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PASSED: Calculate Power and Sample
Size for Two Sample Tests
by Jinpu Li, Ryan P. Knigge, Kaiyi Chen, Emily V. Leary

Abstract Power and sample size estimation are critical aspects of study design to demonstrate
minimized risk for subjects and justify the allocation of time, money, and other resources. Researchers
often work with response variables that take the form of various distributions. Here, we present an
R package, PASSED, that allows flexibility with seven common distributions and multiple options
to accommodate sample size or power analysis. The relevant statistical theory, calculations, and
examples for each distribution using PASSED are discussed in this paper.

Introduction

Power and sample size estimation are critical aspects of study design to demonstrate minimized risk
for subjects and justify the allocation of time, money, and other resources (Jones et al., 2003). A number
of R packages for power analysis have been developed over the years. The samplesize (Scherer,
2016) package provides the calculation of sample size for the Student’s t-test and the Wilcoxon-Mann
Whitney test for categorical data. The TrialSize (Zhang et al., 2013) package implements the power
analysis described in Chow et al. (2007), including power and sample size calculations for different
study designs. Most recently, the simglm (LeBeau, 2019) package presents a simulation approach for
power analysis that allows for the specification of missing data, unbalanced designs, and different
random error distributions of generalized linear models.

Moreover, researchers often work with response variables that can take the form of a variety of
distributions. For example, the proportion of thromboembolism after surgery in different treatment
groups can be modeled using the binomial distribution or length of inpatient stay after an orthopedic
procedure can be modeled using the Poisson distribution (Plessl et al., 2020). Some of the R packages
or functions are designed to calculate the power and sample size for the variables following a certain
distribution. The base package stats (R Core Team, 2016) provides such functions for normal (Gaussian)
and binomially distributed variables, and the situations of unequal sample sizes are extended by
packages pwr (Champely et al., 2017), MESS(Ekstrøm, 2012), pwr2ppl(Aberson, 2019), and WebPower
(Zhang and Mai, 2018). The package MKmisc (Kohl, 2021) further adds a function for the comparison
of negative binomial distributions. However, none of these packages provide a comprehensive power
analysis toolkit capable of calculating power or sample sizes for the test of two-sample means or ratios
when the responses have other common distributions (Table 1).

Package Binomial Normal Negative Bi-
nomial Geometric Poisson Beta Gamma

PASSED x x x x x x x

stats x* x*

pwr x x**

WebPower x x**

MESS x x

pwr2ppl x x

MKmisc x x

*: equal sample only; **: equal variance only.

Table 1: The comparison among PASSED and other available packages.

Here, we present an R package, PASSED, that performs power and sample size analyses for the
following distributions: binomial, negative binomial, geometric, Poisson, normal (Gaussian), beta,
and gamma distributions. Distributions, which had existing functions or R infrastructure for sample
size and power calculations were included to streamline these calculations. However, calculations
for the beta, Poisson, and gamma distributions were developed specifically for inclusion in PASSED.
In the following sections, we will discuss the motivating examples, relevant statistical theory, and
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calculations for each distribution using PASSED.

PASSED: R Package Description

All functions in this package can be used to compute the power for a specific study design (e.g., given
sample sizes) or to estimate specific parameter values (e.g., sample sizes) necessary to obtain a target
power. The specific function of interest will depend on the type of outcome variable and the data
distribution. All functions output an object of class power.htest that details the specified parameters
of the test and the estimated parameter set as NULL.

Binomial

The binomial distribution is useful when modeling the number of successes in a sequence of inde-
pendent and identically distributed Bernoulli trials. One example which uses data modeled using a
binomial distribution is the proportion of blood transfusion that has occurred during surgery. The
need for blood transfusion during surgery is an important consideration during surgical planning and
particularly for surgical trials. LEITE et al. (2020) applied a logistic regression with binomial outcomes
to model the rate of blood transfusions after the introduction of Tranexamic acid in knee arthroplasty.

Hypothesis Testing two-sample proportions is commonly considered in research designs when the
outcome follows a binomial distribution. Let xij be a binary response from the jth subject in the ith
group, j = 1, ..., ni, i = 1, 2. It is assumed that xij are independent Bernoulli random variables with
proportion pi,

xij ∼ Bernoulli(pi)

Two hypothesis frameworks are considered for power and sample size calculations, which correspond
to either a one-sided or two-sided test:

H0 : p1 = p2 vs. Ha : p1 ̸= p2 (two − sided)

or
H0 : p1 = p2 vs. Ha : p1 > (<)p2 (one − sided)

Algorithm A binomial asymptotic test statistic was first proposed by Pearson (1900). Fleiss et al.
(1980) provided an explicit formula to calculate the corresponding sample sizes for the test:

n1 =
[z α

2

√
(r + 1) p̄q̄ + zβ

√
rp1q1 + p2q2]

2

rd2 (two − sided)

or

n1 =
[zα

√
(r + 1) p̄q̄ + zβ

√
rp1q1 + p2q2]

2

rd2 (one − sided),

where r = n2/n1, d = p2 − p1, q1 = 1 − p1, q2 = 1 − p2, p̄ =
n1 p1+n2 p2

n1+n2
, q̄ = 1 − p̄, and zx denotes the

probability that a standard normal deviate is greater than x. To obtain the power, this equation can be
re-written as:

zβ =

√
rn1|d| − z α

2

√
(r + 1) p̄q̄

√
rp1q1 + p2q2

(two − sided)

zβ =

√
rn1|d| − zα

√
(r + 1) p̄q̄

√
rp1q1 + p2q2

(one − sided)

And, thus, the power can be derived as:

Power = Pr

(
Z <

z α
2

√
(r + 1) p̄q̄ −√

rn1|d|√
rp1q1 + p2q2

)
(two − sided)

Power = Pr

(
Z <

zα

√
(r + 1) p̄q̄ −√

rn1|d|√
rp1q1 + p2q2

)
(one − sided)

