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Abstract IsoGene is an R package for the anal-
ysis of dose-response microarray experiments to
identify gene or subsets of genes with a mono-
tone relationship between the gene expression
and the doses. Several testing procedures (i.e.,
the likelihood ratio test, Williams, Marcus, the
M, and Modified M), that take into account
the order restriction of the means with respect
to the increasing doses are implemented in the
package. The inference is based on resampling
methods, both permutations and the Signifi-
cance Analysis of Microarrays (SAM).

Introduction

The exploration of dose-response relationship is im-
portant in drug-discovery in the pharmaceutical in-
dustry. The response in this type of studies can be
either the efficacy of a treatment or the risk associ-
ated with exposure to a treatment. Primary concerns
of such studies include establishing that a treatment
has some effect and selecting a dose or doses that ap-
pear efficacious and safe (Pinheiro et al., 2006). In
recent years, dose-response studies have been inte-
grated with microarray technologies (Lin et al., 2010).
Within the microarray setting, the response is gene
expression measured at a certain dose level. The
aim of such a study is usually to identify a subset
of genes with expression levels that change with ex-
perimented dose levels.

One of four main questions formulated in dose-
response studies by Ruberg (1995a, 1995b) and
Chuang-Stein and Agresti (1997) is whether there is
any evidence of the drug effect. To answer this ques-
tion, the null hypothesis of homogeneity of means
(no dose effect) is tested against ordered alternatives.
Lin et al. (2007, 2010) discussed several testing pro-
cedures used in dose-response studies of microar-
ray experiments. Testing procedures which take into
account the order restriction of means with respect
to the increasing doses include Williams (Williams,
1971 and 1972), Marcus (Marcus, 1976), the likeli-
hood ratio test (Barlow et al. 1972, and Robertson
et al. 1988), the M statistic (Hu et al., 2005) and the
modified M statistic (Lin et al., 2007).

To carry out the analysis of dose-response mi-
croarray experiments discussed by Lin et al. (2007,
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2010), an R package called IsoGene has been devel-
oped. The IsoGene package implements the testing
procedures described by Lin et al. (2007) to identify
a subset of genes where a monotone relationship be-
tween gene expression and dose can be detected. In
this package, the inference is based on resampling
methods, both permutations (Ge et al., 2003) and the
Significance Analysis of Microarrays (SAM), Tusher
etal., 2001. To control the False Discovery Rate (FDR)
the Benjamini Hochberg (BH) procedure (Benjamini
and Hochberg, 1995) is implemented.

This paper introduces the IsoGene package with
background information about the methodology
used for analysis and its main functions. Illustrative
examples of analysis using this package are also pro-
vided.

Testing for Trend in Dose Response
Microarray Experiments

In a microarray experiment, for each gene, the fol-
lowing ANOVA model is considered:

Yl’]‘:‘u(di)—f—el’j,i:O,l,...,K,j:1,2,...,1’li, (1)

where Y;; is the jth gene expression at the ith dose
level, d; (i =0,1,...,K) are the K+1 dose levels, y(d;)
is the mean gene expression at each dose level, and
€ij ~ N(O, (72). The dose levels d, ..., dk are strictly in-
creasing.

The null hypothesis of homogeneity of means (no
dose effect) is given by

Hy: p(do) = p(d1) = -+ = p(dg)- 2)

where (d;) is the mean response at dose d; with
i=0,.,K, where i = 0 indicates the control. The al-
ternative hypotheses under the assumption of mono-
tone increasing and decreasing trend of means are re-
spectively specified by

H1UP tpu(do) < p(dr) < -+ < p(dg), 3)

HP"" s pu(do) > p(dr) = - > p(dg). ()

For testing Hy against HP°“" or H1u P, estimation
of the means under both the null and alternative
hypotheses is required. Under the null hypothesis,
the estimator for the mean response fi is the over-
all sample mean. Let fij, {17, ..., flx be the maximum
likelihood estimates for the means (at each dose
level) under the order restricted alternatives. Barlow
et al. (1972) and Robertson et al. (1988) showed that
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iy, 17, ..., fix are given by the isotonic regression of
the observed means.

