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R as an Environment for Reproducible
Analysis of DNA Amplification

Experiments
by Stefan Rodiger, Michat Burdukiewicz, Konstantin Blagodatskikh, Michael Jahn and Peter Schierack

Abstract There is an ever-increasing number of applications, which use quantitative PCR (qPCR) or
digital PCR (dPCR) to elicit fundamentals of biological processes. Moreover, quantitative isother-
mal amplification (qIA) methods have become more prominent in life sciences and point-of-care-
diagnostics. Additionally, the analysis of melting data is essential during many experiments. Several
software packages have been developed for the analysis of such datasets. In most cases, the software
is either distributed as closed source software or as monolithic block with little freedom to perform
highly customized analysis procedures. We argue, among others, that R is an excellent foundation
for reproducible and transparent data analysis in a highly customizable cross-platform environment.
However, for novices it is often challenging to master R or learn capabilities of the vast number
of packages available. In the paper, we describe exemplary workflows for the analysis of qPCR,
qlA or dPCR experiments including the analysis of melting curve data. Our analysis relies entirely
on R packages available from public repositories. Additionally, we provide information related to
standardized and reproducible research.

Introduction

Quantitative polymerase chain reaction (qQPCR) is the method of choice when a precise quantification of
minute DNA traces is required. Applications include the detection and quantification of pathogens or
gene expression analysis (Pabinger et al., 2014). Only few bioanalytical methods had such a significant
impact on the progress of life sciences and medical sciences as the qPCR (Huggett et al., 2015b).
Numerous commercial and experimental monitoring platforms have been developed in the past years.
This includes standard plate cyclers, capillary cyclers, microfluidic platforms and related technologies
(Rodiger et al., 2013b; Viturro et al., 2014; Rodiger et al., 2014; Khodakov and Ellis, 2014; Wu et al.,
2014).

In the past decades several isothermal amplification technologies emerged, such as helicase
dependent amplification (HDA). Isothermal amplification methods were readily combined with real-
time monitoring technologies (qIA) or digital PCR and are used in various fields like diagnostics and
point-of-care-testing (Selck et al., 2013; Rodiger et al., 2014; Nixon et al., 2014).

Digital PCR (dPCR) is a novel approach for detection and quantification of nucleic acids and can be
seen as a next generation method (Huggett et al., 2015b). The dPCR technology breaks fundamentally
with the previous concept of nucleic acid quantification. In contrast to traditional qPCR measures
dPCR absolute nucleic acids amounts. This is possible after ‘clonal DNA amplification” in thousands
of small separated partitions (e.g., droplets, nano chambers; Huggett et al. 2013; Milbury et al. 2014;
Morley 2014). Partitions with no nucleic acid remain negative and the others turn positive (e.g.,
Figure 1). Selected technologies (e.g., OpenArray®real-time PCR system) monitor amplification
reactions in the chambers (‘partitions’) in real-time. After that, all quantification cycle (Cq) values are
calculated from the amplification curves and converted into discrete events of positive and negative
chambers. Finally, the absolute quantification of nucleic acids is done using Poisson statistics (Milbury
et al.,, 2014; Morley, 2014). A representative workflow using the vendor software for the analysis of a
droplet dPCR experiment has been described by Milbury et al. (2014). Recently, we have published the
dpcR package (Burdukiewicz et al., 2015) at CRAN, which is the first open source R software package
for the analysis of dPCR experiments (see the dpcR package manual for details).

The complexity of hardware, wetware and software requires expertise to master a workflow. This
comprises standards for experiment design, generation and analysis of data, multiple hypothesis
testing, interpretation, reporting and storage of results (Huggett et al., 2014; Castro-Conde and
de Unia-Alvarez, 2014). Scientific misconduct and fraud have shaken the scientific community on
several occasions (Bustin, 2014). In particular, the scientific community works hard to uncover
pitfalls of qPCR experiments. This led to the development of peer-reviewed quantification cycle (Cq)
analysis algorithms (Ruijter et al., 2013), fully characterized qPCR chemistries (Ruijter et al., 2014)
and guidelines for a proper conduct of qPCR experiments as implemented in the MIQE guidelines
(minimum information for publication of quantitative real-time PCR experiments; Huggett et al.
2013; Bustin 2014). We share the philosophy of the MIQE guidelines to increase the experimental
transparency for better experimental practice and reliable interpretation of results and encourage the
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Figure 1: Scheme of a digital PCR experiment. (A) A droplet digital PCR reaction mix was formed in a
BioRad QX100 Droplet Digital PCR System. Droplets (circa 100 ym in diameter) were subjected to
custom made slide chambers for the detection and analysis in fully automatized imaging VideoScan
platform (Rodiger et al., 2013b). (B) Subsequently the samples can be digitalized by counting the

number of positive and total number of droplets. The plot was generated with the sim_ddpcr function
from the dpcR package.

use of open data exchange formats like the XML-based real-time PCR data markup language (RDML;
Lefever et al. 2009).

In case of closed source software the analysis usually happens in a black box fashion tied to a
specific platform. We agree that closed frameworks are not necessarily a bad thing, but should be
avoided if possible (Rodiger et al., 2013a; Spiess et al., 2015). Studies by McCullough and Heiser
(2008); Almiron et al. (2010); Duran et al. (2014) exemplified where the black box approach might fail
in science. The same holds true for the open source software since software bugs are independent of a
development model. However, at least open source gives the possibility to track and eliminate errors
by an individual entity. Black-box systems often force the user to process the data by suboptimal
analysis algorithms (Ruijter et al., 2013). Moreover, the data usually cannot be accessed between the
steps of the analysis, which restrains quality control. Visualization options are usually limited by the
software vendor preferences and do not attain publication quality. In addition to this, users who have
no access to the commercial software are barred. Aside from closed source software, data analysis is
often performed in spreadsheets. However, this data processing approach is not advisable for research
purposes. Most spreadsheets lack (or do not use) tools to validate the input, to debug implemented
procedures and to automatize the workflow. These traits make them prone to errors and not well
suited for complicated tasks (McCullough and Heiser, 2008; Burns, 2014).

For several reasons, R is one of the most popular tools in bioinformatics and is known as an
early adopter of emerging technologies (Pabinger et al., 2014). R provides packages to build highly
customized workflows, covering: data read-in, data pre-processing, analysis, post-processing, visu-
alization (Murrell, 2012, 2015) and storage. As recently briefly reviewed in Pabinger et al. (2014),
numerous R packages have been developed for the analysis of gPCR, dPCR, qIA and melting curve
analysis experiments, including: kulife (Ekstrom et al., 2013), MCMC.qpcr (Matz, 2015), qPCR.CT
(Pan et al., 2012), DivMelt (Swan, 2013), qpcR (Spiess, 2014), dpcR, chipPCR (Roediger and Bur-
dukiewicz, 2014), MBmca (Roediger, 2015), RDML (Blagodatskikh et al., 2015), nondetects (McCalll
etal., 2014), qperNorm (Mar, 2009), HTqPCR (Dvinge and Bertone, 2009), SLqPCR (Kohl, 2007), ddCt
(Zhang et al., 2015), EasyqpcR (Pape, 2012), unified WMWqPCR (Neve et al., 2014; Neve and Meys,
2014), ReadqPCR and NormqPCR (Perkins et al., 2012) All packages are either available from CRAN
or Bioconductor (Gentleman et al., 2004) and can be freely combined in a plugin-like architecture.

