
CONTRIBUTED RESEARCH ARTICLES 460

SIQR: An R Package for Single-index
Quantile Regression
by Tianhai Zu and Yan Yu

Abstract We develop an R package SIQR that implements the single-index quantile regression (SIQR)
models via an efficient iterative local linear approach in Wu et al. (2010). Single-index quantile
regression models are important tools in semiparametric regression to provide a comprehensive
view of the conditional distributions of a response variable. It is especially useful when the data is
heterogeneous or heavy-tailed. The package provides functions that allow users to fit SIQR models,
predict, provide standard errors of the single-index coefficients via bootstrap, and visualize the
estimated univariate function. We apply the R package SIQR to a well-known Boston Housing data.

Introduction

Single-index quantile regression (Wu et al., 2010) generalizes the seminal work of linear quantile
regression of Koenker and Bassett (1978) by projecting the d-dimensional covariate x to a univariate
index xβ and allowing a flexible univariate function g(xβ). Quantile regression is often of great interest,
especially when heterogeneity is present. Applications lie in a variety of fields, such as growth curves
and reference charts in medicine; survival analysis when a given covariate may have a different effect
on individuals with different levels of risks; value at risk calculation and wage and income studies in
financial economics; high peak electricity demand in terms of weather characteristics in utility and
energy; modeling rainfall, river flow, and air pollution in environmental modeling (see a survey inYu
et al. 2003).

Single-index quantile regression (SIQR) is a flexible semiparametric quantile regression model
for analyzing heterogeneous data. The SIQR model has some appealing features: (i) It can provide
a comprehensive view of the conditional distribution of a response variable given d-dimensional
covariates by examining the full spectrum of conditional quantiles. This is especially important for
complex heterogeneous data. (ii) The single-index structure is flexible to accommodate nonlinearity
while avoiding the curse of dimensionality. It can also implicitly model some interactions among the
covariates. Some interesting interpretations of the single-index parameter may be preserved. (iii) The
quantile regression approach is robust to heavy-tailed distributions.

We present a package SIQR in R that implements the iterative local linear approach to the single-
index quantile regression in Wu et al. (2010). The unknown univariate function is estimated by
local linear estimation. The key algorithm can be decomposed into two efficient estimation steps on
augmented data through local linear approximation and some equivalent formulation of the expected
loss. Essentially, it iterates between two linear quantile regressions utilizing the state-of-the-art R
package quantreg.

We apply our R package, SIQR, to the well-known Boston Housing data (1978) that is available in
the R default library. The data has a total of 506 observations, and the response variable of interest is
the median price of owner-occupied homes on the census tracts in suburban Boston from the 1970
census. The response variable and some covariates are left-skewed. Clearly, quantile regression is a
natural tool to analyze the data (e.g., Chaudhuri et al. 1997; Yu and Lu 2004; Wu et al. 2010; Kong and
Xia 2012). We organize the rest of the paper as follows. In the next section, we review the SIQR models.
Next, we discuss the estimation algorithms implemented in this package. The section following
describes the main features of the functions provided. Section “Real Data Analysis and Simulation”
illustrates the use of SIQR in R for Boston housing data and a simulation study. The last section
concludes the paper.

An overview for single-index quantile regression

Data structure and model settings

We develop an R package for the single-index quantile regression for semiparametric estimation with
d-dimensional covariates. Let Y be the response variable and X be the covariate vector. Suppose there
are n observations

{
(xi, yi)

}n
i=1 of (X = x, Y = y). Given τ ∈ (0, 1) and covariates xi, the single-index

quantile model for the τ-th conditional quantile of the i-th observation is

qτ(Y = yi|X = xi) = gτ(xiβτ), (1)
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where yi is a real valued response, covariate xi is a d-dimensional row vector, the single-index
parameter βτ is a column vector in Rd, and the univariate function gτ : R → R is subject to different τ.
For identifiability, the single index parameter ∥βτ∥ = 1 and the first non-zero element of βτ is positive
(Yu and Ruppert, 2002). The projection xβ is often termed as the "single index". When gτ is linear,
single-index quantile regression model (1) reduces to the seminal work of linear quantile regression of
Koenker and Bassett (1978).

