
CONTRIBUTED RESEARCH ARTICLES 269

SchemaOnRead: A Package for
Schema-on-Read in R
by Michael J. North

Abstract SchemaOnRead is a CRAN package that provides an extensible mechanism for importing a
wide range of file types into R as well as support for the emerging schema-on-read paradigm in R. The
schema-on-read tools within the package include a single function call that recursively reads folders
with text, comma separated value, raster image, R data, HDF5, NetCDF, spreadsheet, Weka, Epi Info,
Pajek network, R network, HTML, SPSS, Systat, and Stata files. It also recursively reads folders (e.g.,
schemaOnRead("folder")), returning a nested list of the contained elements. The provided tools can
be used as-is or easily customized to implement tool chains in R. This paper’s contribution is that it
introduces and describes the SchemaOnRead package and compares it to related R packages.

Introduction

SchemaOnRead is a CRAN package that provides an extensible mechanism for importing a wide
range of file types into R as well as support for the emerging schema-on-read paradigm in R. The tools
within the package include a single function call (e.g., schemaOnRead("filename")) that reads text
(TXT), comma separated value (CSV), raster image (BMP, PNG, GIF, TIFF, and JPG)1, R data (RDS),
HDF5, NetCDF, spreadsheet (XLS, XLSX, ODS, and DIF), Weka Attribute-Relation File Format (ARFF),
Epi Info (EPIINFO), Pajek network (NET), R network (PAJ), HTML, SPSS (SAV), Systat (SYS), and Stata
(DTA) files. It also recursively reads folders (e.g., schemaOnRead("folder")), returning a nested list of
the contained elements. The provided tools can be used as-is or easily customized to implement tool
chains in R. This paper’s contribution is that it introduces and describes the SchemaOnRead package
and compares it to related R packages. In the sections that follow, this paper presents usage examples,
discusses user defined processors, reviews the related work, explains the origin of the package name,
summarizes the package contents, and then provides concluding thoughts.

Examples

A simple way to use SchemaOnRead is to conveniently load a file without needing to handle the
specifics of the file format. In this case the result is a variable containing the file contents. Individual
files can also be easily accessed without needing to known the specifics of the file format as below.
The file contents can be accessed using the xmlFile variable. All of the source code and example data
can be found at https://github.com/drmichaelnorth/SchemaOnRead.

library(SchemaOnRead)
xmlFile <- schemaOnRead("../inst/extdata/data.xml")

1Image processing applications are becoming increasingly popular for purposes such as pattern recognition
and machine vision. These applications often read large numbers of files during their training and testing phases.
Image file import has been added to SchemaOnRead to support this use case.

Figure 1: Reading a nested set of folders

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=SchemaOnRead

CONTRIBUTED RESEARCH ARTICLES 270

Another way to use SchemaOnRead is to recursively load a folder. The result is a named list of
elements for each entry in the folder’s tree as shown in Figure 1. Sub-elements (e.g., files or subfolders)
of a folder can be accessed using the R named list ($) operator followed by the sub-element name. An
example showing how to read a folder tree starting in ‘../inst/extdata’ is shown below.

library(SchemaOnRead)
results <- schemaOnRead("../inst/extdata")

In this case, the contents of the ‘dir1/Data.csv’ file within ‘../inst/extdata’ is shown by accessing
‘results$dir1$Data.csv’ as needed. The path also provides the data provenance. Files or folders with
names that do not conform to standard R variable naming requirements can be accessed using single
quote notation (e.g., results$‘Nonconforming Name’).

Figure 2: Using SchemaOnRead for convenient access to files and folders in RStudio

The resulting named list notation also provides convenient access to files and folders using
integrated development environments for R that support automatic code completion. An RStudio
(RStudio, 2015) example is shown in Figure 2.

The SchemaOnRead verbose flag can be used to trace a call’s progress or diagnose issues as shown
below.

library(SchemaOnRead)
folder <- schemaOnRead("../inst/extdata", verbose = TRUE)

Which produces the output:

schemaOnRead processing ../inst/extdata
schemaOnRead processing ../inst/extdata/arffexample.arff
schemaOnRead processing ../inst/extdata/data.xml
schemaOnRead processing ../inst/extdata/dir1
schemaOnRead processing ../inst/extdata/dir1/Data.csv
schemaOnRead processing ../inst/extdata/dir1/Data1.dif
schemaOnRead processing ../inst/extdata/dir1/Data1.xlsx
schemaOnRead processing ../inst/extdata/dir1/Data2.xls
schemaOnRead processing ../inst/extdata/dir1/dir3
schemaOnRead processing ../inst/extdata/dir1/dir3/data.xml
schemaOnRead processing ../inst/extdata/dir1/example.txt
schemaOnRead processing ../inst/extdata/dir1/spreadsheet.ods
schemaOnRead processing ../inst/extdata/dir2
schemaOnRead processing ../inst/extdata/dir2/data.xml