R is an open, operating system-independent platform for a broad spectrum of calculation options.
Particularly, the visualization of experiments is one of R’s pinnacles. R enables the users to create an
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Figure 2: An exemplary workflow for quantitative PCR, digital PCR, quantitative isothermal am-
plification and melting curve analysis experiments in R. The R software environment provides core
functionality for statistical computing and graphics. In our scenario we used the RDML package
to read-in data in standardized format. However, any format supported by R can be used. Further,
processing of amplification curve data was performed with the chipPCR package and melting curve
data were analysed with the MBmca package. The dpcR package can be embedded in the analysis of
digital PCR experiments. Cq, quantification cycle; Ty;, melting temperature.

efficient manipulation, restructuring and reshaping of data to make them readily-available for further
processing. This is of the particular importance to the human—machine interface (Oh, 2014). Intrinsic
properties of R such as naming conventions (Baath, 2012) and class systems (e.g., S3, S4, reference
classes and R6) vary considerable, depending on the package developer preferences. However, due to
the open source approach, there is the common ground to track numerical errors. R offers various
methods for a standardized data import/export and exchange. Workflows can embed structured
models (Zeller et al., 2009), open data exchange formats (e.g., RDML), binary formats (Michna and
Woods, 2013) or tools provided by the R workspace (R Core Team, 2015). The NetCDF binary format,
available from the RNetCDF package (Michna, 2015), has advantages over some other binary formats
(e.g., the RData format), since arbitrary array data sections of massive datasets can be processed
efficiently (Michna and Woods, 2013). This might be useful for large data sets as present in high-
throughput PCR experiments or dPCR experiments with large partition numbers. The R environment
offers several datasets, which can be used for testing of algorithms. Therefore, we, among others,
argue that R is suitable for reproducible research (Gentleman et al., 2004; Murrell, 2012; Gandrud, 2013;
Hofmann et al., 2013; Ooms, 2013; Kuhn, 2015; Leeper, 2014; Liu and Pounds, 2014).

The aim of this paper is to show case studies for qPCR, dPCR, qIA and melting curve analysis
experiments. Our workflow effectively follows the principle illustrated in Figure 2. We intend to
aggregate functionalities dispersed between various packages and offer a fast insight in the analysis of
nucleic acid experiments with R. In particular, we describe how to:

¢ read-in data from a standardized file format,

® pre-process the amplification curve data,

e calculate specific parameters from the amplification curve data,
e calculate the melting temperature,

* and report the data.

Setting-up a working environment

We recommend performing the scripting in a dedicated integrated development environment (IDE)
and graphical user interface (GUI) such as RKWard (Rodiger et al., 2012), RStudio (RStudio, 2014;
Gandrud, 2013) or other technologies (Valero-Mora and Ledesma, 2012). Benefits of IDEs with
GUI include syntax-highlighting, auto completion and function references for rapid prototyping of
workflows. Typically, the analysis will start with data from a commercial platform. Most platforms
have an option to export a CSV file or spreadsheets application file (e.g., *.xls, *.odt). Details for the
data import have been described elsewhere (R Core Team, 2015; Rodiger et al., 2012). To keep the

The R Journal Vol. 7/1, June 2015 ISSN 2073-4859


http://CRAN.R-project.org/package=RNetCDF

CONTRIBUTED RESEARCH ARTICLES 130

case study sections compact we have chosen to load datasets from the qpcR package (Ritz and Spiess,
2008) (v. 1.4.0) and the RDML package (v. 0.8-3) to our workspace. The chipPCR package (Rodiger
et al., in press) (v. 0.0.8-10) was used for data pre-processing, quality control and the calculation of the
quantification cycle (Cq).

The Cq is a quantitative measure, which represents the number of cycles needed to reach a user
defined threshold signal level, in the exponential phase of a qPCR/qIA reaction. Several Cq methods
have been described (Ruijter et al., 2013). In this study we have chosen the second derivative maximum
method (Cqspyps) and the ‘Cycle threshold” (Cg¢;) method.

During a perfect qPCR reaction, the target DNA doubles (2"; n = cycle number) at each cycle. Here
the amplification efficiency (AE) is 100 %. However, in reality, numerous factors cause an inhibition of
the amplification (AE < 100 %). The AE can be determined by the relation of the Cq value depending
on the sample input quantity as described in (Rodiger et al., in press; Svec et al., 2015).

In Rodiger et al. (2013a) we described the application of R for the analysis of melting curve
experiments from microbead-based assays. We used functions from the MBmca package (0.0.3-4) for
an analysis of the target specific melting temperature (Tjs) in experiments of the present study, since
the mathematical foundation is the same.

We completed our examples with case studies for the analysis of dPCR experiments. In particular,
we used the dpcR package (v. 0.1.4.0) to estimate the number of molecules in a sample.

Results

In the following sections we will show how R can be used (I) as a unified open software for data
analysis and presentation in research, (II) as software frame-work for novel technical developments,
(III) as platform for teaching of new technologies and (IV) as reference for statistical methods.

Case study one — qPCR and amplification efficiency calculation

The goal of our first case study was to calculate the Cq values and the AE from a qPCR experiment. We
used the guescinil dataset from the qpcR package, where the gene NADH dehydrogenase 1 (MT-ND1)
was amplified in a LightCycler® 480 (Roche) thermocycler. Details of the experiment are described in
Guescini et al. (2008). We started with loading the required packages and datasets. A good practice for
reproducible research is to track the package versions and environment used during the analysis. The
function sessionInfo from the utils package provides this functionality. Assuming that the analysis
starts with a clean R session it is possible to assign the required packages to an object, as shown below.
Reproducibility of research can be further improved by the archivist package (Biecek and Kosinski,
2015), which stores and recovers crucial data and preserves metadata of saved objects (not shown). All
settings of an R session can be easily saved and/or restored using the settings package (van der Loo,
2015).

# Load the required packages for the data import and analysis.

# Load the chipPCR package for the pre-processing and curve data quality
# analysis and load the gpcR package as data resource.

require(chipPCR)

require(gpcR)

# Collect information about the R session used for the analysis of the
# experiment.
current.session <- sessionInfo()

# Next, we load the 'guescinil' dataset from the gpcR package to the
# workspace and assign it to the object 'gue'.
gue <- guescinil

# Define the dilution of the sample DNA quantity for the calibration curve
# and assign it to the object 'dil'.
dil <- 10*(2: -4)

We previewed the amplification curve raw data using the matplot function (see code below). The
amplification curve data showed a strong signal level variation in the plateau region (Figure 3A).
Therefore, all data were subjected to a minimum-maximum normalization using the CPP function from
the chipPCR package. In addition, all data were baselined and smoothed (Figure 3B; see Rodiger
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et al. 2013a; Rodiger et al. in press). The Cq values were calculated by the Cqspys and Cqc; methods
as shown next.