As a result, the target power, required sample sizes (n1 and n2), significance level (α), or the proportions
(p1 and p2) can be obtained once all other remaining parameters are known (Fleiss et al., 1980). To
optimize the sample size allocation, please refer to the discussion in Brittain and Schlesselman (1982).
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Function The power_Binomial() function is useful when testing for differences among two sample
proportions when the data follow a binomial distribution. This function uses the algorithm described
above. The arguments for power_Binomial() are as follows:

power_Binomial(n1 = NULL, n2 = NULL, p1 = 0.5, p2 = 0.5,
sig.level = 0.05, power = NULL, equal.sample = TRUE,
alternative = c("two-sided", "one-sided"))

Sample sizes for each group are designated as n1 and n2. If sample sizes for both groups are equal,
the argument equal.sample should be set to TRUE, and only a value for n1 is needed. If sample sizes
are unequal, equal.sample should be set to FALSE, and values for both n1 and n2 must be specified.
When estimating other parameters, the target power must be set with power. The significance level
is set with sig.level and has a default value of 0.05. The probability of success for each group is
indicated as p1 and p2, respectively, with 0.5 as the default value for both. Only one of the parameters
of n1, n2, p1, p2, power, or sig.level can be set as NULL. The parameter set as NULL will be estimated
based on the other parameter values. The argument alternative specifies the alternative hypothesis
as either "two.sided" (default) or "one.sided".

The power_Binomial() function returns the same results as stats::power.prop.test() in the
equal sample scenario. It also allows power calculations with unequal sample sizes, and the results
are identical to MESS::power_prop_test().

Negative Binomial

The negative binomial distribution can be used to model the number of successes in a sequence of
independent and identically distributed Bernoulli trials before a specified number of failures occurs.
Gates et al. (2020) analyzed the probability of positive intraoperative cultures in a population of
patients with a history of prior ipsilateral shoulder surgery. The probability of the total number
of positive tissue cultures was modeled using a generalized negative binomial mixed model with
maximum likelihood estimation and robust standard errors. Using this negative binomial framework,
the appropriate sample size and power for such a study can be obtained using the method outlined
below.

Hypothesis Consider a sequence of adverse events. Let xij be the number of events during time ti
from the jth subject in the ith group, j = 1, ..., ni, i = 1, 2. Assuming that xij are negative binomial
random variables with a mean µij and parameter θ (θ > 0), the probability function of xij is

P
(

xij

)
=

Γ
(

θ + xij

)
Γ (θ) xij!

(
µij

θ + µij

)xij
(

θ

θ + µij

)θ

, (1)

where n! denotes the product of the integers from 1 to n and Γ(·) is the gamma function (Zhu and
Lakkis, 2014).

To model the negative binomial outcomes, Hilbe (2011) introduced the negative binomial re-
gression. Zhu and Lakkis (2014) then presented a hypothesis test comparing two negative binomial
distributed samples using negative binomial regression, and this is the method used here. In negative
binomial regression, µij can be modeled as

log(µij) = log(ti) + β0 + β1Gij,

where Gij, the group indicator for subject j, is equal to 0 if i = 1 for group 1 and is equal to 1 if i = 2
for group 2. Let r1 and r2 be the mean rates of events per time unit for groups 1 and 2, which can
be expressed as r1 = eβ0 and r2 = eβ0+β1 . Then r2/r1 = eβ1 can be easily obtained (Zhu and Lakkis,
2014).

To compute the power of the test or determine parameters to obtain target power, two hypothesis
frameworks are considered which correspond to either a one-sided or two-sided test:

H0 :
r2
r1

= 1 vs. Ha :
r2
r1

̸= 1 (two − sided)

or
H0 :

r2
r1

= 1 vs. Ha :
r2
r1

> (<)1 (one − sided)

Algorithm The power and sample size calculation algorithms were developed by Zhu and Lakkis
(2014) based on the asymptotic normality of the maximum likelihood estimation of β1. The power can
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be calculated as:

power = Φ

√
n1

∣∣∣log
(

r2
r1

)∣∣∣− z α
2

√
V0

√
V1

 (two − sided)

or

power = Φ

√
n1

∣∣∣log
(

r2
r1

)∣∣∣− zα
√

V0
√

V1

 (one − sided),

where V0 and V1 are the estimates of variance for β̂1 by n1 under H0 and Ha,

V0 =
1
ti

(
1
r̃1

+
n1

n2r̃2

)
+

(n1 + n2)

θn2

V1 =
1
ti

(
1
r1

+
n1

n2r2

)
+

(n1 + n2)

θn2
,

and r̃i, i = 1, 2 denotes the estimation of the event rate under H0 in each group. Zhu and Lakkis (2014)
provided three approaches to estimating r̃i under H0:

Approach 1: using event rate of group 2 (reference group rate)

V0 =
1
ti

(
1
r2

+
n1

n2r2

)
+

(n1 + n2)

θn2
;

Approach 2: using true rates

V0 =
1
ti

(
1
r1

+
n1

n2r2

)
+

(n1 + n2)

θn2
;

Approach 3: using maximum likelihood estimation

V0 =
1
ti

(
1

n1r1+n2r2
n1+n2

+
n1

n2
n1r1+n2r2

n1+n2

)
+

(n1 + n2)

θn2
.

Function The function power_NegativeBinomial() is useful when developing a study design to
compare differences in rates when the data follow a negative binomial distribution. Calculations for
this function are based on Zhu and Lakkis (2014). The following arguments are used:

power_NegativeBinomial(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05,
mu1 = NULL, mu2 = NULL, duration = 1, theta = NULL,
equal.sample = TRUE,
alternative = c("two-sided", "one-sided"), approach = 3)

The sample size for each group is specified as n1 and n2, both with default values of NULL. When
sample sizes are equal, equal.sample can be set to TRUE, and only n1 must be specified. Otherwise
equal.sample is set to FALSE and values must be input for both n1 and n2. The power argument is set
to NULL unless the target power is specified here and another parameter is set as NULL to be estimated.
The significance level for the test is set by sig.level with a default value of 0.05. The expected rates
of events per unit time for each group are denoted as mu1 and mu2, respectively, with the average
treatment duration set by duration (default value of 1). Theta indicates the θ parameter of the negative
binomial distribution, as noted above. The argument alternative specifies the alternative hypothesis
as either "two.sided" (default) or "one.sided". Lastly, the argument approach can be set as either
"1", "2", or "3" (default). These values indicate the selection of one of three procedures for estimating
the variance under the null hypothesis for the sample size formula and correspond with Approach
1 (reference group rate), Approach 2 (true rates), and Approach 3 (maximum likelihood estimation)
described above. The obtained results match other functions in R such as MKmisc::power.nb.test().

