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A Multiscale Test of Spatial Stationarity
for Textured Images in R
by Matthew A. Nunes, Sarah L. Taylor and Idris A. Eckley

Abstract The ability to automatically identify areas of homogeneous texture present within a greyscale
image is an important feature of image processing algorithms. This article describes the R package
LS2Wstat which employs a recent wavelet-based test of stationarity for locally stationary random fields
to assess such spatial homogeneity. By embedding this test within a quadtree image segmentation
procedure we are also able to identify texture regions within an image.

Introduction

This paper provides an introduction to the LS2Wstat package (Taylor and Nunes, 2014), developed
to implement recent statistical methodology for the analysis of (greyscale) textured images. Texture
analysis is a branch of image processing concerned with studying the variation in an image surface;
this variation describes the physical properties of an object of interest. The key applications in this
field, namely discrimination, classification and segmentation, are often dependent on assumptions
relating to the second-order structure (variance properties) of an image. In particular many techniques
commonly assume that images possess the property of spatial stationarity (Gonzalez and Woods,
2001). However, for images arising in practice this assumption is often not realistic, i.e. typically the
second-order structure of an image varies across location. It is thus important to test this assumption
of stationarity before performing further image analysis. See Figure 1 for examples of textured images.
For a comprehensive introduction to texture analysis, see Bishop and Nasrabadi (2006) or Petrou and
Sevilla (2006).

Figure 1: Examples of textured images: fabric, creased material and hair (available from the R package
LS2W; Eckley and Nason, 2013).

Recently, Taylor et al. (in press) proposed a test of spatial stationarity founded on the locally
stationary two-dimensional wavelet (LS2W) modelling approach of Eckley et al. (2010). The LS2W
modelling approach provides a location-based decomposition of the spectral structure of an image.
The BootstatLS2W test proposed by Taylor et al. (in press) uses a statistic based on an estimate of the
process variance within a hypothesis testing framework, employing bootstrap resampling under the
null hypothesis assumption of stationarity to assess its significance.

Given a test of spatial stationarity for random fields, it is natural to consider how this might
be usefully applied within a problem such as texture segmentation. The ability to determine non-
stationarity and the presence of localised textured regions within images is important in a broad range
of scientific and industrial applications, including product evaluation or quality control purposes.
Possible areas of use for the methods described in this article include identifying uneven wear in
fabrics (Chan and Pang, 2000; Taylor et al., in press) and defect detection on the surface of industrial
components (Wiltschi et al., 2000; Bradley and Wong, 2001) or natural products (Funck et al., 2003;
Pölzleitner, 2003). For a review of texture segmentation, see Pal and Pal (1993).

Readily available implementations for stationarity assessment have, up until now, been restricted
to the time series setting; examples of such software in this context include the R add-on packages
urca (Pfaff, 2008; Pfaff and Stigler, 2013), CADFtest (Lupi, 2009) and locits (Nason, 2013a,b).

Below we describe the package LS2Wstat which implements the spatial test of stationarity pro-
posed by Taylor et al. (in press). The package has been developed in R and makes use of several
functions within the LS2W package (Eckley and Nason, 2011, 2013). The article is structured as
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follows. We begin by describing details of simulation of LS2W and other processes. An overview of
the BootstatLS2W test of stationarity is then given, focussing in particular on the function TOS2D. We
then illustrate the application of the test on both simulated and real texture images. Finally, the article
concludes by describing how the algorithm might be embedded within a quadtree image splitting
procedure to identify regions of texture homogeneity within a multi-textured image.

Simulating textured images with LS2Wstat

Before describing the implementation of the work proposed in Taylor et al. (in press), we first explain
how to generate candidate textured images using the LS2Wstat package. Several different spatially
stationary and non-stationary random fields can be generated with the simTexture function. See the
package help file for full details of the processes available.

To demonstrate the LS2Wstat implementation, throughout this article we consider a realisation
of a white noise process with a subregion of random Normal deviates in its centre with a standard
deviation of 1.6. This simulated texture type is called NS5, and is one of several textures which can be
simulated from the package. In particular, we consider an image of dimension 512× 512 with a central
region that is a quarter of the image, i.e. a dimension size of 128× 128. This can be obtained as follows:

> library("LS2Wstat")
> set.seed(1)
> X <- simTexture(n = 512, K = 1, imtype = "NS5", sd = 1.6, prop = 0.25)[[1]]
> image(plotmtx(X), col = grey(255:0/256))

The simTexture function returns a list of length K with each list entry being a matrix representing an
image of dimension n × n with the chosen spectral structure. In this case, since K = 1, a list of length
1 is returned. The simulated image X is shown in Figure 2. Note in particular that visually, one can
discern that the image consists of two subtly different texture types. Firstly, the centre of the image
has one particular form of second order structure. The second texture structure can be seen in the
remainder of the image. Throughout the rest of this article we shall apply the approach of Taylor et al.
(in press) to this image.