# Pre-process the amplification curve data with the CPP function from the

# chipPCR package. The trans parameter was set TRUE to perform a baselining and
# the method.norm parameter was set to minm for a min-maximum normalization. All
# amplification curves were smoothed by Savitzky-Golay smoothing.

res.CPP <- cbind(guel, 11, apply(guel, -1], 2, function(x) {
CPP(guel, 11, x, trans = TRUE, method.norm = "minm”, method.reg = "least”,
bg.range = c(1,7))[["y.norm"]1]
»

# Use the th.cyc function from the chipPCR package to calculate the Cq values
# by the cycle threshold method at a threshold signal level "r" of 0.05.
Cq.Ct <- apply(guel, -1], 2, function(x)

th.cyc(res.CPP[, 11, x, r = 0.05)[1])

# Use the inder function from the chipPCR package to calculate the Cq values
# by the SDM method. This will give a lot of output in the console.
Cq.SDM <- apply(guel, -1], 2, function(x)

summary (inder(res.CPP[, 11, x))[2]1)

# Fit a linear model to carry out a regression analysis.
res.Cq <- 1lm(Cq.Ct ~ Cq.SDM)

To compare the Cqspyr and Cqc; methods we performed a regression analysis. The Cq methods
are in a good agreement. However, the dispersion of the Cqc; values appeared to be higher than in the
Cqspm values (Figure 3C).

summary(res.Cq)

Call:
Im(formula = Cq.Ct ~ Cq.SDM)

Residuals:
Min 1Q Median 3Q Max
-1.4904 -0.2730 ©0.0601 ©.3540 1.1871

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -8.125534  ©.207419 =-39.17 <2e-16 *xx
Cq.SDM 0.988504 0.008097 122.08 <2e-16 **x

Signif. codes: @ 'x*x' 0.001 'x*x' ©.01 'x' 9.05 '.' 0.1 ' ' 1

Residual standard error: ©.5281 on 82 degrees of freedom
Multiple R-squared: ©.9945, Adjusted R-squared: 0.9945
F-statistic: 1.49e+04 on 1 and 82 DF, p-value: < 2.2e-16

The dilution (‘dil") and the Cq (‘Cq.Ct’) values served as input for the calculation of the amplifica-
tion efficiency (AE) with effcalc function from the chipPCR package. In our case study we needed
to rearrange the ‘Cq.Ct’ values in a matrix using the command effcalc(dil, t(matrix(Cq.Ct,nrow
= 12,ncol = 7)). For visualization of the confidence intervals of the regression analysis we set the
parameter CI = TRUE.

# Arrange and plot the results in a convenient way.
layout(matrix(c(1, 2, 3, 3, 4, 5), 3, 2, byrow = TRUE))

# Store used margin parameters

def.mar <- par("mar")

layout(matrix(c(1, 2, 3, 3, 4, 5), 3, 2, byrow = TRUE))
# Set bigger top margin.

par(mar = c(5.1, 4.1, 6.1, 2.1))
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Figure 3: Analysis of the amplification curve data of the guescinil dataset. (A) Raw data from the
calibration curve samples were visually inspected. The qPCR curves display a broad variation in
plateau fluorescence (38-62 RFU). (B) The CPP function from the chipPCR package was used to baseline
the data, to smooth the data with Savitzky-Golay smoothing filter and to normalize the data between
0 and 1. The red horizontal line (—) indicates the fluorescence level (0.05) used for the calculation
of the Cq value by the ‘cycle threshold” method. (C) The Cq values were calculated by the Cqspy
method (‘SDM method’) (inder, chipPCR) and the Cg¢c; method (‘Ct method’) (th.cyc, chipPCR).
The threshold value was set to r = 0.05. The Cqspps and Cqc; values were plotted and analysed
by a linear regression (RZ = 0.9945; P < 2.2710) and Pearson’s r (r = 0.9972605; P < 2.2716). The
amplification efficiency based on (D) Cq¢; values and (E) Cqgpys values were automatically analysed
with the effcalc (chipPCR) function. Cq, Quantification cycle; SDM, Second derivative maximum,
RA2, Coefficient of determination; r, Pearson product-moment correlation coefficient, RFU, relative
fluorescence units.
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# Plot the raw amplification curve data.

matplot(guel, -1], type = "1", 1ty = 1, col = 1, xlab = "Cycle”,
ylab = "RFU", main = "Raw data")

mtext("A", side = 3, adj = 0, cex = 2)

# Plot the pre-processed amplification curve data.

matplot(res.CPP[, -1], type = "1", 1ty = 1, col = 1, xlab = "Cycle”,
ylab = "RFU (normalized)"”, main = "Pre-processed data")

mtext("B", side = 3, adj = 0, cex = 2)

abline(h = .05, col = "red”, lwd = 2)

# Plot Cq.SDM against Cq.Ct and add the trendline from the linear regression
# analysis.

plot(Cq.SDM, Cq.Ct, xlab = "Cq Ct method”, ylab = "Cq SDM method”,
main = "Comparison of Cq methods™)

abline(res.Cq)

mtext("C", side = 3, adj = 0, cex = 2)

# Use the effcalc function from the chipPCR package to calculate the

# amplification efficiency.

plot(effcalc(dil, t(matrix(Cq.Ct, nrow = 12, ncol = 7))), ylab = "Cq Ct method”,
CI = TRUE)

mtext("D", side = 3, adj = 0, cex = 2)

plot(effcalc(dil, t(matrix(Cq.SDM, nrow = 12, ncol = 7))), ylab = "Cq SDM method",
CI = TRUE)
mtext("E", side = 3, adj = 0@, cex = 2)

# Resore margin default values.
par(mar = c¢(5.1, 4.1, 4.1, 2.1))

Finally, Cq values were plotted using the layout function (Figures 3D and E). The Cq values
and amplification vary slightly between both methods. This is an expected observation and is in
accordance to the findings by Ruijter et al. (2013). As shown in this case study; it is easy to set-up a
streamlined workflow for data read-in, pre-processing and analysis with a few functions.

Case study two — qPCR and melting curve analysis

A common task during the analysis of qPCR experiments is to distinguish between positive and
negative samples (see Figure 5). If the melting temperature of a sample is known it is possible to
automatize the decision by a melting curve analysis (MCA). As shown in Rodiger et al. (2013a) this can
be done by interrogating the Tys. Therefore, we used a logical statement, which tests if Ty, is within a
tight temperature range. We used the signal height as second parameter. In line with ‘Case study one —
qPCR and amplification efficiency calculation we used the function sessionInfo to track all packages
used during the analysis. Reproducible research is greatly enhanced if open data exchange formats are
used. Therefore, we used the RDML package for data read-in. The amplification and melting curve
data were measured with a CFX96 system (Bio-Rad) and then exported as RDML v 1.1 format file as
‘BioRad_gPCR_melt.rdml’. Within this qPCR experiment we amplified the Mycobacterium tuberculosis
katG gene and tried to detect a mutation at codon 315. The experiment was separated in two parts:

1. Detection of overall M. tuberculosis DNA (wild-type and mutant) and

2. specific detection of wild-type M. tuberculosis by melting of TagMan probe (quencher — BHQ?2,
fluorescent reporter — Cy5) with amplified DNA (see Luo et al. 2011 for probe/primer sequences
and further details).