Review of local linear estimation for single-index quantile regression

We implement the local linear estimation for single-index quantile regression (1) (Wu et al., 2010).
For notational convenience, we omit the subscript τ in gτ and βτ . The true parameter vector β is the
minimizer of

E [ρτ (y − g(xβ))] , (2)

where ρτ(u) = |u|+ (2τ − 1)u is the loss function, often termed as the “check" function in quantile
regression. g(·) is the unknown univariate function. Constraint ∥β∥ = 1, β1 > 0 is imposed for
identifiability. The above expected loss can be equivalently written as

E {E [ρτ (y − g(xβ)) |xβ]} , (3)

where E [ρτ (y − g(xβ)) |xβ] is the conditional expected loss and g(·) is the τth conditional quantile
given the single-index parameter β.

We adopt a local linear approximation. In particular, for xiβ "close” to u, we can approximate the
τth conditional quantile at xiβ linearly via

g(xiβ) ≈ g(u) + g′(u)(xiβ − u) = a + b(xiβ − u),

where we define a≡g(u) and b≡g′(u).
Now, we can minimize the sample analogue of (2) below as in Yu and Jones (1998) with respect to

(a, b) with local linear estimation

n

∑
i=1

ρτ (yi − a − b(xiβ − u))K
(

xiβ − u
h

)
, (4)

where K(·) is the kernel function and h is the bandwidth.

We further average (4) over u and obtain the sample analog of (3). The objective function below is
used to estimate our single-index quantile regression model (1),

n

∑
j=1

n

∑
i=1

ρτ

(
yi − aj − bj(xiβ − xjβ)

)
ωij, (5)

where

ωij =
Kh(xiβ − xjβ)

∑n
k=1 Kh(xkβ − xjβ)

(6)

and Kh(·) = K(·/h)/h. We implement minimizing (5) iteratively with a detailed algorithm described
next.

Bandwidth is a critical smoothing parameter that tunes the smoothness of the fitted function in
local estimation. We implement the choice of the optimal bandwidth hτ as advocated in Wu et al.
(2010) through a computationally-expedient rule-of-thumb:

hτ = hm

{
τ(1 − τ)/ϕ

(
Φ−1(τ)

)2
}1/5

, (7)

where ϕ(·) is the probability density function and Φ(·) is the cumulative distribution function of

the standard normal distribution. Here, hm =
{

[
∫

K2(v)dv][var(y|xβ=u)]

n[
∫

v2K(v)dv]2[ d2

du2 E(y|xβ=u)]2[ fU0 (u)]

}1/5
is the optimal

bandwidth in mean regression, which is easily obtainable from many existing packages (Ruppert et al.,
1995).

Algorithm

We present the main algorithm for fitting the single-index quantile regression (SIQR) with local linear
estimation in detail as following:
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Input: Quantile level τ ∈ (0, 1), d-dimensional covariate vector X = x, and a response vector
Y = y.

Output: The estimated quantile single-index parameter β̂τ and fitted conditional quantile
q̂τ(Y = y|X = x). The univariate function estimate ĝτ(·).

1 Obtain an initial estimate β̂
(0)

of the quantile single-index parameter β from a linear quantile
regression model (default) or a user-provided initial list. Standardize the initial estimate such

that ||β̂(0)|| = 1 and β̂
(0)
1 > 0.

2 Given β̂, obtain {âj, b̂j}n
j=1 by solving a series of the following

min
(aj ,bj)

n

∑
i=1

ρτ

(
yi − aj − bj(xi − xj)β̂

)
ωij, (8)

where the weights ωij is defined in (6). The bandwidth h is chosen optimally following a
rule-of-the-thumb criterion in (7).

3 Given {âj, b̂j}n
j=1, obtain β̂ by solving

min
β

n

∑
j=1

n

∑
i=1

ρτ

(
yi − âj − b̂j(xi − xj)β

)
ωij, (9)

with ωij evaluated at β and h from step 2.
4 Repeat Steps 2 and 3 until convergence.
5 Finally, we estimate g(·) at any u by ĝ(·; h, β̂) = â, where

(â, b̂) = arg min
(a,b)

n

∑
i=1

ρτ

(
yi − a − b(xi β̂ − u)

)
Kh(xi β̂ − u).