Figure 2: An example of a textured image (NS5) simulated with the simTexture function.

Testing the spatial stationarity of images

We now briefly introduce the LS2W random field model of Eckley et al. (2010) together with some
associated notation, before describing the implementation of the test of stationarity proposed in Taylor
et al. (in press). For an accessible introduction to wavelets, please see Prasad and Iyengar (1997),
Vidakovic (1999) or Nason (2008).

The LS2W process model is defined by

Xr = ∑
l

∞

∑
j=1

∑
u

wl
j,uψl

j,u(r)ξ
l
j,u , (1)

for directions l = h, v or d and spatial locations r, where {ξ l
j,u} is a zero-mean random orthonormal

increment sequence; {ψl
j,u} is a set of discrete nondecimated wavelets and {wl

j,u} is a collection of
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amplitudes, constrained to vary slowly over locations of an image (Eckley et al., 2010). In the above
definition, we assume the image is of dyadic dimension, i.e. we have r = (r, s) with r, s ∈ {1, . . . , 2J}
and where J is the coarsest observed scale.

Eckley et al. (2010) also define the local wavelet spectrum (LWS) associated with an LS2W process.

The LWS for a given location z =
(

r
2J , s

2J

)
∈ (0, 1)2, at scale j in direction l is Sl

j(z) ≈ wl
j(u/R)2.

The LWS provides a decomposition of the process variance at (rescaled) locations z, directions l,
and wavelet scales j. In practice the LWS is usually unknown and so needs to be estimated (see
Eckley et al., 2010, for details). Spectral estimation using the LS2W model is implemented in R in the
add-on package LS2W (Eckley and Nason, 2013). The LS2Wstat routines described below thus have a
dependence on some functions from the LS2W package.

A test of stationarity for LS2W processes

Next we turn to describe the implementation of a test of stationarity within the LS2Wstat package.
We focus on describing the BootstatLS2W approach implemented in the LS2Wstat package, referring
the interested reader to Taylor et al. (in press) for details of other tests which might be employed.
Throughout this section let us assume that we have some image Xr (as in Figure 2), whose second-order
structure we wish to test for spatial stationarity. We assume that X is an LS2W process with associated
unknown spectrum, S`

j for j = 1, . . . , J and ` = v, h or d. Since the model in (1) assumes the process has
zero mean, if necessary the image can be detrended. This can be done in R, for example, by using the
core stats package function medpolish, which implements Tukey’s median polish technique (Tukey,
1977).

Under the null hypothesis of stationarity, the wavelet spectrum will be constant across location for
each scale and direction. Motivated by this fact Taylor et al. (in press) formulate a hypothesis test for
the stationarity of the image Xr with

H0 : S`
j (z) is constant across z for all j and `,

HA : S`
j (z) is not constant across z for some j or `.

Hence, a test statistic for the hypothesis should measure how much the wavelet spectrum for an
observed image differs from constancy. Taylor et al. (in press) suggest using the average scale-direction
spectral variance as a test statistic to measure the degree of non-stationary within an image, where the
variance is taken over pixel locations, that is:

T
{

Ŝ`
j (z)

}
=

1
3J ∑

`

J

∑
j=1

varu

(
Ŝ`

j,u

)
. (2)

In practice this statistic is computed based on an (unbiased) estimate of the local wavelet spectrum,
produced by the LS2W function cddews (see the documentation in LS2W for details on optional
arguments to this function). For the (square) image X, the test statistic is calculated using the function
avespecvar as follows:

> TSvalue <- avespecvar(cddews(X, smooth = FALSE))
> TSvalue
[1] 0.2044345

Since the spectrum characterises the second-order structure of the observed random field (and hence
its stationarity properties), Taylor et al. (in press) suggest determining the p-value of the hypothesis
test by performing parametric bootstrapping. This corresponds to sampling LS2W processes assuming
stationarity under the null hypothesis, and comparing the observed test statistic to that of the simulated
LS2W processes under stationarity. For pseudo-code of this algorithm, please see Algorithm 1.

