is strongly informative compared with the likelihood function. As an extreme
example, if all the data were right censored, the MLE would be degenerate but an informative prior
can still lead to valid Bayesian inference. In such cases, starting at the MLE would cause the MCMC
algorithm to fail.

Core functionality

Function Name Basic Description

ic_bayes() Fit Bayesian interval-censored regression model
bayesControls() Outputs control parameters for MCMC algorithm
sampleSurv() Draws samples of the posterior survival distribution
ic_sample() Draws samples from the posterior survival distribution
imputeCens() Draw samples from the distribution, conditional on censoring interval
survCIs() Credible intervals for survival curve
plot() Plots posterior median survival curve

The workhorse for fitting Bayesian regression models is ic_bayes(). The arguments are defined
as the following.

ic_bayes(formula, data,
logPriorFxn = function(x) return(0),
model = "ph", dist = "weibull",
weights = NULL, controls = bayesControls(),
useMCores = F)

The formula argument declares the likelihood function in the same manner as other icenReg
model functions, to be demonstrated in the following section. The logPriorFxn argument allows
the user to write a custom prior function that takes in a vector of parameters and returns the log
prior density (or a value equal up to an additive constant). The order of the values should be the
same order as the parameters returned when a user calls coef() on a model. Default behavior is
to use a flat prior. The model argument declares the regression model, with choices "ph" (propor-
tional hazards), "po" (proportional odds) and "aft" (accelerated failure time). The dist defines the
baseline distribution, with options "exponential", "weibull", "gamma", "lnorm" (log-normal) and
"loglogistic". The function argument controls accepts a list of control parameters for the MCMC
sampler, see ?bayesControls for details of options. The argument useMCores is a logical variable
indicating whether the multiple chains should be run in parallel. If set to TRUE, a cluster must be
registered in advance; this is demonstrated in Section 2.5.

The output from ic_bayes() provides a list of samples from the posterior of α and β. Users
are often interested in the survival probabilities for subjects with different sets of covariates, which
requires a decent amount coding and double checking differing distribution parameterization. To
simplify this process, the sampleSurv() function allows a user to take draws of the posterior survival
distribution for a given set of covariates. The arguments are defined as

sampleSurv(fit, newdata = NULL,
p = NULL, q = NULL,
samples = 100)

The argument fit is a fit returned from ic_bayes(). The argument newdata is a "data.frame"
which includes the set of covariates from which we would like to draw the posterior probabilities from.

1The MLE and not the maximum a posterior (MAP) is used, as the likelihood and its derivatives are hard coded
into icenReg, but priors are allowed to be generically supplied by user without derivatives.
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If newdata is NULL, the baseline distribution is used. A user should either provide a numeric vector p
of percentiles to sample or a numeric vector q, a set of times to sample the cumulative probabilities at.

The function ic_sample() allows a user to take posterior samples of event times for a given set of
covariates. The arguments are defined as

ic_sample(fit, newdata = NULL,
sampleType = "fullSample",
samples = 5)

The argument sampleType has two options: "fullSample", in which event times are sampled from
the full posterior and "fixedParSample", in which event times are sampled conditional on the MAP
estimates.

In some cases, a user may wish to impute posterior samples of the exact event times for the
response variables in their dataset. This may be for the purpose of inferring the distribution of the
exact event time for a specific subject, or for passing the data to an analysis tool that does not account
for interval-censoring. This can be done with imputeCens(). The arguments are defined as

imputeCens(fit, newdata = NULL,
imputeType = "fullSample",
samples = 5)

The arguments are the same as ic_sample(), except that the newdata "data.frame" must include
a pair of columns that contain the lower and upper bounds of the response variable. If newdata is set
to NULL, imputeCens() will impute all the rows from the original dataset.