In order to test Hy against HP®" or Hlu 7,
Lin et al. (2007) discussed five testing procedures
shown in Figure 1. The likelihood ratio test (Egl)
(Bartholomew 1961 , Barlow et al. 1972, and Robert-
son et al. 1988) uses the ratio between the variance
under the null hypothesis ((ATIZJO ) and the variance un-

der order restricted alternatives (5'12{] ):

A

(7%{1 _ Y (yij — ﬁf)z
{712% Yii(yij — 1)
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A

)

Here, i =} ; Yij/ Xin; is the overall mean and fiF is
the isotonic mean of the ith dose level. The null hy-

2
pothesis is rejected for a "small" value of A;. Hence,
2

Hy is rejected for a large value of E}; =1 — A[.

Test statistic Formula

Likelihood Ratio E}; = Lii _;)(2 _Ei’;()y;/ A"
Test (LRT) g F
Williams t=(fix —9o)/s

Marcus t=(fix —f5)/s

M M= (g ~ 3)/3
Modified M M") M’ = (fix — ji§)d’

Figure 1: Test statistics for trend test, where s =
\/2 X Cico iy (vij — )2/ (ni(n — K)),

5= /T 0T (v — )2/ (n = K),

¥ = \/ZzK:oZ]r-il(yij—ﬁi*)z/(n—l), and I is the

unique number of isotonic means.

Williams (1971, 1972) proposed a step-down pro-
cedure to test for the dose effect. The tests are per-
formed sequentially from the comparison between
the isotonic mean of the highest dose and the sam-
ple mean of the control, to the comparison between
the isotonic mean of the lowest dose and the sam-
ple mean of the control. The procedure stops at the
dose level where the null hypothesis (of no dose ef-
fect) is not rejected. The test statistic is shown in Fig-
ure 1, where jjj is the sample mean at the first dose
level (control), ﬁf is the estimate for the mean at the
ith dose level under the ordered alternative, ; is the
number of replications at each dose level, and s? is
an estimate of the variance. A few years later, Mar-
cus (1976) proposed a modification to Williams’s pro-
cedure by replacing the sample mean of the control
dose (7jg) with the isotonic mean of the control dose
(1%5):

Hu et al. (2005) proposed a test statistic (denoted
by M) that was similar to Marcus’ statistic, but with
the standard error estimator calculated under the or-
dered alternatives. This is in contrast to Williams’
and Marcus’ approaches that used the within group
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sum of squares under the unrestricted means. More-
over, Hu et al. (2005) used n — K as the degrees of
freedom. However, the unique number of isotonic
means is not fixed, but changes across genes. For
that reason, Lin et al. (2007) proposed a modifica-
tion to the standard error estimator used in the M
statistic by replacing it with (n — I) as the degrees of
freedom, where [ is the unique number of isotonic
means for a given gene. The five test statistics dis-
cussed above are based on the isotonic regression of
the observed means. Estimation of isotonic regres-
sion requires the knowledge of the direction of the
trend (increasing/decreasing). In practice, the direc-
tion is not known in advance. Following Barlow et al.
(1972), the IsoGene package calculates the likelihood
of the isotonic trend for both directions and chooses
the direction for which the likelihood is maximized.

The Significance Analysis of Microarrays proce-
dure (SAM, Tusher et al., 2001) can be also adapted
to the five test statistics described above. The generic
algorithm of SAM discussed by Chu et al. (2001) is
implemented in this package. For the t-type test
statistics (i.e., Williams, Marcus, the M, and the M'),
a fudge factor is added in the standard error of the
mean difference. For example, the SAM regularized
test statistic for the M’ is given by,

Ak Ak
M/SAM _ V}f Fo ©)
s'+sp

where s is the fudge factor and is estimated from the
percentiles of standard errors of all genes which min-
imize the Coefficient of Variation (CV) of the Median
Absolute Deviation (MAD) of the SAM regularized
test statistics. For the F-type test statistic, such as E3;,
the SAM regularized test statistic is defined by,

Bt = ————. @)

Multiplicity

In this study, a gene-by-gene analysis is carried out.
When many hypotheses are tested, the probability
of making the type I error increases sharply with
the number of hypotheses tested. Hence, multiplic-
ity adjustments need to be performed. Dudoit et al.
(2003) and Dudoit and van der Laan (2008) provided
extensive discussions on the multiple adjustment
procedures in genomics. Lin et al. (2007) compared
several approaches for multiplicity adjustments, and
showed the application in dose-response microarray
experiments. In the IsoGene package the inference is
based on resampling-based methods. The Benjamini
Hochberg (BH) procedure is used to control the FDR
. We use the definition of FDR from Benjamini and
Hochberg (1995). The Significance Analysis of Mi-
croarrays (SAM, Tusher et al., 2001) approach is also
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considered, which estimates the FDR by using per-
mutations, where the FDR is computed as median
of the number of falsely called genes divided by the
number of genes called significant.