Obtain the final fitted conditional quantile q̂τ(Y = y|X = x) from model (1).

The above algorithm effectively decomposes (5) into two steps that can be achieved by two
standard linear quantile regression procedures in Steps 2 and 3. In Step 3, we further note that (9) can
be written as

β̂ = arg min
β

n

∑
j=1

n

∑
i=1

ρτ

(
yi − âj − b̂j(xi − xj)β

)
ωij

= arg min
β

n

∑
j=1

n

∑
i=1

ρτ

(
y∗ij − x∗ijβ

)
ωij,

where y∗ij = yi − âj, x∗ij = b̂j(xi − xj), and ωij evaluated at the previous step, i, j = 1, · · · , n. Given

âj’s and b̂j’s, we can estimate β through usual linear quantile regression without intercept (regression-
through-origin) on n2 "observations" {y∗ij, x∗ij}

n
i,j=1 with known weights {ωij}n

i,j=1 evaluated at the
estimate of β from the previous iteration.

We can see that (9) is an alternative to (8). Adopting (9) yields some advantages: (i) It uses all the
data and is more efficient in estimation; (ii) The double sum in (9) effectively increases the "augmented"
sample size to n2, similar to the minimum average variance estimation (MAVE) in the mean regression
(Xia and Härdle, 2006).

The SIQR package

The R package SIQR consists of one core estimation function siqr and some supporting functions such
as visualization tool plot.siqr and summary function summary.siqr. The R package SIQR depends
on the R packages stats, quantreg, KernSmooth.

Main fitting function

The main estimation function siqr implements the iterative local linear approach to the single-index
quantile regression in Wu et al. (2010).

The usage and input arguments of the main fitting function siqr are summarized as follows:

siqr(y, X, tau=0.5, h=NULL, beta.initial=NULL, se.method = NULL, maxiter=30, tol=1e-8)
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This function takes two required arguments: the response variable y in vector format, the covariate
matrix X. Please note that all the input covariates are required to be numeric variables.

This function also takes several optional arguments for finer controls. The optional argument tau
is the quantile index, which specifies the left-tail probability. The default value of tau is 0.5, which
refers to a single-index median regression. The optional argument h is the bandwidth in local linear
quantile regression. Users can either provide a bandwidth or let the algorithm decide the optimal
bandwidth as advocated in Wu et al. (2010) by setting this argument to NULL as default. The optional
argument beta.initial is a numeric vector of the same length as the dimensionality of covariates.
The users can use this argument to pass in any appropriate user-defined initial single-index coefficients
based on prior information or domain knowledge. The default value is NULL, which instructs the
function to estimate the initial single-index coefficients by linear quantile regression. The optional
argument se.method is a character variable that specifies the method to obtain the standard error of
estimated single-index coefficients. The default value is NULL to skip the calculation of standard error
while the bootstrap-based method is available with "bootstrap". The optional argument maxiter and
tol are control parameters that specify the criteria to terminate the iteration process. Although the
algorithm normally converges quickly, the default maxiter and tol are set to 30 and 1e-8, respectively.

Other functions

We also provide several supporting functions:

summary.siqr(siqr.object)
print.summary.siqr(siqr.object)

The functions summary.siqr and print.summary.siqr provide detailed information related to the
fitted model and summarize the results as illustrated in the next section. These two functions can be
called directly by applying functions print and summary to the siqr.object.

plot.siqr(siqr.object, data.points = TRUE, bootstrap.interval=FALSE)

This function plots the fitted quantiles against the single-index term from an SIQR-fitted model object.
By default, this function will also plot the observed data points in addition to the fitted quantiles to
visualize the fitness of the model. One can remove the data points by setting the optional argument
data.points to FALSE. Pointwise confidence interval will be added to the plot if the optional argument
bootstrap.interval is set to TRUE.

simulation_data <- generate.data(n, true.theta=NULL, sigma=0.1,
setting="setting1", ncopy=1)

To help perform simulation studies, the function generate.data generates a size n data from two
different settings: (i) a sine-bump model; and (ii) a location-scale model as in Wu et al. (2010). Users
can define the single-index coefficients β via the argument true.beta and the noise level via sigma. If
no true.beta was provided, the function will use (1, 1, 1)⊺/

√
3 for setting 1 and (1, 2)⊺/

√
5 for setting

2 as the default. The last optional argument ncopy generates multiple copies of data for Monte Carlo
simulations.