The gPCR was conducted using EvaGreen® Master Mix (Syntol) according to the manufacturer’s
instructions, with 500 nM of primers and probe in a 25 uL final reaction volume. Thermocycling was
conducted using a CFX96 (BioRad) initiated by 3 min incubation at 95 °C, followed by 41 cycles (15 s at
95 °C; 40 s at 65 °C) with a single read-out taken at the end of each cycle. Probe melting was conducted
between 35 °C and 95 °C by 1 °C at 1 s steps.

RDML file structures can be complex. Though RDML files are XML structured files and thus
intended to be readable by humans, it is hard to grasp the complex hierarchical file structure without
some basic understanding. A simple and fast method to compactly display the structure of an object
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in R is to use the str or summary function (not shown). However, such R tools are not informative in
this context. Therefore we implemented a dendrogram-like view (Figure 4). According to this, the file
contains different datasets, each with 3 samples, (“pos’, ‘ntc’, “unknown’). Only a subset of the data
was used in our case study and combined to the object qPCR.

# Import the gPCR and melting curve data via the RDML package.

# Load the chipPCR package for the pre-processing and curve data quality
# analysis and the MBmca package for the melting curve analysis.
require(RDML)

require(chipPCR)

require(MBmca)

require(dplyr)

# Collect information about the R session used for the analysis of the gPCR
# experiment.
current.session <- sessionInfo()

# Load the BioRad_qPCR_melt.rdml file from the RDML package and assign the data
# to the object 'BioRad'.

filename <- file.path(path.package("RDML"), "extdata”, "BioRad_gPCR_melt.rdml")
BioRad <- RDML$new(filename)

The structure of the file can be overviewed by the AsDendrogram() function.
We can see that our experiment contains two detection channels (Figure 4).
('EvaGreen' and 'Cy5' at 'Run ID'). 'EvaGreen' channel has one

probe (target) - 'EvaGreen'. 'Cy5' has: 'Cy5', 'Cy5-2' and 'Cy5-2_rr'.

each target has three sample types (positive, unknown, negative).

And each sample type has qPCR ('adp') and melting ('mdp') data.

The last column shows the number of samples in an experiment.

HOoH H OH OH OH

BioRad$AsDendrogram()

# Fetch cycle dependent fluorescence for the EvaGreen channel and row 'D'
# (contains the target 'Cy5-2' in the channel 'Cy5') of the
# katG gene and aggregate the data in the object 'gPCR'.

gPCR <- BioRad$AsTable() %>%
filter(target == "EvaGreen”,
grepl("*D", position)) %>% BioRad$GetFData(.)

We inspected and pre-processed a subset of the amplification curve data solely using functionalities
provided by the chipPCR package. The plotCurves function was used to get an overview of the curva-
tures. The green background colour of subplots shows that the data contain no missing values. Some
curves indicated a moderate baseline shift with a slight negative trend (Figure 5). This observation
suggested to baseline the raw data by using a linear regression model (cycles x - y; (bg.range = c(x,vy))
in the CPP function.). The curvatures of ‘D1_Alm12...” and ‘D2_Alm12...” exhibited a drop in the
plateau phase. However, this is not of importance during this stage of the analysis.

# Use plotCurves function to get an overview of the amplification curve samples
# (Figure 5).

plotCurves(qPCRL, 11, gPCR[, -1], type = "1")
mtext("Cycles”, SOUTH <- 1, line = 3)
mtext("Fluorescence”, side = 2, line = 2)

Since the amplification curves indicated that selected samples (except non-template-control; ‘NTC’)
are positive, we distinguished between true positive and true negative samples by MCA (Figure 6A).

# To detect positive samples we calculated the Cq values by the cycle threshold
# method. This method is implemented in the th.cyc function. The threshold signal
# level r was set to 10.
Cq.Positive <- t(apply(gPCR[, -1]1, 2, function(x)
{
res <- CPP(gPCR[, 1], x, trans = TRUE, bg.range = c(2, 8),
method.reg = "least”)[["y.norm"]]
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Figure 4: File structure visualization of the RDML file ‘BioRad_qPCR_melttdml” form the RDML
package. The file was read by the RDML function and the structure displayed as dendrogram by the call
BioRad$AsDendrogram(). Names are used according to the RDML convention by Lefever et al. (2009).
The object BioRad branches into an experiment with Run ID names for two fluorescence detection
channels (FAM, Cy5). The targets have typical designations like pos (positive), unkn (unknown) and
ntc (non-template control). In the deeper branches are the data types adp (amplification data point)
and mdp (melting data point) shown with the number of samples (ranging from 2 to 18).
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Figure 5: Analysis of the amplification curve data. The calibration curve samples were inspected
by the plotCurves function from the chipPCR package. The green colour code indicates that
the data contain no missing values. However, the visual inspection revealed that the data are
noisy. All samples (‘D1_AIm12...—D8_AIm12...") appeared to be positive. One negative control
(‘D10_H20_ntc_EvaGreen’) seems to be contaminated.

# The th.cyc fails when the threshold exceeds a maximum observed fluorescence
# value. Therefore, we used try() to allow an error-recovery.

th.cycle <- try(th.cyc(qPCR[, 1], res, r = 10, linear = FALSE)[1], silent = TRUE)
# In addition we used logical statements, which define if a

cq <- ifelse(is(th.cycle, "try-error”), as.numeric(th.cycle), NA)
if(th.cycle > 35) cq <- NA
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Figure 6: Amplification curve plots and melting curve plots. (A) The raw amplification curve data
were pre-processed with the CPP function prior to visualization. To calculate the Ty values from the
raw melting curve data (B) we used the diffQ function from the MBmca package. (C) We adjusted our
algorithm to plot the true positive melting peaks in red, while negative melting peaks were labelled
in black. The inspection of the plot and the output of results.tab showed that only D07_katG
315_unkn_EvaGreen (—) and D08_katG 315_unkn_EvaGreen (—) are true positive. RFU, relative
fluorescence units; -d(RFU)/dT, negative first derivative of the melting-curve.

pos <- l!is.na(cq)

c(Cqg = cq, M.Tub_positive = pos)
}
)

So far we were able to calculate the Cq values for all samples. Next, we performed a melting curve
analysis to characterize our samples. Therefore, we fetched the melting curve data from the BioRad
object. We focused on the central steps of the melting curve analysis. A comprehensive overview on
such analysis was presented in Rodiger et al. (2013a).

# Fetch temperature dependent fluorescence for the Cy5 channel of the
# probe 'Cy5-2' that can hybridize with Mycobacterium tuberculosis
# katG gene (codon 315) and aggregate the data in the object 'melt’.
melt <- BioRad$AsTable() %>%

filter(target == "Cy5-2") %>% BioRad$GetFData(., data.type = "mdp")

# Calculate the melting temperature with the diffQ function from the MBmca

# package. Use simple logical conditions to find out if a positive sample with
# the expected Tm of circa 54.5 degree Celsius is found. The result of the test
# is assigned to the object 'Tm.Positive'.