Introduction to IsoGene Package

The IsoGene package provides the estimates and
p-values of five test statistics for testing for mono-
tone trends discussed in the previous section. The
p-values are calculated based on a resampling proce-
dure in which the distribution of the statistic under
the null hypothesis is approximated using permuta-
tions.

The main functions of the IsoGene package are
IsoRawp () and IsoTestBH () which calculate the raw
p-values using permutations and adjust them using
the Benjamini-Hochberg (BH-FDR, Benjamini and
Hochberg, 1995) and Benjamini-Yekutieli (BY-FDR,
Benjamini and Yekutieli, 2001) procedures. The
IsoGene package also implements the Significance
Analysis of Microarrays (SAM) by using function
IsoTestSAM().

Function Description

IsoRawp () Calculates raw p-values for
each test statistic using
permutations

Adjusts raw p-values of the
five test statistics using the
BH- or BY-FDR procedure
Calculates the values of the
five test statistics for a

single gene

Calculates the values of the
five test statistics for all genes
Plots the data points, sample
means at each dose and

an isotonic regression line
(optional)

Plots the p!F and pP°¥"-values
of a gene for a given test
Plots the raw p-values and
adjusted BH- and BY-FDR
p-values

Calculates the values for the
five SAM regularized test
statistics

Obtains the list of significant
genes using the SAM
procedure

IsoTestBH()

IsoGenel ()

IsoGenem ()

IsoPlot ()

IsopvaluePlot ()

IsoBHplot ()

IsoGenemSAM ()

IsoTestSAM()

Figure 2: The main IsoGene package functions.

The supporting functions are IsoGenem() and
IsoGenemSAM (), which calculate the values for
the five test statistics and for five SAM regular-
ized test statistics, respectively. = The functions
IsopvaluePlot (), IsoBHplot (), and IsoPlot () can
be used to display the data and show the results of
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the testing procedures. The summary of the func-
tions and their descriptions are presented in Figure 2.

The IsoGene package can be obtained from
CRAN: http:/ /cran.r-project.org/package=IsoGene.
The IsoGene package requires the ff and Iso pack-
ages.

Example 1: Data Exploration

To illustrate the analysis of dose-response in microar-
ray using IsoGene package, we use the dopamine
data. The data were obtained from a pre-clinical
evaluation study of an active compound (Géhlmann
and Talloen, 2009). In this study the potency of the
compound was investigated. The compound had
6 dose levels (0, 0.01, 0.04, 0.16, 0.63, 2.5 mg/kg)
and each dose was given to four to five indepen-
dent rats. The experiment was performed using
Affymetrix whole-human genome chip. There are
26 chips/arrays and each chip/array contains 11,562
probe sets (for simplicity, we refer to the probe sets
as genes). The dopamine data set with 1000 genes is
provided inside the package as example data. The
complete data set can be obtained on request upon
the first author. For this paper, the analysis is based
on the original data set (using all genes).

The example data is in an ExpressionSet object
called dopamine. More detailed explanation of the
ExpressionSet object is discussed by Falcon et al.
(2007). In order to load the object into R, the follow-
ing code can be used:

> library(affy)
> library (IsoGene)
> data (dopamine)
> dopamine
ExpressionSet (storageMode:lockedEnvironment)
assayData: 11562 features, 26 samples
element names: exprs
phenoData
sampleNames: X1, X2, ..., X26 (26 total)
varLabels and varMetadata description:
dose: Dose Levels
featureData
featureNames: 201_at,202_at,...,11762_at
(11562 total)
fvarLabels and fvarMetadata
description: none
experimentData: use 'experimentData (object)'

The IsoGene package requires the information of
dose levels and gene expression as input. The infor-
mation of dose levels and the log2 transformed gene
intensities can be extracted using the following code:

> express <- data.frame (exprs (dopamine))
> dose <- pData (dopamine) $dose

For data exploration, the function IsoPlot () can
be used to produce a scatterplot of the data. The
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function IsoPlot () has two options to specify the
dose levels, i.e., type ="ordinal" or "continuous".
By default, the function produces the plot with
continuous dose levels and data points.  To
add an isotonic regression line, one can specify
add.curve=TRUE.