This bootstrap algorithm is performed with the LS2Wstat function TOS2D. The function has argu-
ments:

image: The image you want to analyse.

detrend: A binary value indicating whether the image should be detrended before applying the
bootstrap test. If set to TRUE, the image is detrended using Tukey’s median polish method.

nsamples: The number of bootstrap simulations to carry out. This is the value B in the pseudocode
given above. By default this takes the value 100.

theTS: This specifies the test statistic function to be used within the testing procedure to measure
non-stationarity. The test statistic should be based on the local wavelet spectrum and by default
is the function avespecvar representing the statistic (2).
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BootstatLS2W:

1. Compute the estimate of the LWS for the observed image, Ŝl
j(z).

2. Evaluate T (Equation (2)) on the observed image, call this value Tobs.

3. Compute the pixel average stationary spectrum S̃l
j by taking the average of spectrum values for each scale

and direction.

4. Iterate for i in 1 to B bootstraps:

(a) Simulate X(i)
r from the stationary LS2W model using squared amplitudes given by S̃l

j and Gaussian
process innovations.

(b) Compute the test statistic T on the simulated realisation, call this value T(i).

5. Compute the p-value for the test as p =
1+#{ Tobs ≤ T(i) }

B+1 .

Algorithm 1: The bootstrap algorithm for testing the stationarity of locally stationary images.

verbose: A binary value indicating whether informative messages should be printed.

...: Any optional arguments to be passed to the LS2W function cddews. See the documentation for
the cddews function for more details.

Note that TOS2D uses the LS2W process simulation function LS2Wsim from the LS2W R package to
simulate bootstrap realizations under the null hypothesis. The output of TOS2D is a list object of class
"TOS2D", which describes pertinent quantities associated with the bootstrap test of stationarity. The
object contains the following components:

data.name: The name of the image tested for stationarity.

samples: A vector of length nsamples + 1 containing each of the test statistics calculated in the
bootstrap test. The first element of the vector is the value of the test statistic calculated for the
original image itself.

statistic: The statistic used in the test.

p.value: The bootstrap p-value associated with the test.

In particular, the object returns the measure of spectral constancy in the entry statistic, together
with the p-value associated with the stationarity test (in the p.value component).

An example of the function call is

> Xbstest <- TOS2D(X, nsamples = 100)

Note that the p-value returned within the "TOS2D" object is computed using the utility function
getpval, which returns the parametric bootstrap p-value for the test from the bootstrap test statistics
provided by counting those test statistic values less than Tobs (see Davison et al., 1999, for more details).
In other words, the p.value component is obtained by the following call:

> pval <- getpval(Xbstest$samples)
Observed bootstrap is 0.204
p-value is 0.00990099

This p-value can then be used to assess the stationarity of a textured image region.

Information on the "TOS2D" class object can be obtained using the print or summary S3 methods
for this class. For example, using the summary method, one would obtain

> summary(Xbstest)

2D bootstrap test of stationarity
object of class TOS2D

----------------------------------

summary
=======
data: X
Observed test statistic: 0.204
bootstrap p-value: 0.01
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Alternatively, the print method for the "TOS2D" class prints more information about the Xbstest
object. Note that the function internally calls the summary method for "TOS2D" objects:

2D bootstrap test of stationarity
object of class TOS2D

----------------------------------

summary
=======
data: X
Observed test statistic: 0.204
bootstrap p-value: 0.01

Number of bootstrap realizations: 100
spectral statistic used: avespecvar

Other textured images

To demonstrate the test of stationarity further, we now provide some other textured image examples.
Firstly, we consider a Haar wavelet random field with a diagonal texture, an example of a LS2W process
as described in Eckley et al. (2010). The realisation of the process (shown in Figure 2) is simulated
using the simTexture function with the command:

> Haarimage <- simTexture(512, K = 1, imtype = "S5")[[1]]

Figure 2: A realisation of a stationary LS2W process, Haarimage, with a diagonal texture.

The test of stationarity of Taylor et al. (in press) performed on the image Haarimage with the
function TOS2D reveals that the image is spatially stationary as expected, with a high p-value associated
to the test.

> Haarimtest <- TOS2D(Haarimage, smooth = FALSE, nsamples = 100)
> summary(Haarimtest)

2D bootstrap test of stationarity
object of class TOS2D

----------------------------------

summary
=======
data: Haarimage
Observed test statistic: 0.631
bootstrap p-value: 0.673

Number of bootstrap realizations: 100
spectral statistic used: avespecvar

As another example of a textured image, we construct an image montage using two of the textures
shown in Figure 1 from the package LS2W. The montage, montage1, is shown in Figure 3.