Geometric

The geometric distribution can be used to examine the probability of success given a limited number
of trials and is considered a special case of the negative binomial distribution. For example, in baseball,
the probability of a batter earning a hit before striking out can be compared to that of another batter,
using a geometric distribution.
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Hypothesis Let xij be the number of events during time ti from the jth subject in the ith group.
Assuming that xij are geometric random variables with a mean µij, the probability function of xij is

P
(

xij

)
=

(
µij

1 + µij

)xij
(

1
1 + µij

)
.

Referring to Equation 1, this is a special case of the negative binomial where θ = 1. Similarly, µij can
be modeled as shown in the Section Negative Binomial,

log(µij) = log(ti) + β0 + β1Gij.

The hypotheses and calculations follow as previously shown in the Section Negative Binomial.

Algorithm The power and sample size calculation formula are the same as the Section Negative
Binomial, with θ = 1.

Function The function power_Geometric() applies the same algorithm as the function
power_NegativeBinomial(), with the same arguments, where the parameter theta is set as 1. See
power_NegativeBinomial() for more details.

power_Geometric(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05, mu1 = NULL,
mu2 = NULL, duration = 1, equal.sample = TRUE,
alternative = c("two-sided", "one-sided"), approach = 3)

Poisson

The Poisson distribution can be used to model the number of events occurring in a fixed interval
of time or space. In healthcare, length of stay (LOS) is one of many important considerations for
interventions, particularly when inpatient hospital stay may vary among treatments. LOS, or other
count measurements important to the research study, can be modeled using a Poisson distribution.
Plessl et al. (2020) used a Poisson framework to compare LOS for those who were treated with rapid
recovery protocols versus standard recovery protocols after total knee arthroplasty. This example can
be expanded to the general case as follows.

Hypothesis Let xij be the number of events during the necessary study time ti from the jth subject
in the ith treatment group, j = 1, ..., ni, i = 1, 2. This situation is commonly referred to as the equal
sampling frame approach (Hutchinson and Holtman, 2005). It is assumed that xij are Poisson random
variables with rate λi such that the probability function of xij is

P
(

xij

)
=

tiλietiλi

xij!
,

where i = 1, 2. Then, the total number of events in each group, denoted as X1 and X2, also follow a
Poisson distribution:

Xi ∼ Poisson(λitini)

Four methods have previously been proposed to test the equality of two Poisson rates (Shiue
and Bain, 1982; D. Huffman, 1984; Thode, 1997; Gu et al., 2008). The method utilized in the PASSED
package was proposed by Gu et al. (2008), which considers the ratio of two Poisson rates, R, a
pre-specified positive number. The asymptotic test is as follows:

H0 : λ2/λ1 = R vs. Ha : λ2/λ1 = R′ ̸= R(two − sided)

or
H0 : λ2/λ1 = R vs. Ha : λ2/λ1 = R′ > R(one − sided)

Algorithm The following formula is used in the PASSED package and the details of the derivation
are provided in the Appendix.

n1 =
(

z1− α
2

C+zpower D
A )2 − 3

8
λ1t1

(two − sided)
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or

n1 =
(

z1−αC+zpower D
A )2 − 3

8
λ1t1

(one − sided)

where A = 2(1 −
√

R
R′ ),

B = λ1t1n1 + 3/8,

C =
√

R+d
R′ ,

D =
√

R′+d
R′

d = t1/t2.

Function The power_Poisson() function is designed to compute the power or estimate parameters
to obtain a target power when testing for a ratio of two Poisson rates. This function applies the
asymptotic tests based on normal approximations developed by Gu et al. (2008). The arguments for
power_Poisson() are as follows:

power_Poisson(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05,
lambda1 = NULL, lambda2 = NULL, t1 = 1, t2 = 1, RR0 = 1,
equal.sample = TRUE, alternative = c("two.sided", "one.sided"))

Sample sizes for each group are set with n1 and n2. If sample sizes for both groups are equal, the
argument equal.sample should be set to TRUE, and only a value for n1 needs to be specified. If
sample sizes are unequal, equal.sample should be set to FALSE, and values for both n1 and n2 must be
specified. The target power of the test is set with power, and the significance level is set with sig.level
(default value of 0.05). The expected rates of events per unit time for each group are denoted as
lambda1 and lambda2, respectively, with the average treatment duration set by t1 and t2 (default
value of 1). Only one of the parameters of n1, n2, lambda1, lambda2, or power can be set as NULL for the
function to run. The parameter set as NULL will be estimated based on the other parameter values. t1
and t2 refer to the specified interval of time (or space) where the events occur. The rate ratio from
the null hypothesis is specified as RR0. It should be set to 1 when testing for equal Poisson rates.
The argument alternative specifies the alternative hypothesis as either "two.sided" (default) or
"one.sided".

For the example in Gu et al. (2008), which aims at testing if the risk of coronary heart disease is
greater for those with postmenopausal hormone use (RR0 = 1), the event rates for those with and
without hormone use are assumed to be 0.2000 and 0.0005 (lambda2 = 0.0020, lambda1 = 0.0005),
respectively, during a 2-year time period (t1 = t2 = 2). Given the sample size for each group as 4295
and 8590 (n2 = 4295, n1 = 8590) 1, the power under a significance level of 0.05 can be calculated as
follows:

power_Poisson(n1 = 8590, n2 = 4295, power = NULL, sig.level = 0.05,
lambda1 = 0.0005, lambda2 = 0.0020, t1 = 2, t2 = 2, RR0 = 1,
equal.sample = FALSE, alternative = "one.sided")

The estimated power is 0.9000147, which matches the results in Gu et al. (2008).