Plots of the data and an isotonic regression line
for one of the genes in the data set with dose on the
continuous and ordinal scale can be produced by us-
ing the following code:

# Figure 3
> par (mfrow=c(1,2))
> IsoPlot (dose,express[56,],type="continuous",
+ add.curve=TRUE)
> IsoPlot (dose,express[56,],type="ordinal",
+ add.curve=TRUE)
Gene: 256_at Gene: 256_at

S S
n o~ n o
8 8
o o
3 - I
[} [}
c c
[} [}
5 o ]

o, 4,

Doses ‘ boseé

Figure 3: The plots produced by IsoPlot () with dose as
continuous variable (left panel) and dose as ordinal vari-
able (right panel and the real dose level is presented on
the x-axis). The data points are plotted as circles, while
the sample means as red crosses and the fitted increasing
isotonic regression model as a blue solid line.

Example 2: Resampling-based Multiple
Testing

In this section, we illustrate an analysis to test for
monotone trend using the five statistics presented in
section 2 using the IsoGene package. The function
IsoRawp () is used to calculate raw p-values based
on permutations. The dose levels, the data frame
of the gene expression, and the number of permuta-
tions used to approximate the null distribution need
to be specified in this function. Note that, since the
permutations are generated randomly, one can use
function set .seed to obtain the same random num-
ber. To calculate raw p-values for the dopamine data
using 1000 permutations with seed=1234, we can use
the following code:

> set.seed(1234)
> rawpvalue <- IsoRawp (dose, express,
+ niter=1000)
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The output object rawpvalue is a list with four
components containing the p-values for the five test
statistics: two-sided p-values, one-sided p-values,
pYP-values and pP°“"-values. The codes to extract
the component containing two-sided p-values for the
first four genes are presented below. In a similar way,
one can obtain other components.

> twosided.pval <- rawpvaluel[[2]]
> twosided.pval[l:4, ]

Probe.ID E2 Williams Marcus M  ModM
1 201_at 1.000 0.770 0.996 0.918 0.946
2 202_at 0.764 0.788 0.714 0.674 0.700
3 203_at 0.154 0.094 0.122 0.120 0.134
4 204_at 0.218 0.484 0.378 0.324 0.348

Once the raw p-values are obtained, one needs to
adjust these p-values for multiple testing. The func-
tion IsoTestBH () is used to adjust the p-values while
controlling for the FDR. The raw p-values (e.g., rawp
), FDR level, type of multiplicity adjustment (BH-
FDR or BY-FDR) and the statistic need to be specified
in following way:

IsoTestBH (rawp, FDR=c(0.05,0.1),
type=c ("BH","BY"), stat=c("E2",
"Williams", "Marcus", "M", "ModifM"))

IsoTestBH() produces a list of genes, which have a
significant increasing/decreasing trend. The follow-
ing code can be used to adjust the two-sided p-values
of the E3; using the BH-FDR adjustment:

> E2.BH <- IsoTestBH(twosided.pval,

+ FDR = 0.05, type = "BH", stat ="E2")
> dim(E2.BH)

[1] 250 4

The object E2.BH contains a list of significant
genes along with the probe ID, the corresponding
row numbers of the gene in the original data set,
the unadjusted (raw), and the BH-FDR adjusted p-
values of the Egl test statistic. In the dopamine data,
there are 250 genes tested with a significant mono-
tone trend using the likelihood ratio test (E"(Zn) at the
0.05 FDR level. The first four significant genes are
listed below:

> E2.BH[1:4, ]
Probe.ID row.num raw p-values BH adj.p-values
1 256_at 56 0 0
2 260_at 60 0 0
3 280_at 80 0 0
4 283_at 83 0 0

One can visualize the number of significant find-
ings for the BH-FDR and BY-FDR procedures for a
given test statistic using the IsoBHPlot () function.

> # Figure 4
> IsoBHPlot (twosided.pval,FDR=0.05,stat="E2")

Figure 4 shows the raw p-values (solid blue line),
the BH-FDR adjusted p-values (dotted and dashed
red line) and BY-FDR (dashed green line) adjusted p-
values for the E3,.
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E2: Adjusted p values by BH and BY
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Figure 4: Plot of unadjusted, BH-FDR and BY-FDR ad-
justed p-values for E2,

Example 3: Significance Analysis of Dose-
response Microarray Data (SAM)

The Significance Analysis of Microarrays (SAM) for
testing for the dose-response relationship under or-
der restricted alternatives is implemented in the Iso-
Gene package as well. The function IsoTestSAM()
provides a list of significant genes based on the SAM
procedure.