User Defined Processors

New processors can be defined to support user-specified processing. New processors are normally
prepended to the front of the default list to allow them to take precedence while still allowing
the standard processors to work if needed. Alternatively, a list of processors that just recursively
scans folders can be found by calling the schemaOnReadSimpleProcessors function. User-specified
processors can be added to this list to create a fully customized tool chain. An example showing how
to create a simple files processor is given below.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 271

Load the needed library.
library(SchemaOnRead)

Define a new processor.
newProcessor <- function(path, ...) {

Check the file existance and extensions.
if (!SchemaOnRead::checkExtensions(path, c("xyz"))) return(NULL)

As an example, attempt to read an XYZ file as a CSV file.
read.csv(path, header = FALSE)

}

Define a new processors list.
newProcessors <- c(newProcessor, SchemaOnRead::defaultProcessors())

Use the new processors list.
schemaOnRead(path = "../inst/extdata", processors = newProcessors)

A more detailed example of a Microsoft Excel spreadsheet processor is shown below.

Load the needed library.
library(SchemaOnRead)

Define a new processor.
newSpreadsheetProcessor <- function(filePath = ".", ...) {

Check the file existance and extensions.
if (!SchemaOnRead::checkExtensions(filePath, c("xls", "xlsx"))) return(NULL)

Read the workbook's worksheet names.
worksheets <- readxl::excel_sheets(filePath)

Read the workbook's worksheets.
workbook <- lapply(worksheets, readxl::read_excel, path = filePath)

Name the worksheets.
names(workbook) <- worksheets

Return the results.
workbook

}

Define a new processors list.
newProcessors <- c(newSpreadsheetProcessor, SchemaOnRead::defaultProcessors())

Use the new processors list.
schemaOnRead(path = "../inst/extdata", processors = newProcessors)

Related Work

Several R packages provide support for importing diverse file formats into R. Examples include rio,
readbitmap, and foreign.

The rio package (Chan et al., 2015) is the closest in functionality to SchemaOnRead. rio provides
file reading functions for a wide range of formats including text files, fixed format files, spreadsheet
files (XLS, XLSX, ODS, and DIF),Stata, JSON, SPSS, Weka, Epi Info, serialized R objects, saved R objects,
SAS, Minitab, Systat, shallow XML files, FORTRAN data files, and clipboard imports. rio supports a
few file formats not imported by SchemaOnRead such as fixed format files, FORTRAN data files, and
clipboard imports. SchemaOnRead similary offers several formats not supported by rio such as deep
XML, BMP, JPEG, and PNG files. Unlike SchemaOnRead, rio includes functions for writing as well as
reading. Unlike rio, SchemaOnRead includes functions for recursively reading directories and offers
an interface that is easily extensible by end users.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=rio
http://CRAN.R-project.org/package=readbitmap
http://CRAN.R-project.org/package=foreign

CONTRIBUTED RESEARCH ARTICLES 272

The foreign package (R Core Team et al., 2015) provides functions for reading a range of file types
including Weka, Epi Info, SPSS, Stata, Systat files. SchemaOnRead uses foreign for reading these
types of files. Unlike SchemaOnRead, foreign uses different user function calls to select the format
of the file being imported. Unlike foreign, SchemaOnRead provides recursive reading of folders,
is designed to be easily extended by end users to new file formats, and checks file extensions to
determine formats.

The readbitmap package (Jefferis, 2015) provides functions for reading BMP, JPEG, and PNG files.
SchemaOnRead uses readbitmap for reading BMP, JPEG and PNG files. Unlike SchemaOnRead,
readbitmap uses magic numbers rather than extensions to identify file formats 2. Unlike readbitmap,
SchemaOnRead provides recursive reading of folders and is designed to be easily extended by end
users to new file formats.

Why "SchemaOnRead?"

Schema-on-read (Deutsch, 2013), (Mendelevitch, 2013), (Jacobsohn and Delurey, 2014) is an agile
approach to data storage and retrieval that defers investments in data organization until production
queries need to be run by working with data directly in native form. Schema-on-read functions have
been implemented in a wide range of analytical systems including Hadoop (Hadoop Team, 2015),
(Schau, 2015), Splunk (Bitincka et al., 2012), Apache Spark (Spark Team, 2015), Apache Flink (Markl,
2014), and even relational databases (Liu and Gawlick, 2015). It is also possible to use machine learning
tools to extract schemas from source data (Yeh et al., 2013).

The R Package SchemaOnRead

The SchemaOnRead R package defines four public functions:

• schemaOnRead(path = ".",processors = defaultProcessors(),verbose = FALSE) processes
the given path using the provided lsit of processors optinally printing its progress on the console.