The function survCIs() returns credible intervals for the survival distribution, along with the
posterior mean and posterior median estimates. The arguments for survCIs() are

survCIs(fit, newdata = NULL,
p = NULL, q = NULL,
ci_level = 0.95,
MC_samps = 40000)

Finally, the plot() function accepts the following arguments

plot(x, newdata = NULL,
plot_legend = T, lgdLocation = "topright",
cis = T, ci_level = 0.9,
...)

In this case, x should be a fit from ic_bayes(), newdata is a "data.frame" with a set of covariates
to determine the survival functions to plot, plot_legend() is a logical argument indicating whether
to include a legend with labels provided by the rownames of newdata, cis is a logical indicator for
whether credible intervals should be included, ci_level is the credible levels for the credible intervals,
and ... is additional arguments to be passed to the base plot() function. Note that if the col
argument is supplied, each color will be matched to the corresponding row of newdata. The solid lines
plotted are the posterior median survival probabilities, with dashed lines representing the upper and
lower limits of the credible interval.

Example analysis

To demonstrate the use of Bayesian regression models in icenReg, we will use the miceData dataset
included in icenReg (Hoel and Walburg, 1972). This dataset examined occurrances of lung cancer in
RFM mice (bred for high rates of cancer) kept in two different environments; conventional environment
(ce) or germ-free environment (ge). At different ages, mice are sacrificed and examined for lung tumors.
If mouse i is inspected at age Ci and a tumor is found, then time of onset is recorded as being in the
interval [0, Ci]. If no tumor is found, then the time of onset is recorded as being in the interval (Ci, ∞).
Note that this form of data is referred to as current status data .

We first load the icenReg library along with foreach (Revolution Analytics and Weston, 2014b)
and doParallel (Revolution Analytics and Weston, 2014a), which are required to run MCMC chains in
parallel.

library(icenReg)
library(foreach)
library(doParallel)
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We then load and examine the miceData dataset.

data(miceData)
head(miceData)
## l u grp
## 1 0 381 ce
## 2 0 477 ce
## 3 0 485 ce
## 4 0 515 ce
## 5 0 539 ce
## 6 0 563 ce
summary(miceData)
## l u grp
## Min. : 0 Min. :381.0 ce:96
## 1st Qu.: 0 1st Qu.:809.5 ge:48
## Median :439 Median : Inf
## Mean :343 Mean : Inf
## 3rd Qu.:644 3rd Qu.: Inf
## Max. :986 Max. : Inf

The column “l” and “u” represent the lower and upper end of the intervals containing the onset
time for each mouse. We note that there are 96 mice in the ce group and 48 mice in the ge group.
Because current status data is fairly uninformative per subject, this dataset contains limited information
about the distribution of time to onset.

For the sake of demonstration, suppose that we had expert information regarding onset of lung
cancer. An expert tells us that (a) after two years in the conventional environment, the expert is
50% certain that between 10-30% of the mice will have developed lung tumors and (b) hazard rates
are non-decreasing with age. To incorporate (a), we can set a Beta(α = 1.5, β = 5.5) prior onto the
probability of an event occuring before t = 730 for the CE group. For (b), we note the fact that for the
Weibull distribution, a shape parameter below 1 implies a decreasing hazard, while a shape parameter
above 1 implies an increasing hazard. To enforce a non-decreasing hazard, we will set zero probability
mass to the shape parameter below 1. We note that this is an improper prior: we have put a flat prior
of the regression coefficient.