Normal

The normal distribution is widely used in the natural and social sciences. Age is a common demo-
graphic variable recorded during patient care and typically follows a normal distribution. Many
surgeons consider demographic variables to evaluate the possible risks of a surgical procedure and
assess optimal treatment options for patients. Luan et al. (2020) aimed to identify patients who were
suitable for kinematic or mechanical alignment of the knee. To compare these groups, Luan et al. (2020)
used the student t-test to compare normally distributed age.

Hypothesis T-tests are widely used to compare two sample means when the data has a normal
distribution (Cressie and Whitford, 1986). Let xij be a continuous response from the jth subject in the
ith group, j = 1, ..., ni, i = 1, 2. It is assumed that xij are independent, normal random variables with
mean µi and variance σ2

i :
xij ∼ Normal(µi, σ2

i ),

1the sample sizes are corrected in NCSS Software Manuals 2020 Page 437-14, "Tests for the Ratio of Two Poisson
Rates"
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then the probability density function of xij is:

f
(

xij

)
=

1√
2πσ2

i

e−
1
2

( xij−µi
σi

)2

,

where i = 1, 2. It can be shown that the mean of each group, denoted as x̄1 and x̄2 , also follows a
Normal distribution:

x̄i ∼ Normal(µi,
σ2

i
ni

)

To compute the power for a hypothesis test or determine parameters to obtain a target power for
hypothesis, the following two scenarios are considered:

H0 : µ1 = µ2 vs. Ha : µ1 ̸= µ2 (two − sided)

or
H0 : µ1 = µ2 vs. Ha : µ1 > (<)µ2 (one − sided)

Algorithm Based on the work of Ekstrøm (2012), in the PASSED package, the user can define the
sample sizes (n1 and n2) and standard deviations (σ1 and σ2) of each group directly, rather than set
the size ratio (n2/n1) and standard deviation ratio (σ2/σ1). To optimize sample size allocation, please
refer to the discussion in Jan and Shieh (2011).

Function The power_Normal() function is useful for developing a study design to test for differences
between mean values of two groups when the data follow a normal distribution. This function
performs the same operations as pwr.t.test in the pwr package (Champely et al., 2017) but allows for
additional parameter modifications. In particular, this function allows for specifying unequal sample
sizes and standard deviations across groups. The arguments for power_Normal() are as follows:

power_Normal(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05,
delta = NULL, sd1 = 1, sd2 = 1, equal.sample = TRUE,
alternative = c("two-sided", "one-sided"),
type = c("two-sample", "one-sample", "paired"),
df.method = c("welch", "classical"), strict = FALSE)

Sample sizes for each group are set with n1 and n2. If sample sizes for both groups are equal,
the argument equal.sample should be set to TRUE, and only a value for n1 needs to be specified. If
sample sizes are unequal, equal.sample must be set to FALSE, and values for both n1 and n2 must be
specified. The target power of the test is set with power, and the significance level is set with sig.level
(default value of 0.05). delta indicates the difference in means between the two groups, and sd1 and
sd2 denote the standard deviations for each group. A default value of 1 is indicated for both sd1
and sd2. The default values for n1, n2, power, and delta are NULL, whereas sd1, sd2, and sig.level
have non-NULL default values. Only one of the parameters can be set as NULL. The parameter set as
NULL will be estimated based on the other parameter values. The type of t-test is indicated by type
and set as "two.sample" (default), "one.sample", or "paired". alternative specifies the alternative
hypothesis as either "two.sided" (default) or "one.sided". Lastly, df.method indicates the method
for calculating the degrees of freedom as either "welch" (default) or "classical". Note that setting
strict as TRUE would be applied only in the two-sided case, when the probability of rejection in the
opposite direction of the true effect is included, i.e., the alternative hypothesis of the two-sided t-test is
µ1 ̸= µ2 rather than µ1 > (<)µ2.

The power_Normal() function produces the same results as stats::power.t.test() for the equal
sample size scenario. It also allows power calculations with unequal sample sizes and unequal vari-
ances. The results match other functions in R such as MESS::power_prop_test() and pwr::pwr.t2n.test().

Beta

The beta family of continuous probability distributions is ideal for modeling data with right or
left skewness and allows the probability density to assume a variety of shapes through two shape
parameters (Gupta and Nadarajah, 2004). Disease status is often measured with bounded outcome
scores, which take values on a finite range. The distribution of such data is often skewed, rendering
the standard analysis methods assuming a normal distribution inappropriate (Hu et al., 2020), and
thus, a beta distribution can be utilized. This scenario can be generalized as follows.
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Hypothesis Suppose a sequence of random responses, xij from the jth subject in the ith group,
takes the form of a continuous proportion that follows a beta distribution, xij ∼ Beta(ai, bi), where
j = 1, ..., ni, i = 1, 2. The probability density function of xij is:

f (xij) =
Γ(ai + bi)

Γ(ai)Γ(bi)
xai−1

ij (1 − xij)
bi−1,

where 0 ≤ xij ≤ 1, ai > 0, bi > 0, and i = 1, 2. When analyzing continuous proportions as a
response variable, the standard shape parameters of a beta density, ai and bi, are often not directly
observable. Ferrari and Cribari-Neto (2004) developed a class of beta regression models which utilize
an alternative parameterization of the beta density function based on the mean, µi, and an unknown
precision parameter, ϕi. Suppose µi = ai/(ai + bi) and ϕi = ai + bi, then the beta density function can
be expressed in terms of µi and ϕi as below:

f (xij) =
Γ(ϕi)

Γ(µiϕi)Γ((1 − µi)ϕi)
xµiϕi−1

ij (1 − xij)
(1−µi)ϕi−1;