Tm.Positive <- matrix(nrow = ncol(melt) - 1,
byrow = TRUE,
dimnames = list(colnames(melt)[-11),
unlist(apply(melt[, -11, 2, function(x) {
res.Tm <- diffQ(cbind(melt[, 1], x),
fct = max, inder = TRUE)
positive <- ifelse(res.Tm[1] > 54 &
res.Tm[1] < 55 &
res.Tm[2] > 80, 1, 0)
c(res.Tm[1], res.Tm[2], positive)

DN

An important part of an automatized report generation is the automatic assignment of decisions
(e.g., sample is a wild-type or mutant). Therefore, we used again a simple logic.

# Present the results in a tabular output as data.frame 'results.tab'.
# Result of analysis logic is:

# Cq.Positive && Tm.Positive = Wild-type

# Cq.Positive && !Tm.Positive = Mutant

# !Cq.Positive && !Tm.Positive = NTC
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# !Cq.Positive && Tm.Positive = Error

results <- sapply(1:length(Cq.Positive[,1]), function(i) {

if(Cq.Positive[i, 2] == 1 && Tm.Positivel[i, 3] == 1)
return("Wild-type")

if(Cq.Positive[i, 2] == 1 && Tm.Positivel[i, 3] == @)
return(”Mutant”)

if(Cq.Positive[i, 2] == 0 && Tm.Positivel[i, 3] == @)
return(”"NTC")

if(Cq.Positive[i, 2] == @ && Tm.Positivel[i, 3] == 1)
return("Error")

b))

We applied names of variables and factors to all the objects (e.g, Tm.Positive, Cq.Positive) and
aggregated them in the object results. tab. The aim of doing this is to present the result in an easy
readable form

results.tab <- data.frame(cbind(Cq.Positive, Tm.Positive, results))
names(results.tab) <- c("Cq"”, "M.Tub DNA", "Tm", "Height",
"Tm positive”, "Result")

results.tab[["M.Tub DNA"]] <- factor(results.tab[["M.Tub DNA"]],
labels = c(”"Not Detected”, "Detected"))

results.tab[["Tm positive”]] <- factor(results.tab[["Tm positive"]],
labels = c(TRUE, FALSE))
results.tab

The results of the analysis can be invoked by the statement results. tab (not shown). Finally, we
plotted and printed the output of our melting curve (Figure 6B) and melting peak (Figure 6C) analysis.

# Convert the decision from the 'results' object in a colour code:
# Negative, black; Positive, red.

color <- c(Tm.Positive[, 3] + 1)

# Arrange the results of the calculations in a plot.
layout(matrix(c(1, 2, 1, 3), 2, 2, byrow = TRUE))

# Use the CPP function to preporcess the amplification curve data.
plot(NA, NA, xlim = c(1, 41), ylim = c(0,200), xlab = "Cycle”, ylab = "RFU")
mtext("A", cex = 2, side = 3, adj = @, font = 2)
lapply(2L:ncol(qPCR), function(i)
lines(gPCR[, 1],
CPP(gPCRL, 11, 9PCR[, il, trans = TRUE,
bg.range = c(1,9))[["y.norm"]1],
col = color[i - 11))

matplot(melt[, 1], melt[, -1], type = "1", col = color,
1ty = 1, xlab = "Temperature [degree Celsius]"”, ylab = "RFU")
mtext("B", cex = 2, side = 3, adj = @, font = 2)

plot(NA, NA, xlim = c(35, 95), ylim = c(-15, 120),
xlab = "Temperature [degree Celsius]”,
ylab = "-d(RFU)/dT")

mtext("C", cex = 2, side = 3, adj = 0, font = 2)

invisible(
lapply(2L:ncol(melt), function(i)
lines(diffQ(cbind(melt[, 1], melt[, i]), verbose = TRUE,
fct = max, inder = TRUE)[["xy"]], col = color[i - 1]))

According to the analysis by MCA the samples ‘D07_katG315...” and "‘D08_katG315..." were the
only positive samples. The remaining samples appeared to be positive in the amplification plot in
Figure 5 due to primer-dimer formation or sample contamination.
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Case study three — Isothermal amplification

Isothermal amplification is an alternative nucleic acid amplification method, which uses a constant
temperature rather than cycling through denaturation, annealing and extension steps (Rodiger et al.,
2014). The signal is monitored continuously on a time-wise basis. In qIA the abscissa values are often
not uniformly spaced. Our CPP function gives a warning in such a case. In qIA the Cq values are
dependent on the time instead of cycles. In this study we used the th.cyc function from the chipPCR
package to determine the time (Cq;) required to reach a defined threshold signal level.

We performed a quantitative isothermal amplification (qIA) with the plasmid pCNG1 by using a
Helicase dependent amplification (HDA). Our previously reported VideoScan platform (Rodiger et al.,
2013b) was used to control the temperature and to monitor the amplification reaction. The VideoScan
technology is based on a highly versatile fluorescence microscope imaging platform, which can be
operated with a heating/cooling unit (HCU) for qPCR and MCA applications (Rodiger et al., 2013a,b;
Spiess et al., 2015). Since the enzyme DNA Helicase unwinds DNA, no thermal denaturation is needed.
HDA conditions were taken from the ‘IsoAmp III Universal tHDA Kit’, Biohelix Corp, as described by
the vendor. In detail, the reaction was composed of ‘mix A" 10 uL A. bidest, 1.25 uL 10X buffer, 0.75 uL
primer (150 nM final), 0.5 uL template plasmid. Preincubation: The mixture was incubated for 2 min
at 95°C and immediately placed on ice. Reaction ‘mix B’ contained 5 yL A. bidest., 1.25 yuL 10X buffer,
2 uL NaCl, 1.25 uL. MgSOy, 1.75 uL dNTPs, 0.25 L EvaGreen (Biotium), 1 uL enzyme mix. The mix
was covered with 50 L mineral oil (Roth). The fluorescence measurement in VideoScan HCU started
directly after adding ‘mix B’ at 65°C. A 1x (D1) and a 1 : 10 dilution (D2) were tested. The resulting
dataset C81 is part of the chipPCR package. Two concentrations (stock and 1:10 diluted stock) of input
DNA were used in the HDA. First, we had a look at the C81 dataset with the str function.

# This case study uses the qIA raw data (C81 dataset) from the chipPCR
# package. Therefore, first we load the chipPCR package.
require(chipPCR)

# To see the structure of the C81 dataset we used the str function.
str(C81)

'data.frame’: 351 obs. of 5 variables:

$ Cycle : int 0123456789 ...

$ t.D1 : int © 51 73 90 107 124 140 157 174 190 ...

$ MFI.D1: num ©.549 0.535 0.532 0.53 0.525 ...

$ t.D2 : int © 19 53 72 91 110 128 147 166 185 ...

$ MFI.D2: num ©.77 ©0.523 0.514 0.51 0.508 ...

C81 is a data frame. The first column contains the measuring points (Cycle) and the consecutive
columns contain the time stamps (e.g., t.D1, in seconds according to the chipPCR manual) and the
signal hight (MFI.D1, as mean fluorescence intensity; MFI). A brief look at the time stamps showed
that the data are not uniformly spaced. Warning messages by the CPP functions are just a reminder for
the user to take care during the pre-processing. Methods like smoothing might cause artifacts (Spiess
etal., 2015). We know that the HDA is a time-dependent reaction. Therefore, we do not have a use
for the discrete measuring points. Next, we proceeded with the analysis. Similar to the previous case
studies, we prepared the plot of the raw data. Since the raw data showed a slight negative trend and
an off-set of circa 0.45 MFI (mean fluorescence intensity) it was necessary to pre-process the raw data
(Figure 7A).