• defaultProcessors() returns a complete list of built-in processors in the recommended execu-
tion order.

• simpleProcessors() returns a minimal list of built-in processors in the recommended execution
order.

• checkExtensions(path = ".",extensions = NULL) returns true if the path exists and, if an
extensions list is provided, the extension of the path is in extensions list.

The schemaOnRead function is used to read source material (e.g., files and folders).

The SchemaOnRead package uses a recursive implementation. The initial user function call,
schemaOnRead iterates over the given list of processors, invoking each in turn until one returns a
non-null value. Processors are sequentially invoked in the order given by the input list, scanning from
index number one upwards. Processing continues as long as each processor returns null. The results
from the first processor to return a non-null value is stored as the content for the entry and processing
of that entry stops. All of the results are stored in a named list. The order of the resulting list is the
order given by the file system. The variable names are taken from the entry names (e.g., file or folder
names). Files or folders with names that do not conform to standard R variable naming requirements
can be accessed using single quote notation (e.g., results$‘Nonconforming Name’).

An example processor for Microsoft Excel spreadsheets is shown below. In this example, the
entry identified by the path string is checked to see if it exists as a file. If it does, then the file name is
extension is checked. If it matches then the processor attempts to read the file.

Define the XLS and XLSX spreadsheet file processor.
schemaOnReadProcessXLSandXLSXFile <- function(path = ".",

processors = schemaOnReadDefaultProcessors(), verbose = FALSE) {

Check the given path.
if ((file.exists(path)) &&

((tolower(tools::file_ext(path)) == "xls") ||

2Magic numbers (Wikipedia, 2015) are special values in files that represent the file format. Magic numbers
are commonly stored as special values encoded in file headers and footers. The first two bytes of JPEG files in
hexidecmial are FF and D8 and the last two bytes are FF and D9. The first six bytes of GIF files in hexdecimal are
47, 49, 46, 38, 37, and 61 (GIF87a in ASCII) or 47, 49, 46, 38, 39, and 61 (GIF89a in ASCII). The first eight bytes of
PNG files in hexidecmial are 89, 50, 4E, 47, 0D, 0A, 1A, and 0A) which, in part, spells PNG in ASCII.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 273

(tolower(tools::file_ext(path)) == "xlsx"))) {

Create the results holder.
results <- list()

Attempt to read the file.
workbook <- XLConnect::loadWorkbook(path)

Scan the worksheets.
for (worksheet in XLConnect::getSheets(workbook)) {

Define the variable name.
variable <- gsub("[^[:alnum:].]", "_", worksheet)
while (eval(parse(

text = paste("exists(\"results$", variable, "\")",
sep = "")))) {

variable <- paste(variable, "_A", sep = "")
}

Setup the processing command.
command <- paste("results$", variable,

" <- XLConnect::readWorksheet",
"(workbook, sheet = worksheet)", sep = "")

Evaluate the processing command.
eval(parse(text = command))

}

Return the results.
return(results)

} else {

Return the default value.
return(NULL)

}

}

The main goal of a processor is to read each acceptable entry into R in an easily usable format.
Examples include the production of lists and data frames. The main output of SchemaOnRead is
thus intended to be a nested tree of lists, with data frames in some of the leaves the tree. The first
example does this by scanning the worksheets in a given workbook and converting each into a data
frame. The result is a list of data frames with each data frame entry identified using the name of the
corresponding worksheet. Note that the worksheet names are checked to insure that they correspond
to valid R variable names for convenient user access.

The postconditions for each processor are that the processor or one of its descendants either
successfully processes the entry and returns a non-null result or fail to process the entry and return
null. If the entry is successfully processed then SchemaOnRead will perform no further processing
on the item. If the item was not successfully processed then SchemaOnRead will use its remaining
processors list to attempt to process the entry.

Several special processors are defined for SchemaOnRead. These include processors for nonexistent
entries, directories, and entries of unknown types.

The schemaOnReadProcessEntryDoesNotExist processor returns null if the given entry exists and
returns the value "Entry Does Not Exist" if not. It is meant to be the first processor in most lists
to intercept nonexistent entries before they waste execution time in other processors. Occasionally,
special processing may needed for nonexistent entries so these processors should run first.

The schemaOnReadProcessDirectory processor handles directories as previously discussed. It is
intended to be the second processor to run in normal lists.

The schemaOnReadProcessDefaultFile processor accepts all entries that exist and returns the
"File Type Unknown" string. It normally runs last to insure a value for unrecognized file types.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 274

SchemaOnRead includes predefined two processing lists. The default processing list is used
for SchemaOnRead entry processing. The simple processing list provides an easy starting point for
user-defined processor lists.

