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spfilteR: An R package for Semiparametric
Spatial Filtering with Eigenvectors in
(Generalized) Linear Models
by Sebastian Juhl

Abstract Eigenvector-based Spatial filtering constitutes a highly flexible semiparametric approach
to account for spatial autocorrelation in a regression framework. It combines judiciously selected
eigenvectors from a transformed connectivity matrix to construct a synthetic spatial filter and remove
spatial patterns from model residuals. This article introduces the spfilteR package that provides
several useful and flexible tools to estimate spatially filtered linear and generalized linear models in
R. While the package features functions to identify relevant eigenvectors based on different selection
criteria in an unsupervised fashion, it also helps users to perform supervised spatial filtering and
to select eigenvectors based on alternative user-defined criteria. Besides a brief discussion of the
eigenvector-based spatial filtering approach, this article presents the main functions of the package
and illustrates their usage. Comparison to alternative implementations in other R packages highlights
the added value of the spfilteR package.

Introduction

The presence of spatial autocorrelation in regression residuals constitutes a severe problem in standard
inferential statistics as it causes common econometric methods to produce inefficient or even biased
and inconsistent parameter estimates (Darmofal, 2015; Goodchild, 2009; Franzese and Hays, 2007).
Besides parametric spatial regression techniques, which became the dominant approach to this
challenge in the social sciences, spatial filtering techniques offer an alternative approach to handle
spatially clustered data. The particular appeal of these alternative semiparametric approaches to
spatial autocorrelation arise from their flexibility and the relative ease of estimation and interpretation
(e.g., Tiefelsdorf and Griffith, 2007; Getis and Griffith, 2002). Especially the eigenvector-based spatial
filtering (ESF) approach pioneered by Griffith (2003, 2000, 1996) has proven to be useful in various
academic disciplines.

This article introduces the spfilteR package that provides a set of flexible and useful functions
to implement the ESF approach in regression models. Besides tools to detect spatial autocorrelation
in individual variables and regression residuals by means of the Moran coefficient (MC) (Cliff and
Ord, 1981, 1972), the package features easily customizable functions which allow users to perform
supervised and unsupervised spatial filtering with eigenvectors. While other R packages like spa-
tialreg (Bivand and Piras, 2015) and spmoran (Murakami, 2020) also contain implementations of the
unsupervised ESF approach, they are less flexible in the specification of eigenvector selection criteria
which constitutes the crucial step in the ESF approach. These packages also offer few functions for the
supervised selection of eigenvectors.

In contrast, the spfilteR package allows users to obtain eigenvectors from a transformed connec-
tivity matrix and to identify a suitable candidate set in order to perform supervised spatial filtering.
Alternatively, unsupervised eigenvector selection procedures for different (generalized) linear models
based on a stepwise regression procedure are implemented as well. These functions select eigenvectors
based on either i) the maximization of model fit, ii) minimization of residual autocorrelation, iii) the
statistical significance of residual autocorrelation, or iv) the statistical significance of the candidate
eigenvectors. Parameter estimates are obtained by means of ordinary least squares (OLS) for linear
models and maximum likelihood estimation (MLE) for generalized linear models (GLMs). The print,
summary, and plot methods further facilitate the interpretation and visualization of the results.

After a theoretical description of the ESF approach in a regression framework, this article presents
some stylized R code to demonstrate the implementation of the ESF approach using the functions and
the synthetic dataset accompanying the spfilteR package. It also briefly compares the unsupervised
ESF procedures contained in this package to alternative implementations in other R packages. The last
section summarizes and concludes this article.

Spatial filtering with eigenvectors

Intuitively, the ESF approach put forth by Griffith (2003, 2000, 1996) and also Tiefelsdorf and Griffith
(2007) addresses the problem of spatially autocorrelated regression residuals by partitioning the error
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term into a spatially structured and a random component (see also Griffith and Chun, 2014). Consider
a stylized linear regression model of the following form:

y = Xβ + e, (1)

where X denotes the matrix of covariates (plus a vector of ones for the intercept term) and β is the
corresponding parameter vector. If the errors e are not independent but exhibit a non-random spatial
pattern, the ESF approach removes this pattern from the disturbances and thereby “whitens” the
residuals.

To this end, synthetic proxy variables are generated that reflect the spatial pattern present in model
residuals as closely as possible. Subsequently including these synthetic variables as control variables
in the regression’s mean equation removes the problematic spatial structure from the disturbances and
allows the use of standard procedures — such as OLS or MLE — for parameter estimation. Generating
these proxy variables that act as the spatial filter requires the decomposition of the transformed and
exogenously defined connectivity matrix which represents the dependence structure among the units
of analysis.

Eigenfunction decomposition

The eigenfunction (or spectral) decomposition of a transformed connectivity matrix constitutes the
core element of the ESF approach. More formally, the decomposition yields

MV M = EΛE′, (2)

where M is a symmetric and idempotent projection matrix, and V is the exogenously specified
connectivity matrix which is symmetrized by 1

2 (W +W ′). The columns of matrix E are the n mutually
uncorrelated eigenvectors obtained from MV M, and Λ is a diagonal matrix with the corresponding
eigenvalues λ = {λ1, λ2, . . . , λn} on its main diagonal. Tiefelsdorf and Boots (1995) show that each
eigenvector in E represents a distinct map pattern permitted by the units’ spatial arrangement and is
associated with a certain level of spatial autocorrelation.1

The projection matrix is given by M = I − X(X ′X)−1X ′, where I is the identity matrix, and the
eigenvectors in E are mutually uncorrelated and orthogonal to the covariates in the design matrix X.2

If only the intercept is included in the construction of the projection matrix, this equation simplifies to
M = (I − 11′/n), where 1 is an n × 1-dimensional vector of ones. As Tiefelsdorf and Griffith (2007)
show, the underlying spatial process generating the data determines both the form of the spatial
misspecification in a naïve nonspatial regression and the appropriate specification of M.