Real Data and Simulations

Boston Housing data

We consider the Boston housing data to demonstrate the real data application of the proposed R
package SIQR. This dataset contains the median value of houses (in $1000’s), medv, in 506 tracts in
Boston and 13 other socio-demographic related variables. This data has been investigated by many
studies. Heterogeneity and some non-linear dependence of medv on predictor variables have been
found by previous researchers. The dataset is maintained at the StatLib library of Carnegie Mellon
University and can be found at the R built-in package MASS.

We focus on the following four covariates: RM, the average number of rooms per dwelling; TAX,
the full-value property tax (in $) per $10,000; PTRATIO, the pupil-teacher ratio by town; and LSTAT,
percentage of the lower status of the population as in Opsomer and Ruppert (1998), Yu and Lu (2004),
and Wu et al. (2010). Following previous studies, we take logarithmic transformations on TAX and
LSTAT and center the dependent variable medv around zero.

We use the following codes to load data from MASS and pre-process as discussed above. We fit
a single-index quantile regression with τ = 0.25, 0.50, 0.75 to the data and report fitted single-index
coefficients for each variable.
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library(SIQR)
#load data from MASS
library(MASS)
medv<- Boston$medv
RM <- Boston$rm
logTAX <- log(Boston$tax)
PTRATIO <- Boston$ptratio
logLSTAT <- log(Boston$lstat)

X <- cbind(RM,logTAX,PTRATIO,logLSTAT)
y0 <- medv - mean(medv)
beta0 <- NULL
tau.vec <- c(0.25,0.50,0.75)
est.coefficient <- matrix(NA, nrow = length(tau.vec), ncol = 5)
est.coefficient[,1] <- tau.vec
for (i in 1:length(tau.vec)){
est <- siqr(y0,X,beta.initial = beta0, tau=tau.vec[i],maxiter = 30,tol = 1e-8)
est.coefficient[i,2:5] <- est$beta
}
colnames(est.coefficient) <- c("quantile tau",colnames(X))
est.coefficient

#> quantile tau RM logTAX PTRATIO logLSTAT
#> [1,] 0.25 0.3358285 -0.5243025 -0.06856117 -0.7795033
#> [2,] 0.50 0.3129182 -0.4294159 -0.06640472 -0.8445558
#> [3,] 0.75 0.2385613 -0.1933015 -0.07860687 -0.9484429

The estimated 0.25, 0.50, and 0.75 quantiles and their 95% pointwise confidence bounds are plotted
with the following codes and outputs.

est.tau25 <- siqr(y0,X,beta.initial = NULL, tau=0.25)
plot.siqr(est.tau25,bootstrap.interval = TRUE)
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Figure 1: The R output of plot.siqr with estimated 0.25 quantiles and the 95% pointwise confidence
bounds.

est.tau50 <- siqr(y0,X,beta.initial = NULL, tau=0.50)
plot.siqr(est.tau05,bootstrap.interval = TRUE)

est.tau75 <- siqr(y0,X,beta.initial = NULL, tau=0.75)
plot.siqr(est.tau75,bootstrap.interval = TRUE)

As the estimated single-index function curves are almost monotonically increasing across different
quantiles, variables that contribute positively to the single index affect the response variable (medv)
positively. Based on the estimated coefficients and above plots, we found that the number of rooms
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Figure 2: The R output of plot.siqr with estimated 0.50 quantiles and the 95% pointwise confidence
bounds.
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Figure 3: The R output of plot.siqr with estimated 0.75 quantiles and the 95% pointwise confidence
bounds.

per house (rm) positively affects different quantiles. This matches the intuition that people value large
spaces and multi-functional rooms. The property tax rate ln(tax) has a negative impact on housing
prices across different quantiles. However, the influence of the tax rate is not significant at higher
quantile τ = 0.75. That suggests the tax rate may be less concerned for higher-income households,
possibly due to tax deduction towards their income tax. Both the pupil-teacher ratio (ptratio) and the
percentage of the lower (educational) status of the population ln(lstat) show negative influences on
housing values, especially for the higher quantiles. It may suggest that potential buyers prefer areas
featuring solid educational resources for their children and neighbors with higher education degrees
and that preference grows more vital for more expensive houses.