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 25

Figure 3: An example of an image montage, montage1, using two of the textures from Figure 1.

Note that since this image may not have zero mean as assumed by the LS2W model (1), we detrend
the montage first using the medpolish function in the stats package.

> data(textures)
> montage1 <- cbind(A[1:512, 1:256], B[, 1:256])
> montage1zm <- medpolish(montage1)$residuals

The TOS2D test indicates that the texture montage is non-stationary:

> montage1zmtest <- TOS2D(montage1zm, smooth = FALSE, nsamples = 100)
> summary(montage1zmtest)

2D bootstrap test of stationarity
object of class TOS2D

----------------------------------

summary
=======
data: montage1zm
Observed test statistic: 0
bootstrap p-value: 0.01

Number of bootstrap realizations: 100
spectral statistic used: avespecvar

Identifying areas of homogeneous texture using the bootstrap test of sta-
tionarity

In this section we describe embedding a test of stationarity into a quadtree algorithm to identify
regions of spatial homogeneity within a textured image. This segmentation approach is similar in
spirit to, e.g., Spann and Wilson (1985) or Pal and Pal (1987) which use homogeneity measures within
a quadtree structure. We first give details of the quadtree implementation, and subsequently describe
functions to aid illustration of quadtree decompositions.

A quadtree algorithm implementation

In essence, a region splitting algorithm recursively subdivides an input image into smaller regions,
with the subdivision decisions being based on some statistical criterion. More specifically, in a quadtree
representation, at each stage a (sub)image is divided into its four subquadrants if the criterion is not
satisfied (see e.g., Sonka et al., 1999). The statistical criterion we use is spatial homogeneity, that is, a
quadrant is further divided if it is considered as non-stationary by the BootstatLS2W test. In practice,
the quadtree implementation in LS2Wstat continues until all subregions are considered as stationary,
or until the subregions reach a particular minimal dimension. The motivation for this is to ensure that
we obtain statistically meaningful decisions using the stationarity test by not allowing too small a
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Quadtree decomposition:

For an input image X:
Use the BootstatLS2W test to assess whether X is second-order stationary. If stationary, stop. If not,

1. Divide the image into four quadrants.

2. For each quadrant, assess its stationarity with the BootstatLS2W test.

3. For each quadrant assessed as non-stationary, recursively repeat steps 1–2, until the minimum testing region
is reached or until all sub-images are judged to be stationary.

Algorithm 2: The quadtree algorithm for segmenting an image into regions of spatial stationarity.

testing sub-image. This procedure segments an image into regions of spatial stationarity. The quadtree
algorithm is summarised in Algorithm 2.

Each image is further split if deemed non-stationary, which is determined by a test of stationarity
such as TOS2D. After the first subdivison of an image, each sub-image is of size n/2× n/2. The sizes
of the regions halve in size at each progressive division but increase in number. The R function in
LS2Wstat which creates the quadtree structure described in Algorithm 2 is imageQT. The function has
inputs:

image: The image to be decomposed with the quadtree algorithm.

test: A function for assessing regions of spatial homogeneity, for example TOS2D.

minsize: The testing size of sub-images below which we should not apply the function test.

alpha: The significance level of the BootstatLS2W test, with which to assess spatial stationarity of
textured regions.

...: Any other optional arguments to test.

As an illustration of using the imageQT function, consider the code below to decompose the (non-
stationary) input image X. We use the function TOS2D to assess the regions of spatial homogeneity
although the imageQT function allows other functions to be supplied.

> QTdecX <- imageQT(X, test = TOS2D, nsamples = 100)

The output of the imageQT function is a list object of class "imageQT" with components:

indl: The index representation of the non-stationary images in the quadtree decomposition.

resl: The results of the stationarity testing (from the test argument) during the quadtree decomposi-
tion. The results giving FALSE correspond to those non-stationary sub-images contained in the
indl component and the results giving TRUE correspond to the stationary sub-images, i.e. those
contained in the indS component.

indS: The index representation of the stationary images in the quadtree decomposition.

This particular way of splitting an image has a convenient indexing representation to identify
the position of subregions within an image. If a (sub)image is subdivided into quadrants, we assign
it a base 4 label as follows: 0 – top-left quadrant; 1 – bottom-left quadrant; 2 – top-right quadrant;
3 – bottom-right quadrant. By continuing in this manner, we can assign an index to each tested
subregion, with the number of digits in the index indicating how many times its parent images have
been subdivided from the “root” of the tree (the original image). This indexing is illustrated for the
quadtree decomposition given in the example in Figure 3.