To demonstrate how to incorporate this into ic_bayes(), we first look at the parameters that will
be handed to our prior function. This will be vector of parameters given in the same form and order
as returned by coef(), for either a Bayesian model or maximum likelihood model (ic_par()).

mle_fit <- ic_par(cbind(l, u) ~ grp,
model = "ph",
dist = "weibull",
data = miceData)

coef(mle_fit)
## log_shape log_scale grpge
## 0.7071843 6.9481420 0.7861709

All the syntax used for defining models for ic_par() is shared with ic_bayes(). In the formula,
we define the response by calling cbind(l,u), where l and u represent the lower and upper ends of
the interval. We see that we will be given the baseline log shape parameter, baseline log scale and the
coefficient for the dummy variable indicating belonging to the GE group. We then write our log prior
density function as such:

expertPrior <- function(x){
# Extracting parameters from input
shape <- exp(x[1])
scale <- exp(x[2])
ge_coef <- x[3]

# ans is log-density of the prior
ans <- 0
# First prior: S(730) ~ beta(1.5, 5.5)
# Note that we are using a Weibull distribution
s_730 <- 1 - pweibull(730, shape = shape, scale = scale)
ans <- ans + dbeta(s_730, 1.5, 5.5, log = TRUE)
# Second prior: shape >= 1
if(shape < 1) ans <- -Inf
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return(ans)
}

This prior is then provided to the ic_bayes() function. We use doParallel’s registerDoParallel()
to sample from the 4 chains in parallel.

myClust <- makeCluster(4)
registerDoParallel(myClust)
bayes_fit <- ic_bayes(cbind(l,u) ~ grp,

data = miceData,
model = "ph", dist = "weibull",
logPriorFxn = expertPrior,
useMCores = TRUE)

stopCluster(myClust)

We can examine the results using the summary() method.

summary(bayes_fit)

## Model: Bayesian Cox PH
## Baseline: weibull
## Call: ic_bayes(formula = cbind(l, u) ~ grp, data = miceData, logPriorFxn = expertPrior,
## model = "ph", dist = "weibull", useMCores = T)
##
##
## Iterations = 1001:5996
## Thinning interval = 5
## Number of chains = 4
## Sample size per chain = 1000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## log_shape 0.6337 0.3220 0.005092 0.008220
## log_scale 6.9570 0.1829 0.002892 0.005239
## grpge 0.6916 0.3014 0.004765 0.007971
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## log_shape 0.04927 0.3860 0.6316 0.8685 1.228
## log_scale 6.68745 6.8180 6.9221 7.0694 7.384
## grpge 0.08428 0.4928 0.6967 0.8965 1.274
##
## 3. MAP estimates:
## log_shape log_scale grpge
## 0.9118 6.8550 0.7530

We can access the raw MCMC samples from the $mcmcList field. This is a "mcmcList" object
(Plummer et al., 2006), and as such all the standard coda methods can be used directly on this object.
For example, if we want traceplots and marginal density estimates of the samples, we can directly call
plot(). The results are plotted on Figure 1.

plot(bayes_fit$mcmcList)

We can examine a plot of the posterior survival distribution using the plot() method. If we do
not provide any new data, the baseline survival distribution will be plotted. This is demonstrated on
Figure 2. The solid line is the median posterior survival probability at any given time, with the dashed
lines representing upper and lower credible intervals for the survival probabilities.

plot(bayes_fit,
main = "Posterior Baseline Survival",
col = "blue",
lwd = 2)

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=coda


CONTRIBUTED RESEARCH ARTICLE 493

Figure 1: Posterior samples

Figure 2: Posterior survival probabilities for baseline distribution
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Figure 3: Comparing survival curves between groups

More often, we would like to plot the survival distribution for a given set of covariates, or compare
the survival distribution for two different sets of covariates. This can be done by providing a new
data set with the covariates of interest, as is done in the code below. If more than one row of data is
provided, a legend is added with the row names of the new data set. The location of the legend can be
changed using the lgdLocation argument. To keep the plot from looking overly cluttered, we will
remove the credible bands in this example. The plot can be seen on Figure 3.

plot(bayes_fit,
newdata = newdata,
main = "Comparing Survival Curves",
col = c("blue", "orange"),
lwd = 2,
cis = F,
lgdLocation = "topright")

Using the survCIs() function, we can extract credible intervals for the survival function with a
given set of covariates, along with the posterior mean and posterior medians.