Twenty-one unit tests are defined for the SchemaOnRead package. These tests are implemented
using the testthat R package (Wickham, 2015). The current version of SchemaOnRead passes all of the
defined tests.

Summary

As we have discussed, schema-on-read is a powerful new option for data storage and retrieval.
Schema-on-read functions have been implemented in a wide range of analytical systems, most notably
Hadoop. SchemaOnRead uses R’s flexible data representations to provide transparent and convenient
support for the schema-on-read paradigm in R. This paper’s contribution is that it introduces and
describes the SchemaOnRead package and compares it to related R packages.

Acknowledgements

Argonne National Laboratory’s work was supported under U.S. Department of Energy contract
DE-AC02-06CH11357.

Bibliography

L. Bitincka, A. Ganapathi, and S. Zhang. Experiences with workload management in splunk. In
Workshop on Management of Big Data Systems, pages 25–30, 2012. [p272]

C. H. Chan, G. C. H. Chan, T. J. Leeper, and C. Gandrud. CRAN rio Package, Version 0.2. https:
//cran.r-project.org/web/packages/rio/index.html, 2015. [p271]

T. Deutsch. Why is schema on read so useful? http://www.ibmbigdatahub.com/blog/why-schema-
read-so-useful, 2013. [p272]

Hadoop Team. Apache hadoop. http://hadoop.apache.org, 2015. [p272]

M. Jacobsohn and M. Delurey. How the data lake works. https://www.boozallen.com/content/dam/
boozallen/documents/Data_Lake.pdf, 2014. [p272]

G. Jefferis. CRAN readbitmap Package, Version 0.1-4. https://cran.r-project.org/web/packages/
readbitmap/index.html, 2015. [p272]

Z. H. Liu and D. Gawlick. Management of flexible schema data in rdbmss - opportunities and
limitations for nosql. In 7th Biennial Conference on Innovative Data Systems Research, 2015. [p272]

V. Markl. Breaking the chains: On declarative data analysis and data independence in the big data era.
In Proceedings of the VLDB Endowment, volume 7, pages 1730–1733, 2014. [p272]

O. Mendelevitch. Apache hadoop and data agility. http://hortonworks.com/blog/hadoop-data-
agility/, 2013. [p272]

R Core Team, R. Bivand, V. J. Carey, S. DebRoy, S. Eglen, R. Guha, N. Lewin-Koh, M. Myatt, B. Pfaff,
B. Quistorff, F. Warmerdam, S. Weigand, and Free Software Foundation, Inc. CRAN foreign Package,
Version 0.8-66. https://cran.r-project.org/web/packages/foreign/index.html, 2015. [p272]

RStudio. RStudio. https://www.rstudio.com, 2015. [p270]

A. Schau. Schema-on-read in action. http://blog.cask.co/2015/03/schema-on-read-in-action/,
2015. [p272]

Spark Team. Apache spark. http://spark.apache.org, 2015. [p272]

H. Wickham. CRAN testthat Package, Version 0.10.0. https://cran.r-project.org/web/packages/
testthat/index.html, 2015. [p274]

Wikipedia. Magic number (programming). http://en.wikipedia.org/wiki/Magic_number_
(programming), 2015. [p272]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=testthat
https://cran.r-project.org/web/packages/rio/index.html
https://cran.r-project.org/web/packages/rio/index.html
http://www.ibmbigdatahub.com/blog/why-schema-read-so-useful
http://www.ibmbigdatahub.com/blog/why-schema-read-so-useful
http://hadoop.apache.org
https://www.boozallen.com/content/dam/boozallen/documents/Data_Lake.pdf
https://www.boozallen.com/content/dam/boozallen/documents/Data_Lake.pdf
https://cran.r-project.org/web/packages/readbitmap/index.html
https://cran.r-project.org/web/packages/readbitmap/index.html
http://hortonworks.com/blog/hadoop-data-agility/
http://hortonworks.com/blog/hadoop-data-agility/
https://cran.r-project.org/web/packages/foreign/index.html
https://www.rstudio.com
http://blog.cask.co/2015/03/schema-on-read-in-action/
http://spark.apache.org
https://cran.r-project.org/web/packages/testthat/index.html
https://cran.r-project.org/web/packages/testthat/index.html
http://en.wikipedia.org/wiki/Magic_number_(programming)
http://en.wikipedia.org/wiki/Magic_number_(programming)

CONTRIBUTED RESEARCH ARTICLES 275

E. Yeh, J. Niekrasz, and D. Freitag. Unsupervised discovery and extraction of semi-structured regions in
text via self-information. In Proceedings of the 2013 Workshop on Automated Knowledge Base Construction,
pages 103–107, 2013. [p272]

Michael J. North
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439 USA
north@anl.gov

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

mailto:north@anl.gov