Examining the quadtree decomposition of the image X using the print S3 method for the "imageQT"
class, we have

> print(QTdecX)

2D quadtree decomposition
object of class imageQT
-------------------------

summary
=======
data: X
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Figure 3: An example of a quadtree decomposition. The location of the sub-images in the decomposi-
tion are described by the indexing system described in the text.

Indices of non-stationary sub-images:
"0" "1" "2" "3" "03" "12" "21" "30"

Indices of stationary sub-images:
"00" "01" "02" "10" "11" "13" "20" "22" "23" "31" "32" "33" "030" "031" "032" "033"
"120" "121" "122" "123" "210" "211" "212" "213" "300" "301" "302" "303"

minimum testing region: 64

The resl component gives the results of the test of stationarity for all sub-images tested during the
quadtree procedure, reporting FALSE for the non-stationary sub-images and TRUE for the stationary
ones:

> QTdecX$resl
[1] FALSE
[[2]]
[1] FALSE FALSE FALSE FALSE
[[3]]
[1] TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE
[13] FALSE TRUE TRUE TRUE
[[4]]
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[16] TRUE

Plotting a quadtree decomposition

By performing the quadtree algorithm given in Algorithm 2, it is possible to decompose images into
regions indicating regional stationarity. Note that if a texture discrimination procedure is used to
classify the output from the stationarity quadtree algorithm, the image segmentation method can be
seen as a split and merge technique.

Suppose we have performed the quadtree decomposition. The LS2Wstat package includes an
S3 plot method for "imageQT" objects to plot the output for the "imageQT" class and optionally a
classification of those textured regions. If the classification output is plotted (class = TRUE), each
textured region is uniquely coloured according to its texture group. The function has arguments:

x: A quadtree decomposition object, such as output from imageQT.
cires: Vector of class labels associated to the subimages produced by the quadtree decomposition.
unclassval: A value for any unclassified values in a quadtree decomposition.
class: A Boolean value indicating whether to plot the classification of the quadtree subimages.
QT: A Boolean value indicating whether to plot the quadtree decomposition.

We now illustrate the use of this function with the example given in Figure 2. Suppose the textured
regions identified by the quadtree algorithm in the QTdecX object have been classified according
to some texture discrimination procedure. For the purposes of this example, we suppose that the
28 regions of stationarity in QTdecX (see Figure 3) have been classified as coming from two groups
according to the labels
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> texclass <- c(rep(1, times = 15), rep(c(2, 1, 1), times = 4), 1)
> texclass
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1

Using the output from the quadtree technique (QTdecX) and the texture classification vector
texclass, we can use the quadtree plotting function for "imageQT" objects as follows:

> plot(QTdecX, texclass, class = TRUE, QT = TRUE)
> plot(QTdecX, texclass, class = TRUE, QT = FALSE)

The quadtree decomposition from this example is shown in Figure 4a; the same decomposition is
shown together with the texture classification in Figure 4b.

(a) (b)

Figure 4: An example of a quad-tree decomposition using imageQT, together with an assumed sub-
image texture classification.

We also consider an image montage using the textures from the package LS2W. The montage Y is
shown in Figure 5. Prior to performing the quadtree decomposition, we detrend the image.

> data(textures)
> Y <- cbind(A[1:512, 1:256], rbind(B[1:256, 1:256], C[1:256, 1:256]))
> Yzm <- medpolish(Y)$residuals

Figure 5: An example of an image montage, Y, using the textures from Figure 1.

Similarly to above, we can now perform a quadtree decomposition of the image Y:

> QTdecYzm <- imageQT(Yzm, test = TOS2D, nsamples = 100)
> print(QTdecYzm)

2D quadtree decomposition
object of class imageQT

-------------------------
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summary
=======
data: Yzm
Indices of non-stationary sub-images:

Indices of stationary sub-images:
"0" "1" "2" "3"

minimum testing region: 64

The function imageQT initially assesses that the image is indeed non-stationary, and then proceeds
to analyse sub-images of the montage. The algorithm stops the quadtree decomposition after the
first decomposition level, since it judges all quadrants of the image to be stationary, described by the
indices "0", "1", "2", and "3".

Summary

In this article we have described the LS2Wstat package, which implements some recent methodology
for image stationarity testing (Taylor et al., in press). Our algorithm is most useful as a test of
homogeneity in textures which are visually difficult to assess. We have also extended its potential use
by embedding it within a quadtree implementation, allowing assessment of potentially multi-textured
images. The implementation is demonstrated using simulated and real textures throughout the paper.
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