For beta regression, µi can be modeled as

g(µi) = β0 + β1Gij,

where Gij, the group indicator for subject j, is equal to 0 if i = 1 for group 1 and is equal to 1 if i = 2
for group 2, and g(·) denotes the link function. The PASSED package includes the capability for the
following link functions and their respective forms:

• Logit: g(µ) = log
[

µ
(1−µ)

]
• Probit: g(µ) = Φ−1(µ)

• Complementary log-log: g(µ) = log[−log(1 − µ)]

• Log: g(µ) = log(µ)

• Log-log: g(µ) = −log[−log(µ)]

The equality of means µi is equivalent to β1 = 0. The objective is to compute the power of the test or
determine minimum sample sizes to obtain a target power for the needed hypothesis. A two-sided
hypothesis framework is considered for power and sample size calculations:

H0 : µ1 − µ2 = 0 vs. Ha : µ1 − µ2 ̸= 0

Algorithm The mean and variance of xij, denoted as µi and σ2
i , can be obtained using:

µi =
ai

ai + bi

and
σ2

i =
aibi

(ai + bi)2(ai + bi + 1)
.

Incorporating the definition of the precision parameter ϕi, the following equations can be derived:

ai = µiϕi = µi

(µi(1 − µi)

σ2
i

− 1
)

; (2)

bi = (1 − µi)ϕi = (1 − µi)
(µi(1 − µi)

σ2
i

− 1
)

. (3)

To calculate power, a simulation approach is used. Parameters µi and ϕi are first estimated using
the given mean and variance, then they are used to obtain the original beta parameters, ai and bi,
following Equations 2 and 3. The response variable is simulated for each distribution, Beta(a1, b1)
and Beta(a2, b2), with the given sample size. If any simulated response is equal to zero or one, the
following transformation is applied to each response value from both distributions: (x(n− 1) + 0.5)/n,
where x is the response value and n is the sample size (Smithson and Verkuilen, 2006).

Values for the simulated response from both distributions are merged together, along with the
group indicator (0 for group 1 and 1 for group 2). Subsequently, a beta regression model is built using
the specified link type (Cribari-Neto and Zeileis, 2010). A Wald test is performed on the simulated
model, testing the null hypothesis that β1 is equal to 0. The p-values are recorded for each test and the
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simulation is repeated M times. The power is calculated as:

power =
Number of p-values less than 0.05

M
.

Let ss denote sample size, then the generic power/sample size relationship can be formally
expressed as:

power = f(ss)

Assuming the response variable follows a beta distribution, f (·) is continuous on the interval (0, 1)
and increases monotonically. Consequently, the power_Beta function uses the bisection method to
obtain the minimum sample size, ss0, through a sequence of steps for each iteration (Chernick and
Liu, 2002). For each target power, power0, upper and lower sample size bounds, ssu and ssl , which
satisfy f (ssl) < power0 < f (ssu) are established using a two-sample t-test performed with the base
function power.t.test (R Core Team, 2016). Although power.t.test assumes normality, it is useful
to generate starting values for ssu and ssl .

The sequence of steps for each iteration is as follows:

1. Compute the midpoint ssmid = f loor( ssl+ssu
2 ) of interval [ssl , ssu]. f loor(·) denotes retaining the

integer part of a number.

2. Calculate power at the midpoint, ssmid, using the simulation described for the power calculations
above.

3. If f (ssmid) ≥ power0 and ssmid − ssl ≤ 1, then return ssmid and stop iterating.

4. Examine the sign of f (ssmid)− power0. If negative, then replace ssl with ssmid, otherwise replace
ssu with ssmid so that f (ssl) < power0 ≤ f (ssu).

Repeat the process until iteration stops. The output minimum sample size, ss0, is the minimum integer
such that f (ss0) ≥ power0.

Function The power_Beta() function is framed to test differences between mean values for two
groups, assuming the response variable follows a beta distribution in each group. It can be used to
compute the power or to estimate the required sample sizes to obtain a target power. In particular,
this function allows for specifying unequal sample sizes and standard deviations across groups. The
arguments for power_Beta() are as follows:

power_Beta(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05,
mu1 = NULL, sd1 = NULL, mu2 = NULL, equal.sample = TRUE,
trials = 100, equal.precision = TRUE, sd2 = NULL,
link.type = c("logit", "probit", "cloglog", "cauchit", "log", "loglog"))

Sample sizes for each group are set with n1 and n2. If sample sizes for both groups are equal, the
argument equal.sample should be set to TRUE, and only a value for n1 or power needs to be specified.
If sample sizes are unequal, equal.sample should be set to FALSE, and values for both n1 and n2 must
be specified. The target power of the test is set with power, and the significance level is set with
sig.level (default value of 0.05). Only one of the parameters of n1, n2, or power can be NULL. The
mean and standard deviation for the null distribution are denoted by mu1 and sd1. Analogously,
the mean and standard deviation for the alternative distribution can be specified by mu2 and sd2.
Note that equal.precision=FALSE should be used to set the standard deviation for the alternative
distribution, meaning the precision parameters are assumed to be unequal. Otherwise, option sd2
would be ignored. The option trials indicates the number of trials in the simulation. A default
number of trials (i.e., 100) is recommended to get a rough estimate of other parameters (e.g., sd2), since
the computational time is dependent upon the number of trials in the simulation. Once an appropriate
range of other values is determined, the number of trials should be increased (e.g., trials=1000) to
calculate precise power and sample size estimates. The default link function is the logit link but can be
changed using link.type with the following options: "logit", "probit", "cloglog", "log", "loglog",
to denote the logit, probit, complementary log-log, log, and log-log link functions, respectively.