Simulation

We consider two simulation settings. In the first simulation example, we use a sine-bump model with
homoscedastic errors:

y = 5 sin
(

π (xβ − A)

C − A

)
+ 0.1Z, (10)

where A =
√

3
2 − 1.645√

12
, C =

√
3

2 + 1.645√
12

, x is an n × 3 design matrix that draws from an independent
uniform distribution with min of 0 and max of 1, and the residual Z follows a standard normal
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distribution. The true single-index parameter β = (1, 1, 1)⊺/
√

3.

Estimate β̂1 β̂2 β̂3
mean 0.5782 0.5727 0.5725

τ = 0.25 s.e. 0.0131 0.0281 0.0293
bias 0.0009 -0.0046 -0.0048
mean 0.5787 0.5755 0.5774

τ = 0.50 s.e. 0.0115 0.0105 0.0111
bias 0.0014 -0.0018 0.0003
mean 0.5803 0.5756 0.5757

τ = 0.75 s.e. 0.0119 0.0110 0.0118
bias 0.0029 -0.0017 -0.0016

Table 1: Summary of parameter estimates for sine-bump simulation example 1 of sample size n = 400.
True β = (1, 1, 1)⊺/

√
3. The sample mean, standard error (s.e.), and bias of the parameter estimates of

single-index coefficients from 200 replications.

The single-index coefficients are estimated via a series of quantile regressions with τ = 0.25, 0.50, 0.75.
Table 1 reports the mean, standard error (s.e.), and bias for each parameter estimate with sample size
n = 400 over M = 200 replications on the simulation example 1. One can see that the algorithm for
our R package SIQR is effective as the estimates are close to the true values.

For demonstration purposes, we show codes to generate data from (10) and fit the SIQR model
using τ = 0.50 with 200 replications as follows:

n <- 400
beta0 <- c(1, 1, 1)/sqrt(3)
n.sim <- 200
tau <- 0.50
data <- generate.data(n, true.theta=beta0, setting = "setting1",ncopy = n.sim)
sim.results.50 <- foreach(m = 1:n.sim,.combine = "rbind") %do% {
X <- data$X
Y <- data$Y[[m]]
est <- siqr(Y, X, beta.initial = c(2,1,0), tau=0.50,maxiter = 30,tol = 1e-8)
return(est$beta)
}

Note that this process has been repeated for the cases with τ = 0.25, 0.75. We obtain a box plot of
estimated single-index coefficients for τ = 0.25, 0.50, 0.75, respectively, by applying the following code
snippet.

boxplot(data.frame((sim.results.25)), outline=T,notch=T,range=1,
main = "Boxplots of Coefficient Estimates, tau = 0.25",horizontal = F)

boxplot(data.frame((sim.results.50)), outline=T,notch=T,range=1,
main = "Boxplots of Coefficient , tau = 0.50",horizontal = F)

boxplot(data.frame((sim.results.75)), outline=T,notch=T,range=1,
main = "Boxplots of Coefficient Estimates, tau = 0.75",horizontal = F)

Next, we consider a location-scale model as simulation example 2, where both the location and
the scale depend on a common index u = xβ. The quantiles are “almost-linear-in-index" as in Yu and
Jones (1998) when the single index u is close to zero:

y = 5 cos(xβ) + exp(−(xβ)2) + E, (11)

where x is an n × 2 design matrix that draws from an independent normal distribution with a standard
deviation of 0.25, and the residual E follows an exponential distribution with a mean 2. The single-
index parameter β = (1, 2)⊺/

√
5.