survCIs(bayes_fit,
newdata = newdata,
p = seq(from = 0.1, to = 0.9, by = .2),
ci_level = 0.95)

## Model call:
## ic_bayes(formula = cbind(l, u) ~ grp, data = miceData, logPriorFxn = expertPrior,
## model = "ph", dist = "weibull", useMCores = T)
## Credible Level = 0.95
## Rowname: Conventional
## Percentile estimate (mean) estimate (median) lower upper
## [1,] 0.1 308.7645 310.4224 165.6698 450.7731
## [2,] 0.3 598.7705 597.9676 471.6719 736.6549
## [3,] 0.5 876.7032 843.0287 700.4579 1242.3366
## [4,] 0.7 1217.7391 1133.4531 849.1271 2013.4947
## [5,] 0.9 1816.5917 1604.8638 1036.7680 3629.9967
## Rowname: Germ-free
## Percentile estimate (mean) estimate (median) lower upper
## [1,] 0.1 217.1181 211.0069 71.82923 402.7130
## [2,] 0.3 403.0740 405.2846 219.64849 579.6520
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Figure 4: Posterior densities of event times for each group

## [3,] 0.5 574.8200 582.3774 393.62514 723.9960
## [4,] 0.7 780.1581 778.2784 618.57113 957.4698
## [5,] 0.9 1131.2446 1088.8539 899.39371 1573.0770

Now suppose we wanted to draw posterior samples of the event time distribution for each group.
For example, we may wish to construct density plots for event time from each group. This can be done
with ic_samples() and is demonstrated in the code below. The generated plot can be found on Figure
4.

eventTimeSamples <- ic_sample(bayes_fit,
newdata = newdata,
samples = 4000)

ce_dens <- density(eventTimeSamples["Conventional",],
from = 0)

ge_dens <- density(eventTimeSamples["Germ-free",],
from = 0)

plot(ge_dens,
main = "Posterior Densities of Event Times",
col = "orange",
xlim = c(0, 4000),
lwd = 2)

lines(ce_dens,
col = "blue",
lwd = 2)

legend("topright",
c("Conventional", "Germ-free"),
col = c("blue", "orange"),
lwd = 1)

Finally, we can draw posterior samples of the event time, given that it occurs within some specified
interval, with imputeCens(). To demonstrate, suppose we were interested in the exact event time
for mice in each group that were sacrificed at one year and found to have no tumors, implying the
event time was right censored at t = 365. This can be expressed in the interval censoring format as
t ∈ [365, ∞). Below, we use imputeCens() to draw posterior samples of event times conditional on
being greater than 365 and plot the estimate posterior density in Figure 5.

# Adding event time intervals
newdata$l <- c(365, 365)
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Figure 5: Posterior densities of event time conditional on occurring after first year

newdata$u <- c(Inf, Inf)
imputedTimes <- imputeCens(bayes_fit,

newdata = newdata,
samples = 4000)

ce_dens <- density(imputedTimes["Conventional",],
from = 365)

ge_dens <- density(imputedTimes["Germ-free",],
from = 365)

plot(ge_dens,
main = "Posterior Densities of Event Times\nConditional on Event in First Year",
col = "orange",
xlim = c(300, 3000),
ylim = c(0, 0.0015),
lwd = 2)

lines(ce_dens,
col = "blue",
lwd = 2)

legend("topleft",
c("Conventional", "Germ-free"),
col = c("blue", "orange"),
lwd = 1)

Summary

Interval-censoring occurs when event times are not known exactly, but rather only up to an interval.
Naturally, this results in less informative data than if the event time were observed exactly. The poten-
tially weakly informative data further motivates using prior information about the data generating
process to provide a more informative analysis of a given data set. Bayesian methodology provides
a straightforward framework for incorporating such prior information. The addition of ic_bayes()
to the icenReg package allows for simple, efficient interval-censored regression models with generic
user provided prior distributions and a variety of tools to simplify analyses.
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