Gamma

The gamma distribution is widely used to fit lifetime data because its flexibility in shape can vary from
extremely positively skewed to almost symmetric (Casella and Berger, 2002). Hong et al. (2020) provide
an example of modeling data using the gamma distribution to test the association of patient-provider
cost discussion with out-of-pocket spending among cancer survivors. The data (i.e., out-of-pocket
spending in cancer care) have an obvious skewness which is not normally distributed; and therefore,

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 551

the two-sample t-test is not suitable for this purpose. Alternatively, gamma models can be used to
test the difference of average total out-of-pocket spending between the patients with and without a
patient-provider cost discussion.

Hypothesis Currently, there is no explicit formula to calculate the power comparing two gamma
random variables. Let xij be a continuous response from the jth subject in the ith group, j = 1, ..., ni,
i = 1, 2. It is assumed that xij are gamma random variables with scale λi and shape δi so that the
probability density function can be written as

f
(

xij = x
)
=

(
λi

Γ (δi)

)
xδi−1e−λi x.

The mean of Gamma(λi, δi) can be obtained using µi = δi/λi. Shiue and Bain (1983) developed a test
of two equal gamma means with unknown common shape parameter, such that

H0 : µ1 = µ2 = µ.

This can be re-written as H0 : δ = λ1µ = λ2µ, some δ > 0. This can then be tested using an
F distribution based on the ratio of the mean of a random sample from two gamma distributions.
In 1988, Shiue et al. (1988) extended this to the unknown and unequal shape parameter scenarios.
However, this extension can be slightly conservative and problematic for smallscale parameters. More
recently, Chang et al. (2011) provided a computational approach using a variant of the parametric
bootstrap method, used here, in which the shape parameters are completely unknown and unequal.
In this characterization, the hypothesis is two-sided and is of the form H0 : δi = λiµ, some µ > 0 or
equivalently, for two means,

H0 :
δ1
λ1

=
δ2
λ2

vs. Ha :
δ1
δ1

̸= δ2
λ2

.

This can be expressed as a scalar value function, η, such that

H∗
0 : η =

2

∑
i=1

(
βi − β̄

)2
= 0 vs. H∗

a : η > 0,

where βi = ln (µi) and β̄ = ∑2
i=1

βi
2 .

Algorithm The power and sample size calculation algorithm adapted for PASSED was developed
by Chang et al. (2011). This computational approach performs best when the restricted maximum
likelihood estimate of η behaves as approximately normal or as a sum of squared normals.

Function The power_Gamma() function is used to compute the power or estimate sample sizes to
obtain a target power when testing for differences among two sample means when the data follow
a gamma distribution. This function used a parametric bootstrap method addressed by Chang et al.
(2011). The arguments for power_Gamma() are as follows:

power_Gamma(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05,
mu1 = NULL, mu2 = NULL, gmu1 = NULL, gmu2 = NULL,
trials = 100, M = 10000, equal.sample = TRUE, equal.shape = NULL)

Sample sizes for each group are set with n1 and n2. If sample sizes for both groups are equal, the
argument equal.sample should be set to TRUE, and only a value for n1 or power needs to be specified.
If sample sizes are unequal, equal.sample should be set to FALSE, and values for both n1 and n2 must
be specified. The target power of the test is set with power, and the significance level is set with
sig.level (default value of 0.05). Only one of the parameters of n1, n2, or power can be set as NULL.
The parameter set as NULL will be estimated based on the other parameter values. The arithmetic
means for each group are indicated by mu1 and mu2, while gmu1 and gmu2 denote the geometric mean
for each group, respectively. Option trials specifies the number of trials in the simulation, and the
number of generated samples in every single trial is identified by M. A small number of trials (e.g.,
using the default value 100) is recommended to get a rough estimate of power or sample size since the
computational time is dependent upon the number of trials in the simulation. To obtain a reasonable
result, a greater value (e.g., 10000) should be used for both trials and M. The assumption of equal
shape parameters should be tested before the comparison of two sample means if equal.shape is
set as NULL (default value is NULL). Otherwise, the test to determine equal shape is skipped (when
equal.shape is set to be TRUE or FALSE).
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For example, Schickedanz and Krause (1970) presented the weekly rainfall data for the sea-
sons of fall and winter. The arithmetic/geometric means are 0.3684/0.2075 for winter (n = 57) and
0.7635/0.3630 for fall (n = 51). Using a significance level of 0.05, the power can be calculated as follows:

set.seed(1)
power_Gamma(n1 = 57, n2 = 51, power = NULL, sig.level = 0.05,

mu1 = 0.3684, mu2 = 0.7635, gmu1 = 0.2075, gmu2 = 0.3630,
trials = 100, M = 1000)

The estimated power is 1.00, which matches the result in Schickedanz and Krause (1970).

Application of PASSED

In this section, we provide an example power analysis and sample size calculation implemented with
PASSED. We propose a hypothetical study to test an intervention protocol designed to reduce the
percentage of residents at nursing facilities who develop new or worsening pressure ulcers, known as
bedsores.

The Skilled Nursing Facility Quality Reporting Program (SNF-QRP) provider dataset contains
information on pressure ulcer rates among nursing home facilities across the US. In this scenario, half
of the participating nursing homes will implement the intervention protocol (treatment group), and
the other half will constitute a control group, without a change in protocol, to determine if the new
intervention reduces rates of pressure ulcers. We consider the following hypotheses for the study:

• H0: There is no difference in pressure ulcer rates among nursing home facilities between control
and treatment groups.

• Ha: There is a difference in pressure ulcer rates among nursing home facilities between control
and treatment groups.