The simulated data are generated with the following codes. The sample size n = 400 with 100
replications. We only present the case when τ = 0.50 for demonstration purposes.

n <- 400
beta0 <- c(1, 2)/sqrt(5)
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Figure 4: The box plot of estimated single-index coefficients for τ = 0.25 from example 1.
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Figure 5: The box plot of estimated single-index coefficients for τ = 0.50 from example 1.
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Figure 6: The box plot of estimated single-index coefficients for τ = 0.75 from example 1.
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n.sim <- 100
tau <- 0.5
data <- generate.data(n, true.theta=beta0, setting = "setting3",ncopy = n.sim)
sim.results <- foreach(m = 1:n.sim,.combine = "rbind") %do% {
X <- data$X
Y <- data$Y[[m]]
est <- siqr(Y, X, beta.initial = NULL, tau=tau,maxiter = 30,tol = 1e-8)
est$beta
}
est.mean <- c(tau,apply(sim.results,2,mean))
names(est.mean) <- c("tau","beta1.hat","beta2.hat")
est.mean

est.mean <- cbind(p_vec,apply(sim_results,c(1,2),sd))
colnames(est.mean) <- c("quantile tau","X1","X2","X3")
est.mean

#> tau beta1.hat beta2.hat
#> 0.5 0.4515909 0.8917233

The average estimated single-index coefficients shown above are close to the true single-index
parameter β = (1, 2)⊺/

√
5 ≈ (0.4472, 0.8944). On top of that, the simulation standard error is also

reported as below:

est.se <- c(tau,apply(sim.results,2,sd))
names(est.se) <- c("tau","beta1.se.hat","beta1.se.hat")
est.se

#> tau beta1.se.hat beta1.se.hat
#> 0.5 0.02682211 0.01359602

Meanwhile, the following box plots show that the estimated single-index coefficients are close to
the true parameters with small deviations.

boxplot(data.frame((sim.results)), outline=T,notch=T,range=1,
main = "Boxplots of Coefficient Estimates (100 replications)",horizontal = F)
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Figure 7: The box plot of estimated single-index coefficients for τ = 0.50 from example 2.

Similarly, we plot the estimated quantiles and their 95% pointwise confidence bounds with the
provided plot function plot.siqr. The observed data points are also plotted.

est.sim.50 <- siqr(data$Y[[1]],data$X,beta.initial = NULL, tau=0.5)
plot.siqr(est.sim.50,bootstrap.interval = TRUE)
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Figure 8: The R output of plot.siqr with estimated 0.50 quantiles and the 95% pointwise confidence
bounds from example 2.

Summary

In this paper, we present the R package SIQR for the local linear approach to single-index quantile
regression models in Wu et al. (2010). We demonstrate the package applications to a popular Boston-
housing data application and two simulation studies. It is our hope that the package will be useful to
a variety of applications, especially for complex heterogeneous data where flexible quantile regression
modeling is desirable.

Bibliography

P. Chaudhuri, K. Doksum, and A. Samarov. On average derivative quantile regression. Annals
of Statistics, 25(2):715–744, Apr. 1997. ISSN 0090-5364, 2168-8966. doi: 10.1214/aos/1031833670.
URL https://projecteuclid.org/euclid.aos/1031833670. Publisher: Institute of Mathematical
Statistics. [p460]

R. Koenker and G. Bassett. Regression Quantiles. Econometrica, 46(1):33–50, 1978. ISSN 0012-9682. doi:
10.2307/1913643. URL https://www.jstor.org/stable/1913643. Publisher: [Wiley, Econometric
Society]. [p460, 461]

E. Kong and Y. Xia. A SINGLE-INDEX QUANTILE REGRESSION MODEL AND ITS ESTIMATION.
Econometric Theory, 28(4):730–768, 2012. ISSN 0266-4666. URL http://www.jstor.org/stable/
23257656. Publisher: Cambridge University Press. [p460]

J. D. Opsomer and D. Ruppert. A Fully Automated Bandwidth Selection Method for Fitting Additive
Models. Journal of the American Statistical Association, 93(442):605–619, 1998. ISSN 0162-1459. doi:
10.2307/2670112. URL http://www.jstor.org/stable/2670112. Publisher: [American Statistical
Association, Taylor & Francis, Ltd.]. [p463]