> IsoTestSAM(x, y, fudge=c("none","pooled"),
+ niter=100, FDR=0.05, stat=c("E2",
+ "Williams", "Marcus","M", "ModifM"))

The input for this function is the dose levels
(x), gene expression (y), number of permutations
(niter), the FDR level, the test statistic, and the
option of using fudge factor. The option fudge is
used to specify the calculation the fudge factor in the
SAM regularized test statistic. If the option fudge
="pooled" is used, the fudge factor will be calculated
using the method described in the SAM manual (Chu
et al., 2001). If we specify fudge ="none" no fudge
factor is used.

The following code is used for analyzing the
dopamine data using the SAM regularized M’-test
statistic:

> set.seed(1235)

> SAM.ModifM <- IsoTestSAM(dose, express,
+ fudge="pooled", niter=100,

+ FDR=0.05, stat="ModifM")

The resulting object SAM.Modifl, contains three
components:

1. sign.genesl contains a list of genes declared
significant using the SAM procedure.
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2. qgstat gives the SAM regularized test statistics
obtained from permutations.

3. allfdr provides a delta table in the SAM pro-
cedure for the specified test statistic.

To extract the list of significant gene, one can do:

> SAM.ModifM.result <- SAM.ModifM[[1]]
> dim (SAM.ModifM.result)
[1] 151 6

The object SAM.ModifM. result, contains a matrix
with six columns: the Probe IDs, the correspond-
ing row numbers of the genes in the data set, the
observed SAM regularized M’ test statistics, the q-
values (obtained from the lowest False Discovery
Rate at which the gene is called significant), the raw
p-values obtained from the joint distribution of per-
mutation test statistics for all of the genes as de-
scribed by Storey and Tibshirani (2003), and the BH-
FDR adjusted p-values.

For dopamine data, there are 151 genes found to
have a significant monotone trend based on the SAM
regularized M’ test statistic with the FDR level of
0.05. The SAM regularized M’ test statistic values
along with g-values for the first four significant genes
are presented below.

> SAM.ModifM.result[1:4,]

Probe.ID row.num stat.val gvalue pvalue adj.pvalue
4199_at 3999 -4.142371 0.0000 3.4596e-06 0.0012903
4677_at 4477 -3.997728 0.0000 6.9192e-06 0.0022857
7896_at 7696 -3.699228 0.0000 1.9027e-05 0.0052380
9287_at 9087 -3.324213 0.0108 4.4974e-05 0.0101960

=W N e

Note that genes are sorted increasingly based on
the SAM regularized M’ test statistic values (i.e.,
stat.val).

In the IsoGene package, the function
IsoSAMPlot () provides graphical outputs of the
SAM procedure. This function requires the SAM
regularized test statistic values and the delta table in
the SAM procedure, which can be obtained from the
resulting object of the IsoTestSAM() function, which
in this example data is called SAM.ModifM. To extract
the objects we can use the following code:

# Obtaining SAM reqularized test statistic
qgstat <- SAM.ModifM[[2]]

# Obtaining delta table

allfdr <- SAM.ModifM[[3]]

We can also obtain the ggstat and allfdr from
the functions Isoqgstat () and Isoallfdr (), respec-
tively. The code for the two functions are:

Isoqgstat (x, y, fudge=c("none","pooled"),niter)
Isoallfdr (ggstat, ddelta, stat=c("E2",

"Williams", "Marcus", "M", "ModifM"))

The examples of using the functions Isoqqgstat ()
and Isoallfdr () are as follows:
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Obtaining SAM reqularized test statistic
ggstat <- Isoggstat (dose, express,
fudge="pooled", niter=100)

Obtaining delta table

allfdr <- Isoallfdr(qggstat, ,stat="ModifM")

V o #=H= + VvV =+

Note that in Isoallfdr (), ddelta is left blank, with
default values taken from the data, i.e., all the per-
centiles of the standard errors of the M’ test statistic.