Sample Size Determination

In this example, we use the mean and standard deviation of the SNF-QRP variable, "percentage of
SNF residents with pressure ulcers that are new or worsened" for the control group mu1 and sd1,
0.0174 and 0.0211, respectively. A 25% decrease in the proportion of patients that develop new or
worsening pressure ulcers is considered significant and results in the target alternative mean, mu2,
equal to 0.0131. To determine the appropriate number of facilities necessary in the control and
treatment groups, we first use power_Beta to estimate the minimum sample size with target power
equal to 0.8. The power_Beta is chosen because this proportion is defined on the interval [0, 1] and
right-skewed. The default value of link.type is used, trials is set at 1000, and equal precision in the
control and treatment groups is assumed. This analysis can be fine-tuned through additional iterations
of power_Beta by modifying the number of trials. The output is given below:

library(PASSED)
set.seed(1)
power_Beta(mu1 = 0.0174, sd1 = 0.0211, mu2 = 0.0131, power = 0.8,

link.type = "logit", trials = 1000, equal.precision = TRUE)

Two-sample Beta Means Tests (Equal Sizes) (logit link, equal precision)

N = 151
mu1 = 0.0174
mu2 = 0.0131
sd1 = 0.0211

sig.level = 0.05
power = 0.826

NOTE: N is number in *each* group

The obtained result indicates that 302 nursing home facilities (151 facilities for each group) are
necessary to demonstrate the difference between pressure ulcer rates among the control and treatment
groups, with a significance level of 0.05 and power of 0.80.
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Comparison with T-Test

To further assess the appropriate number needed in the control and treatment groups, we then use
0.0120 to 0.0140 to evaluate a range of target means that encompass the target’s alternative mean of
0.0131, with expected sample sizes of over 100 nursing homes per group. As a comparison, we also
calculate the power using a two-sided t-test under the same scenario, using the function power_Normal.
The true difference in means, delta, is set as the difference of mu1 and mu2, and the alternative standard
deviation is assumed to be equal to sd1. The output for this example is displayed below, assuming
equal precision.

# Set seed for the simulation below
set.seed(1)
Ex1 <- mapply(
function(mu2, sample_size){
Betapower <- power_Beta(mu1 = 0.0174, sd1 = 0.0211,

mu2 = mu2, n1 = sample_size,
link.type = "logit", trials = 1000,
equal.precision = TRUE)

Normalpower <- power_Normal(delta = (0.0174 - mu2), n1 = sample_size,
sd1 = 0.0211, sd2 = 0.0211)

return(c(Betapower$power,
round(Normalpower$power,3),
sample_size,
mu2,
0.0174))

},
# Range of mu2 was set as [0.0120, 0.0140] by 0.0010
rep(seq(0.0120, 0.0140, 0.0010), 5),
# Range of sample size was set as [100, 200] by 25
rep(seq(100, 200, 25), rep(3, 5))

)
# Reform the output
Ex1 <- as.data.frame(t(Ex1))
# Set column names
colnames(Ex1) <- c("Power (Beta)",

"Power (Normal)",
"Sample Size",
"mu2",
"mu1")

# Display the results
Ex1

Power (Beta) Power (Normal) Sample Size mu2 mu1
1 0.813 0.437 100 0.012 0.0174
2 0.623 0.311 100 0.013 0.0174
3 0.435 0.204 100 0.014 0.0174
4 0.891 0.522 125 0.012 0.0174
5 0.743 0.375 125 0.013 0.0174
6 0.488 0.245 125 0.014 0.0174
7 0.954 0.598 150 0.012 0.0174
8 0.821 0.436 150 0.013 0.0174
9 0.576 0.285 150 0.014 0.0174
10 0.979 0.665 175 0.012 0.0174
11 0.872 0.494 175 0.013 0.0174
12 0.609 0.324 175 0.014 0.0174
13 0.986 0.723 200 0.012 0.0174
14 0.914 0.548 200 0.013 0.0174
15 0.708 0.362 200 0.014 0.0174

When equal precision cannot be assumed, equal.precision is set to FALSE, and an input value for
sd2 is required. To demonstrate unequal precision, the previous example is rerun with equal.precision=FALSE
and sd2=0.03. The output is provided below.

# Set seed for the simulation below
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set.seed(1)
Ex2 <- mapply(
function(mu2, sample_size){
Betapower <- power_Beta(mu1 = 0.0174, sd1 = 0.0211, sd2 = 0.030,

mu2 = mu2, n1 = sample_size,
link.type = "logit", trials = 1000,
equal.precision = FALSE)

Normalpower <- power_Normal(delta = (0.0174 - mu2), n1 = sample_size,
sd1 = 0.0211, sd2 = 0.030)

return(c(Betapower$power,
round(Normalpower$power,3),
sample_size,
mu2,
0.0174))

},
# Range of mu2 was set as [0.0120, 0.0140] by 0.0010
rep(seq(0.0120, 0.0140, 0.0010), 5),
# Range of sample size was set as [100, 200] by 25
rep(seq(100, 200, 25), rep(3, 5))

)
# Reform the output
Ex2 <- as.data.frame(t(Ex2))
# Set column names
colnames(Ex2) <- c("Power (Beta)",

"Power (Normal)",
"Sample Size",
"mu2",
"mu1")

# Display the results
Ex2

Power (Beta) Power (Normal) Sample Size mu2 mu1
1 0.985 0.310 100 0.012 0.0174
2 0.942 0.222 100 0.013 0.0174
3 0.879 0.150 100 0.014 0.0174
4 0.999 0.374 125 0.012 0.0174
5 0.986 0.266 125 0.013 0.0174
6 0.959 0.177 125 0.014 0.0174
7 1.000 0.435 150 0.012 0.0174
8 0.999 0.310 150 0.013 0.0174
9 0.991 0.204 150 0.014 0.0174
10 1.000 0.493 175 0.012 0.0174
11 1.000 0.353 175 0.013 0.0174
12 0.999 0.230 175 0.014 0.0174
13 1.000 0.546 200 0.012 0.0174
14 1.000 0.394 200 0.013 0.0174
15 0.999 0.257 200 0.014 0.0174

The results indicate small differences between the power of a two-sided t-test with equal and
unequal standard deviations, while the power from power_Beta changes drastically without the
equal precision assumption. Unlike normally distributed random variables, the beta distribution is
more sensitive to the assumption of equal precision parameters. Figure 1 displays the comparison
of probability density functions for beta distributed random variables with and without the equal
precision assumption and the comparison for the analogous normally distributed variables with and
without equal standard deviations.