# Drawn in an 2-by-1 array on the device by two columns and one row.
par(mfrow = c(1, 2))

# Plot the raw data from the C81 dataset to the first array and add
# a legend. Note: The abcsissa values (time in seconds) were divided
# by 60 (C81[, il / 60) to convert to minutes.
plot(NA, NA, xlim = c(@, 120), ylim = c(0, 1.2), xlab = "Time (min)", ylab = "MFI")
mtext("A", cex = 2, side = 3, adj = 0, font = 2)
lapply(c(2, 4), function(i) {
lines(C81[, i] / 60, C81[, i + 1], type = "b", pch = 20, col =i - 1)
1))
legend("topleft”, c("D1: 1x", "D2: 1:10 diluted sample”), pch = 19, col = c(1, 3),
bty = "n")

# Prepare a plot on the second array for the pre-processed data.

plot(NA, NA, xlim = c(@, 120), ylim = c(0, 1.2), xlab = "Time (min)", ylab = "MFI")
mtext("B", cex = 2, side = 3, adj = 0, font = 2)
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Figure 7: Quantitative isothermal amplification by Helicase dependent amplification (HDA). (A) The
raw data of the HDA (D1, undiluted; D2, 1 : 10 diluted) exhibit some outliers (detector artifacts), an
off-set of circa 0.5 MFI and a slight negative trend in the baseline region (0-52 minutes). (B) We used the
CPP function to smooth the data with a spline function. Baselining was done with a linear regression
model (robust MM-estimator). Finally, we used the th. cyc function (chipPCR) to calculate the cycle
threshold time for samples D1 and D2. The threshold value was set to r = 0.05 (——, threshold line).
Cqt, required time to reach a defined threshold signal level. MFI, mean fluorescence intensity.

First, we used the CPP function to pre-process the raw data. Similar to the other case studies we
baselined and smoothed the amplification curve data prior to the analysis of the of the Cg; value.
However, instead of the Savitzky-Golay smoother we used a cubic spline (method = "spline”) in the
CPP function. In addition, outliers were automatically removed in the baseline region (Figure 7A and B).
The background range was defined by bare eye to be between the 15 and 190" data point (correspond-
ing to a baseline region between 0 and 52 minutes). The CPP uses a linear least squares or robust fit
methods (e.g., Rfit by Kloke and McKean 2012) to estimate the slope of the background (Rodiger et al.,
in press).

# Apply the CPP functions to pro-process the raw data.1) Baseline data to zero,
# 2) Smooth data with a spline, 3) Remove outliers in background range between
# entry 1 and 190. Assign the results of the analysis to the object 'res'.
res <- lapply(c(2, 4), function(i) {
y.s <- CPP(C81[, il / 6@, C81[, i + 11,
trans = TRUE,
method = "spline”,
bg.outliers = TRUE,
bg.range = c(1, 190))
lines(C81[, i] / 60, y.s[["y.norm"]], type = "b", pch = 20, col =i - 1)
# Use the th.cyc function to calculate the cycle threshold time (Cq.t).
# The threshold signal level r was set to 0.05. NOTE: The function th.cyc
# will give a warning in case data are not equidistant. This is intentional
# to make the user aware of potential artificats due to pre-processing.
paste(round(th.cyc(C81[, il / 60, y.s[["y.norm"]1], r = ©.05)[1]1, 2), "min")
b))

# Add the cycle threshold time from the object 'res' to the plot.

abline(h = 0.05, 1ty = 2)
legend("topleft”, paste(c(”"D1 Cqg.t: ", "D2 Cq.t: "), res), pch =19,
col = c(1, 3), bty = "n")

The pre-processed data were subjected to the analysis of the Cg; values. It is important to note that
the trend correction and proper baseline was a requirement for a sound calculation. We calculated Cq;
values of 70.18 minutes and 93.18 minutes for the stock (D1) and 1:10 (D2) diluted samples, receptively.

Case study four — Digital PCR

We have developed the dpcR package for analysis and presentation of digital PCR experiments.
This package can be used to build custom-made analysis pipelines and provides structures to be
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openly extended by the scientific community. Simulations and predictions of binomial and Poisson
distributions, commonly used theoretical models of dPCR, statistical data analysis methods, plotting
facilities and report generation tools are part of the package (Pabinger et al., 2014). Here, we show
a case study for the dpcR package. Simulations are part in many educational curricula and greatly
support teaching. In this case study, we mimicked an in silico experiment for a droplet digital PCR
experiment similar to Figure 1. The aim was to assess the concentration of the template sample. In
the following we will use the expression partition as synonym for droplet. The number of positive
partitions (k), total number of partitions (1) and the size of the partition are the only data required for
the analysis. The estimate of the mean number of template molecules per partition (1) was calculated
using the following equation (Huggett et al., 2013):

fele]

A k
A=—-In(1 " ). 1)
The average partition volume in our experiment was assumed to be 5 nL. We counted n = 16800
partitions in total from which k = 4601 partitions were positive. The binomial distribution of positive
and negative partitions was used to determine A (Figure 8). Our package allows both easy estimation
of a density of the parameter and calculation of confidence intervals (CI) using Wilson’s method
(Brown et al., 2001) at a confidence interval level of 0.95. The true number of template molecules per
partition (A) is likely to be included in the range of the CI (Milbury et al., 2014). The obtained mean
number of template molecules per partition multiplied by the volume of the partitions (16800 - 5 nL)
constitutes the sample concentration.

# Load the dpcR package for the analysis of the digital PCR experiment.
require(dpcR)

# Analysis of a digital PCR experiment. The density estimation.

# In our in-silico experiment we counted in total 16800 partitions (n).

# Thereof, 4601 were positive (k).

k <- 4601

n <- 16800

(dens <- dpcr_density(k = k, n = n, average = TRUE, methods = "wilson"”,
conf.level = 0.95))

legend("topleft”, paste("k:", k,"\nn:", n))

#dev.off ()

# Let us assume, that every partition has roughly a volume of 5 nL.

# The total concentration (and its confidence interval) in molecules/ml is

# (the factor 1e-6 is used for the conversion from nL to mL):

dens[4:6] / 5 * 1e-6

Since we assumed a partition volume of 5 nL we have a total volume of 0.084 mL and 6.40 x 10-8
(95% CI: 6.2 x 1078-6.6 x 10~8) molecules/mL in the sample.

Selected functionality was implemented as an interactive shiny (Chang et al., 2015) GUI application
to make the software accessible for users who are not fluent in R and for experts who wish to automatize
routine tasks. Details and examples of the shiny web application framework for R can be found at http:
//shiny.rstudio.com/. We implemented flexible user interfaces, which run the analyses and graphical
representation into interactive web applications either as service on a web server or on a local machine
without knowledge of HTML or ECMAScript (see the dpcR manual). The interface is designed in
a cascade workflow approach (Data import — Analysis — Output — Export) with interactive user
choices on input data, methods and parameters using typical GUI elements such as sliders, drop-
downs and text fields. An example can be found at https://michbur.shinyapps.io/dpcr_density/.
This approach enables the automatized output of R objects in combined plots, tables and summaries.