The two approaches above will give the same re-
sult. Then to produces the SAM plot for the SAM
regularized M’ test statistic, we can use the function
IsoSAMPlot:

# Figure 5
> IsoSAMPlot (qgstat, allfdr, FDR = 0.05,
+ stat = "ModifM")

a: plot of FDR vs. Delta b: plot of # of sign genes vs. Delta

& o
Y
S S 81
g =
o | - Bl
o c
o — FDR90% S 8
[a - -- FDR50% L g7
L o 7 =
c 4
o 2
- [
o — 8 —
5
o
> ] o 4
° T T T T #* T T T T T
0 1 2 3 4 0 1 2 3 4
delta delta
d: observed vs. expected statistics
(=]
8 oo
n 87 Ei = &
o S —— delta=0.72 8
2 A 8
D °
8 =3 o I
Q 3 2
© @
%) 4 17
& o)
L S [S)
< 8 |
© R
£
o 4
T T T T T
0 1 2 3 4 2 -1 0o 1 2 3
delta expected

Figure 5: The SAM plots: a.Plot of the FDR vs. A; b. Plot
of number of significant genes vs. A; c. Plot of number of
false positives vs. A; d. Plot of the observed vs. expected
test statistics.

Panel a of Figure 5 shows the FDR (either 50%
or 90% (more stringent)) vs. A, from which, user
can choose the A value with the corresponding de-
sired FDR. The FDR 50% and FDR 90% are obtained
from, respectively, the median and 90th percentile of
the number of falsely called genes (number of false
positives) divided by the number of genes called sig-
nificant, which are estimated by using permutations
(Chu et al., 2001). Panel b shows the number of sig-
nificant genes vs. A, and panel c shows the number
of false positives (either obtained from 50th or 90th
percentile) vs. A. Finally, panel d shows the observed
vs. the expected (obtained from permutations) test
statistics, in which the red dots are those genes called
differentially expressed.
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Comparison of the Results of
Resampling-based Multiple Test-
ing and the SAM

In the previous sections we have illustrated analysis
for testing a monotone trend for dose-response mi-
croarray data by using permutations and the SAM.
The same approach can also be applied to obtain a
list of significant genes based on other statistics and
other multiplicity adjustments. Figure 6 presents the
number of genes that are found to have a significant
monotone trend using five different statistics with
the FDR level of 0.05 using the two approaches.

It can be seen from Figure 6 that the EZ, gives a
higher number of significant genes than other -type
statistics. Adding the fudge factor to the statistics
leads to a smaller number of significant genes using
the SAM procedure for the t-type test statistics as
compared to the BH-FDR procedure.

Number of significant genes
Test statistic | BH-FDR | SAM | # common genes
EZ, 250 279 200
Williams 186 104 95
Marcus 195 117 105
M 209 158 142
M 203 151 134

Figure 6: Number of significant genes for each test
statistic with BH-FDR and SAM.

In the inference based on the permutations (BH-
FDR) and the SAM, most of the genes found by the
five statistics are in common (see Figure 6). The
plots of the samples and the isotonic trend of four
best genes that are found in all statistics and in both
the permutations and the SAM approaches are pre-
sented in Figure 7, which have shown a significant
increasing monotone trend.

Discussion

We have shown the use of the IsoGene package for
dose-response studies within a microarray setting
along with the motivating examples. For the analy-
sis using the SAM procedure, it should be noted that
the fudge factor in the E3; is obtained based on the
approach for F-type test statistic discussed by Chu
et al. (2001) and should be used with caution. The
performance of such an adjustment as compared to
the t-type test statistics has not yet been investigated
in terms of power and control of the FDR. Therefore,
itis advisable to use the fudge factor in the ¢-type test
statistics, such as the M and modified M test statis-
tics.
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Figure 7: Plots of the samples (circles) and the isotonic
trend (solid blue line) for the four best genes with a signif-
icant monotone trend.

The calculation of the raw p-values based on per-
mutations using the IsoRawp () function is compu-
tationally intensive. For example, when we used
100 permutations for analyzing 10,000 genes, it takes
around 30 minutes. When we use 1,000 permuta-
tions, the elapsed time increases around 10 times.
Usually to approximate the null distribution of the
test statistics, a large number of permutations is
needed, which leads to the increase of computation
time. Considering the computation time, we also
provide the p-values obtained from joint distribution
of permutation statistics for all genes which is imple-
mented in function IsoTestSAM(). This approach is
sufficient to obtain small p-values using a small num-
ber of permutations. Alternatively, one can also use
the SAM procedure which does not require a large
number of permutations and takes less computation
time. However caution should be drawn to the com-
parison of the SAM procedure with and without the
fudge factor.

A further development of this package is the
Graphical User Interface (GUI) using tcl/tk for
users without knowledge of R programming.
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