Summary

This example demonstrates the use of power_Beta and power_Normal, each with equal and unequal
precision parameters, to perform power analyses and sample size calculations. Since a simulation
method is used within the function power_Beta, the computational time is dependent upon the number
of trials in the simulation. It is suggested that a starting value be used, such as 100, to determine
an initial range for the other parameters (e.g., range of mu2). Once an appropriate range of values
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Figure 1: Comparison of equal and unequal precision or standard deviation parameters (mu2 is
assumed to be 0.0120).

is determined, the number of trials should be increased (e.g., trials=1000) to output more precise
power and sample size estimates.

Summary and Discussion

Multiple packages are available in R to perform power analyses, including pwr, MESS, WebPower,
and the base R stats package. However, these packages do not provide a comprehensive power
analysis toolkit capable of calculating power or sample sizes for the test of two-sample means or ratios
when the outcomes have a beta, gamma, or Poisson distribution.

The PASSED package extends the current power analysis functions available in R. Seven functions
are provided for corresponding distributions, applying either theoretical formulas or simulation
algorithms. All functions have the ability to obtain the statistical power or estimate minimum sample
sizes. In particular, the formula-based approaches also support calculations for other parameters
such as means and proportions. As for the simulation-based methods, users are able to customize
each analysis with options to set the number of trials in the simulation and specify the assumptions
for the tests. An example of how to implement and customize the functions is provided in Section
Application of PASSED. The PASSED package provides a simple, one-package solution for sample
size and power calculations for a wide variety of common and specialty distributions encountered in
clinical research.

Computational Details

The results in this paper were obtained using R 4.0.2 and betareg 3.0.0. R itself and all packages used
are available from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/.
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Appendix

Derivation of Power Calculation Formulae for Poisson Distribution

Let xij be the number of events during the necessary study time ti from the jth subject in the ith
treatment group, j = 1, ..., ni, i = 1, 2. It is assumed that xij are Poisson random variables with rate λi
such that the probability function of xij is

P
(

xij

)
=

tiλietiλi

xij!
,

where i = 1, 2. Then, the total number of events in each group, denoted as X1 and X2, also follows a
Poisson distribution:

Xi ∼ Poisson(λitini).

For the hypothesis tests:

H0 : λ2/λ1 = R vs. Ha : λ2/λ1 = R′ > R(one − sided)

and
H0 : λ2/λ1 = R vs. Ha : λ2/λ1 = R′ ̸= R(two − sided),

where R denotes the pre-specified ratio of two Poisson rates. Gu et al. (2008) derives a test statistic W5,
which is asymptotically distributed as a standard normal under the null hypothesis above,

W5 =
2(
√

X2 + 3/8 −
√

Q(X1 + 3/8))√
1 + Q

,

where Q = R/d and d = t1/t2. Then, the critical region of the one-sided test is

W5 =
2(
√

X2 + 3/8 −
√

Q(X1 + 3/8))√
1 + Q

≥ z1−α. (4)

To calculate the power under Ha : λ2/λ1 = R′ > R at significance level α, let c = R/R′ and multiply
both sides of Equation 4 by

√
1 + Q, which is greater than 0 as that

2(
√

X2 + 3/8 −
√

Q(X1 + 3/8)) ≥ z1−α

√
1 + Q. (5)

Add −2(
√

Q/c −
√

Q)
√

X1 + 3/8 to both sides of Equation 5 for the inequality,

2(
√

X2 + 3/8 −
√

Q/c(X1 + 3/8)) ≥ z1−α

√
1 + Q − 2(

√
Q/c −

√
Q)
√

X1 + 3/8. (6)

Then, divide both sides of Equation 6 by
√

1 + Q/c, greater than 0. It follows that

2(
√

X2 + 3/8 −
√

Q/c(X1 + 3/8))√
1 + Q/c

≥ z1−α
√

1 + Q − 2(
√

Q/c −
√

Q)
√

X1 + 3/8√
1 + Q/c

. (7)

Under the alternative hypothesis, the left-hand side of Equation 7 is asymptotically normal distributed
(Gu et al., 2008). Accordingly, the type II error, β, can be derived as:

β = P(H0|Ha)

= P(X <
z1−α

√
1 + Q − 2(

√
Q/c −

√
Q)

√
X1 + 3/8√

1 + Q/c
|Ha)

= Φ(
z1−α

√
1 + Q − 2(

√
Q/c −

√
Q)

√
X1 + 3/8√

1 + Q/c
)
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Incorporating Q = R/d, c = R/R′ and X1 = λ1t1n1, and collecting items

β = Φ(
z1−α

√
1 + R/d − 2(

√
(R/d)/(R/R′)−

√
R/d)

√
λ1t1n1 + 3/8√

1 + (R/d)/(R/R′)
)

= Φ(
z1−α

√
R+d

d − 2(
√

R′

d −
√

R
d )

√
λ1t1n1 + 3/8√

R′+d
d

)

= Φ(
z1−α

√
R+d

R′ − 2(1 −
√

R
R′ )

√
λ1t1n1 + 3/8√

R′+d
R′

)

= Φ(
z1−αC − A

√
B

D
),

where A = 2(1 −
√

R
R′ ),

B = λ1t1n1 + 3/8,

C =
√

R+d
R′ ,

D =
√

R′+d
R′

So, power can be expressed as

Power(W5) = 1 − Φ(
z1−αC − A

√
B

D
)

= Φ(
A
√

B − z1−αC
D

).

(8)

Moreover, using zpower = Φ−1(Power), Equation 8 can be expressed as:

zpower =
A
√

B − z1−αC
D

. (9)

Solving Equation 9 for B,

B = (
zpowerD − z1−αC

A
)2. (10)

Since B = λ1t1n1 + 3/8, the sample size calculation formula of one-sided test can be determined by
solving Equation 10 for n1

n1 =
(

z1−αC+zpower D
A )2 − 3

8
λ1t1

(one − sided)

and the two-sided test can be derived similarly as

n1 =
(

z1− α
2

C+zpower D
A )2 − 3

8
λ1t1

(two − sided).
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