Case study five — Digital PCR partition volume correction

There is an ongoing debate in the scientific community about the effect of the partition volume on
the estimated copy numbers size (Huggett et al., 2015a; Corbisier et al., 2015; Majumdar et al., 2015).
Corbisier et al. (2015) showed that the partition volume is a critical parameter for the measurement of
copy number concentrations. Their study revealed that the average droplet volume defined in the
QuantaSoft software (v. 1.3.2.0, BioRad QX100 Droplet Digital PCR System) is 8 % lower than the real
volume. In consequence, results of quantifications were systematically biased between different dPCR
platforms. Case study four served as an introduction into the analysis of simulated dPCR experiments
with the dpcR package. In the next case study, number five, we used the pds_raw dataset, which was
generated by a BioRad QX100 Droplet Digital PCR System experiment. We re-analysed the data with
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Figure 8: dpcr_density function from the dpcR package used for analysis of a droplet digital PCR ex-
periment. From 16800 counted partitions (1) 4601 were positive (k). The chart presents the distribution
of mean number of template molecules per partition (A). n, number of total partitions; k, number of
positive partitions.

the partition volume of 0.834 nL as proposed by Corbisier et al. (2015) and a volume of 0.90072 nL as
used in the BioRad QX100 Droplet Digital PCR System.

Our experimental setup was as follows. A duplex assay was used to simultaneously detect a
constant amount of genomic DNA (theoretically 10? copies/uL) and a variable amount of plasmid
DNA (10-fold serial dilution, not shown). The genomic DNA was isolated from Pseudomonas putida
KT2440 and the plasmid was pCOM10-StyA::EGFP StyB. Template DNA was heat treated at 95 °C for
5 min prior to PCR. We detected in Channel 1 the genomic DNA marker ileS with FAM labelled
Tagman probes and in Channel 2 the plasmid DNA marker styA with HEX labelled Tagman probes.
All primer/probe sequences and experimental condiditions are described in Jahn et al. 2013, 2014 and
the manual of the dpcR package. Gating and partition clustering was taken without any modification
from the data output of the BioRad QX100 Droplet Digital PCR System. Each partition is represented
by a dot in Figure 9. First, we had a look at the data structure of the pds_raw dataset.

# Load the dpcR package and use the pds_raw dataset for the analysis of the

# digital PCR experiment.

# To get an overview of the data set we used the head and summary R functions
# in a chain. The output shows that the dataset contains lists of different

# samples (AQ1 ...)

require(dpcR)

head(summary (pds_raw))

Length Class Mode
AQ1 "3" "data.frame" "list"
AQ2 "3" "data.frame” "list"
AQ3 "3" "data.frame" "list"
A4 "3" "data.frame" "list"
Bo1 "3" "data.frame” "list"
B@2 "3" "data.frame" "list"

# Next, we used str for the element A@1. The element of the list contains a data frame
# with three columns. Two contain amplitude values (fluorescence intensity) and one
# contains cluster results (integer values of 1 - 4).

str(pds_raw[["AQ1"]11)

'data.frame': 11964 obs. of 3 variables:
$ Assayl.Amplitude: num 397 399 402 416 417 ...
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$ Assay2.Amplitude: num 3732 3808 4007 3778 3685 ...
$ Cluster cint 4444444444 ...

Since the structure of the dataset was known now we selected samples for the analysis. According
to the dpcR manual, the samples A02, B02, C02 and D02 contained the values for the replicates ata 1 :
100 dilution and G04 contained the values for the non-template control.

# Select the wells for the analysis. A@2 to D@2 are four replicate dPCR reactions
# and G@4 is the no template control (NTC) (see dpcR manual for details).
wells <- c("A@2", "B@2", "C@2", "D@2", "Go4")

# Set the arrangement for the plots. The first column contains the amplitude
# plots, column two the density functions and column three the concentration
# calculated according to the droplet volume as defined in the QX100 system,
# or the method proposed by Corbisier et al. (2015).

par(mfrow = c(5, 3))

# The function bioamp was used in a loop to extract the number of positive and
# negative partitions from the sample files. The results were assigned to the
# object 'res' and plotted.

for (i in 1L:length(wells)) {
cluster.info <- unique(pds_raw[wells[iJ]J[[1]1]["Cluster"])
res <- bioamp(data = pds_raw[wells[i]JJ[[1]], amp_x = 2, amp_y = 1,
main = paste("Well”, wells[i]), xlab = "Amplitude of ileS (FAM)",
ylab = "Amplitude of styA (HEX)", xlim = c(500,4700),
ylim = c(0,3300), pch = 19)

legend("topright”, as.character(cluster.info[, 1]), col = cluster.info[, 1],
pch = 19)

Next, we used the results from the object res to get the information about the number of positive
partitions for the plasmid DNA marker styA. This is to be found in the clusters 2 and 3.

# Counts for the positive clusters 2 and 3 were assigned to new objects
and further used by the function dpcr_density to calculate the number
of molecules per partition and the confidence intervals. The results
were plotted as density plot.

H HF

=~

.tmp <- sum(res[1, "Cluster.2"], res[1, "Cluster.3"])
# Counts for all clusters

n.tmp <- sum(res[1, 1)

# Our next line is used to limit the x-axis of the plot to a meaningful range.
if(i < 5) x.lim <- c(0.065, 0.115) else x.lim <- c(@, 0.115)

# The next step is the calculation of the dPCR statistics.

dens <- dpcr_density(k = k.tmp, n = n.tmp, average = TRUE, methods = "wilson”,
conf.level = 0.95, xlim = x.lim, bars = FALSE)

legend("topright”, paste("k:", k.tmp,"\nn:", n.tmp), bty = "n")

# Finally, the concentration of the molecules was calculated with the volume
# used in the QX100 system and as proposed by Corbisier et al. (2015). The
# results were added as barplot with the confidence intervals.

res.conc <- rbind(original = dens[4:6] / 0.90072,
corrected = dens[4:6] / 0.834)
barplot(res.conc[, 1], col = c("white","grey"),
names = c("Bio-Rad"”, "Corbisier"),

main = "Influence of\nDroplet size"”, ylab = "molecules/nL",

ylim = c(@, 1.5 * 10E-2))
arrows(c(0.7, 1.9), res.conc[, 2], c(0.7, 1.9), res.conc[, 3], angle = 90,

code = 3, 1lwd = 2)
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Figure 9: Analysis of a droplet digital PCR experiment. We used the pds_raw dataset from the dpcR
package. All raw data were generated with a BioRad QX100 Droplet Digital PCR System. Column one:
Amplitude plot of raw data shown by the bioamp function. Each dot represents a partition in a cluster.
Cluster 1 o, Cluster 2 ® = Target, Cluster 3 * = Target, Cluster 4 ». A02-D04 are replicate measurements
and well G04 is a negative control; Column two: Density function with showing the number of
molecules per partition. All replicates had similar numbers of counted positive partitions (k) and
total number of partitions (1); Column three: Concentration of DNA molecules based on the volume
used by the BioRad QX100 Droplet Digital PCR System and the volume proposed by Corbisier et al.
(2015). n, number of total partitions; k, number of positive partitions; styA, styrene monooxygenase;
ileS, isoleucyl-tRNA synthetase; FAM, Fluorescein channel; HEX, hexachlorofluorescein.