D. Ruppert, S. J. Sheather, and M. P. Wand. An Effective Bandwidth Selector for Local Least Squares
Regression. Journal of the American Statistical Association, 90(432):1257–1270, 1995. ISSN 0162-
1459. doi: 10.2307/2291516. URL http://www.jstor.org/stable/2291516. Publisher: [American
Statistical Association, Taylor & Francis, Ltd.]. [p461]

T. Z. Wu, K. Yu, and Y. Yu. Single-index quantile regression. Journal of Multivariate Analysis, 101
(7):1607–1621, Aug. 2010. ISSN 0047-259X. doi: 10.1016/j.jmva.2010.02.003. URL http://www.
sciencedirect.com/science/article/pii/S0047259X10000333. [p460, 461, 462, 463, 469]

Y. Xia and W. Härdle. Semi-parametric estimation of partially linear single-index models. Journal of
Multivariate Analysis, 97(5):1162–1184, May 2006. ISSN 0047-259X. doi: 10.1016/j.jmva.2005.11.005.
URL http://www.sciencedirect.com/science/article/pii/S0047259X05001995. [p462]

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

https://projecteuclid.org/euclid.aos/1031833670
https://www.jstor.org/stable/1913643
http://www.jstor.org/stable/23257656
http://www.jstor.org/stable/23257656
http://www.jstor.org/stable/2670112
http://www.jstor.org/stable/2291516
http://www.sciencedirect.com/science/article/pii/S0047259X10000333
http://www.sciencedirect.com/science/article/pii/S0047259X10000333
http://www.sciencedirect.com/science/article/pii/S0047259X05001995


CONTRIBUTED RESEARCH ARTICLES 470

K. Yu and M. C. Jones. Local Linear Quantile Regression. Journal of the American Statistical Association,
93(441):228–237, 1998. ISSN 0162-1459. doi: 10.2307/2669619. URL http://www.jstor.org/stable/
2669619. Publisher: [American Statistical Association, Taylor & Francis, Ltd.]. [p461, 466]

K. Yu and Z. Lu. Local Linear Additive Quantile Regression. Scandinavian Journal of Statistics, 31(3):
333–346, 2004. ISSN 0303-6898. URL http://www.jstor.org/stable/4616834. Publisher: [Board of
the Foundation of the Scandinavian Journal of Statistics, Wiley]. [p460, 463]

K. Yu, Z. Lu, and J. Stander. Quantile Regression: Applications and Current Research Areas. Journal
of the Royal Statistical Society. Series D (The Statistician), 52(3):331–350, 2003. ISSN 0039-0526. URL
http://www.jstor.org/stable/4128208. Publisher: [Royal Statistical Society, Wiley]. [p460]

Y. Yu and D. Ruppert. Penalized Spline Estimation for Partially Linear Single-Index Models. Journal
of the American Statistical Association, 97(460):1042–1054, 2002. ISSN 0162-1459. URL https://www.
jstor.org/stable/3085829. Publisher: [American Statistical Association, Taylor & Francis, Ltd.].
[p461]

Tianhai Zu
University of Cincinnati
2906 Woodside Drive
Cincinnati, OH 45221
(ORCiD if desired)
zuti@mail.uc.edu

Yan Yu
University of Cincinnati
2906 Woodside Drive
Cincinnati, OH 45221
https://orcid.org/0000-0002-2859-3093
Yan.YU@uc.edu

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

http://www.jstor.org/stable/2669619
http://www.jstor.org/stable/2669619
http://www.jstor.org/stable/4616834
http://www.jstor.org/stable/4128208
https://www.jstor.org/stable/3085829
https://www.jstor.org/stable/3085829
mailto:zuti@mail.uc.edu
mailto:Yan.YU@uc.edu

	SIQR: An R Package for Single-index Quantile Regression
	Introduction
	An overview for single-index quantile regression
	Data structure and model settings
	Review of local linear estimation for single-index quantile regression
	Algorithm

	The SIQR package
	Main fitting function
	Other functions

	Real Data and Simulations
	Summary