As proposed by Corbisier et al. (2015) the analysis with the non-corrected droplet volume results
in an underestimation of sample concentrations (Figure 9 column 3). Our results show, that the
replicates in Figure 9 A02 - D02 vary. However, the variation appeared to be within a similar range
(Figure 9 column 2). The positive samples (Figure 9 A02-D02) clearly differ from the negative control

The R Journal Vol. 7/1, June 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

144

(Figure 9 G04). To compare this we performed a statistical test. This is basically a comparison of
proportions as described elsewhere (Wang and Shan, 2013). Statistical capabilities of R simplify the
next steps of the analysis of digital PCR experiments. The dpcR package offers a flexible wrapper
test_counts around several methods of comparing results of several reactions. In the following, we
used a test implemented in the rateratio.test package by Fay (2010).

# The first step is as usual extracting data and shaping it into an object of
# appropriate class, in this case 'ddpcr' (droplet digital PCR)

cluster_data <- do.call(bind_dpcr, lapply(iL:length(wells), function(i) {
cluster.info <- unique(pds_raw[wells[iJ]1[[1]1]["Cluster"])
res <- bioamp(data = pds_raw[wells[i]J[[1]], amp_x = 2, amp_y = 1, plot = FALSE)
# create ddpcr object for each experiment
create_dpcr(data = c(rep(1, res[1, "Cluster.2"]1), rep(1, res[1, "Cluster.3"])),
n = as.integer(sum(res[1, 1)), threshold = 1,
type = "np"”, adpcr = FALSE)
1))

Message: 'Different number of partitions.' is expected while joining objects
with uneven length as droplet-based experiments. The message is specifically
verbose to also deliver that the bind_dpcr function does not

recycle shorter vectors to prevent the addition of non-existent data points.

H B H

# Give experiments proper names.
colnames(cluster_data) <- wells

# We choose the ratio model, which uses multiple ratio tests from the 'rateratio.test'’
# package.

comp <- test_counts(cluster_data, model = "ratio”)

Output format of test_counts is familiar to all R users:

> comp
Groups:

group lambda  lambda.low  lambda.up
AQ2 b 0.077011051 0.0704320674 0.084179123
B@2 C 0.096061636 0.0888030003 0.103883369
C02 C 0.099979708 ©.0918318731 0.108811947
D@2 C 0.092649940 0.0856180946 0.100230919
Go4 a 0.001218274 0.0006348818 0.002337119

Results of multiple comparison:

X_squared p_value signif
B02 - A@2  22.7202237 3.123089e-06 *kk
Co2 - AQ2 29.5319827 1.100031e-07 *kk
DO2 - AQ2 15.7795663 1.016671e-04 *kk
G04 - AQ2 897.9635582 6.799223e-197 *kk
Co2 - BO2 0.7480551 4.164049e-01
D@2 - BO2 0.6604392 4.164049e-01
GO4 - BO2 1132.7471108 1.260524e-247 *kk
D02 - Co2 2.7724424 1.198747e-01
GO4 - CO2 1171.4948655 9.557011e-256 *kk
G04 - D@2 1092.0273410 5.950879e-239 *kk

Signif. codes: @ ‘#*x’ 0.001 ‘x%’ 0.01 ‘%’ 0.05 ‘.’ 0.1 ‘' 1

Model used:
[1] "ratio”

> summary (comp)

group lambda lambda.low  lambda.up
1 a 0.001218274 0.0006348818 0.002337119
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Figure 10: Comparison of droplet digital PCR runs. The plot method of the test_counts function
from the dpcR package was used. The experiments were aggregated into colour coded groups based
on their estimated mean number of copies per partition (A). A02 remained individual b, B02, C02 and
D02 formed a group c and the negative control also remained individual a.

2 b 0.077011051 ©0.0704320674 ©.084179123
3 C 0.096230428 0.0887509893 0.104308745

The result of the analysis suggests that replicate samples B02, C02 and D02, with exception of
A02, do not differ significantly. The negative control G04 was totally different from the other samples
(Figure 10). Our dpcR package can be used to analyse data beyond a level as provided by commercial
software. Access to the whole R environment allows performing more elaborated research in a highly
customized workflow. In conclusion, our case study shows, that the R environment can be used to
circumvent problems of locked-in systems.

Discussion and conclusion

This study gave a brief introduction to the analysis of qPCR, qIA, MCA and dPCR experiments with
R. In addition to this, we briefly referenced to a vast collection of additional packages available from
CRAN and Bioconductor. The packages may be considered as the building blocks (libraries) to create
what users want and need. We showed that automatized research with R offers powerful means
for statistical analysis and visualization. This software is not tied to a vendor or application (e.g.,
chamber or droplet based digital PCR, capillary or plate qPCR). It should be quite easy even for an
inexperienced user to define a workflow and to set up a cross-platform environment for specific needs
in a broad range of technical settings (Figure 11). This environment enforces no monolithic integration.
We claim that the modular structure allows the user to perform flexible data analysis, adjusted to their
needs and to design frameworks for high-throughput analysis. Furthermore, R enables the users to
access and reuse code for the creation of reports in various formats (e.g., HTML, PDF).

Despite the fact that R is free of charge, it is quite possible to build commercial applications. The
packages cover implementation of novel approaches and peer-reviewed analysis methods. R packages
are an open environment to adopt to the growing knowledge in life sciences and medical sciences.
Therefore, we argue that this environment may provide a structure for standardized nomenclature and
serve as reference in gPCR and dPCR analysis. Speaking about openness, it needs to be emphasized
that the main advantage of this software is its transparency at any time for anybody. Thus, it is
possible to track numerical errors. A disadvantage of R is the lack of comprehensive GUIs for gPCR
analysis. GUIs are key technologies to spread the use of R in bioanalytical sciences. Currently, we are
establishing the ‘pcRuniveRsum’ (http://michbur.github.io/pcRuniveRsum/) as an on-line resource
for the interested users. The command-line structure makes R “inaccessible’ for many novices. We try
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Figure 11: Deployment of R applications for the qPCR and dPCR experiments. (A) R is typically
run from a desktop computer and operated by a GUI/IDE application such as RStudio or RKWard.
This approach provides a flexible workflow for individuals. (B) Another approach is to run R with
specific applications on a local server. Such scenarios are useful for the deployment within research
departments or cooperate units (Nolan and Temple, 2014). (C) Cloud computing (CC) provides
shared and scalable computing capacity (e.g., computing capacity, application software) and storage
capacity (e.g., databases) as a service to an individual user or a community. Service categories include:
Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS) over a
network. Providers of CC manage the infrastructure and resources to achieve coherence and economies
of scale similar to a utility over a network (i.p., Internet) (Ohri, 2014).

to solve this problem with easily accessible GUIs (Rodiger et al., 2012). However, the work on this
additions has been recently started and is still in progress.
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