However, since the number of eigenvectors equals the number of observations in the data, only a
subset of eigenvectors can be included in the regression equation.

Eigenvector selection and the spatial filter

Identifying and selecting relevant eigenvectors is decisive in the ESF approach and involves two steps.
In a first step, a set of candidate eigenvectors, the search set EC ⊂ E, needs to be determined based on
different criteria. If the model residuals exhibit positive levels of spatial autocorrelation, eigenvectors
depicting negative autocorrelation can be discarded since simultaneously including eigenvectors
associated with positive and negative spatial autocorrelation can cause problems (Tiefelsdorf and
Griffith, 2007). Moreover, eigenvectors portraying negligible levels of spatial autocorrelation can be
eliminated as well since they contribute little to the spatial pattern present in model residuals (Chun
and Griffith, 2014).

Griffith (2003), for example, proposes a qualitative threshold determining the candidate set by
computing MCi/MCmax for all eigenvectors i ∈ {1, 2, . . . , n}, where MCmax denotes either the largest
positive or the largest negative Moran coefficient of all eigenvectors in E. According to this approach,
eigenvectors for which MCi/MCmax ≥ 0.25 should be included in the candidate set EC. Alternatively,
Chun et al. (2016) propose a nonlinear function to calculate the ideal size of the candidate set for a
given level of spatial autocorrelation and the total number of positive eigenvectors. However, this
approach is only applicable if the residuals exhibit positive levels of spatial autocorrelation.

1The Moran coefficient for each eigenvector in E can be computed by MCi = λin/1′V1 (e.g., Griffith, 1996;
Tiefelsdorf and Boots, 1995).

2It is important to note that, just like weights in linear models, the presence of a link function corrupts the
uncorrelatedness of the eigenvectors in generalized linear models (e.g., Griffith, 2003, 104-105). To check for
problematic levels of multicollinearity among the eigenvectors, the function glmFilter() in the spfilteR package
reports the condition number (see also Griffith and Amrhein, 1997).
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Once a feasible candidate set is identified, the importance of each eigenvector in EC needs to
be established in a second step. This is typically done by a stepwise regression procedure which
sequentially evaluates each eigenvector in the candidate set. To this end, the search algorithm utilizes
an objective function in order to determine which eigenvectors to select. The selected eigenvectors
E∗ ∈ EC are the synthetic covariates constituting the spatial filter. Selection criteria commonly
employed in the literature include the maximization of model fit statistics (e.g., Tiefelsdorf and Griffith,
2007; Griffith, 2003), the statistical significance of the eigenvectors (e.g., Griffith and Chun, 2014;
Le Gallo and Páez, 2013), the minimization of residual autocorrelation (e.g., Tiefelsdorf and Griffith,
2007), or arbitrary combinations of different selection criteria (e.g., Páez, 2019). The aim is to specify
an objective function that provides a parsimonious subset of eigenvectors. Parsimony here means
that E∗ minimizes residual autocorrelation with respect to the pre-specified connectivity structure
of the filtered model by selecting the smallest number of eigenvectors possible to obtain spatially
independent errors (Tiefelsdorf and Griffith, 2007).

Once E∗ is established, it can be added to the regression model in Equation (1):

y = Xβ +

e︷ ︸︸ ︷
E∗γ︸︷︷︸
f ilter

+ ϵ︸︷︷︸
noise

. (3)

Equation (3) depicts the spatially filtered regression model and illustrates how the ESF approach
partitions the regression residuals e from Equation (1) into a spatial trend component (E∗γ) and a
random component (ϵ). The selected eigenvectors E∗, in conjunction with their parameter estimates γ,
represent the spatial pattern latent in e. This term constitutes the synthetic spatial filter that shifts the
spatial pattern from the error term to the regression’s systematic part. Thereby, it removes the spatial
structure from the error term, leaving white noise residuals ϵ.

This stylized filtering scheme directly extends to GLMs, although the link function might corrupt
the uncorrelatedness of the eigenvectors. If a substantial amount of multicollinearity among the
eigenvectors is present, each eigenvector included in the subset of E∗ should be reevaluated whenever
a new eigenvector is selected (e.g., Griffith et al., 2019).

The spfilteR package

The stable release version of the spfilteR package can be obtained from CRAN.3 Alternatively, the
latest development version is available on GitHub:

# install package from CRAN
R> install.packages("spfilteR")

# OR: install development version from GitHub
R> library(devtools)
R> devtools::install_github("sjuhl/spfilteR")

Alongside a collection of functions, the package also provides an artificial dataset and a stylized
binary connectivity matrix based on the rook scheme of adjacency that connects n = 100 units on
a regular 10 × 10 grid. I use this made-up dataset to illustrate key features of the package and its
functionality.

To this end, consider a simple linear regression model with a single regressor. Once the model is
fitted, the function MI.resid() performs a test of residual spatial autocorrelation based on the Moran
coefficient (Cliff and Ord, 1981).

# load package and data
R> library(spfilteR)
R> data("fakedata")

R> y <- fakedataset$x1
R> X <- fakedataset$x2

R> resid <- resid(lm(y~X))
R> MI.resid(resid,x=X,W=W,alternative="greater")

3This article is based on version 1.0.0 of the spfilteR package.
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I EI VarI zI pI
0.350568 -0.0119261 0.01207299 3.299085 0.0004850019 ***

The results suggest that the residuals are spatially autocorrelated, which violates the Gauss-Markov
assumption of uncorrelated errors since cov(ϵi, ϵj) ̸= 0∀i ̸= j. To address this problem, the spfilteR
package allows users to implement the ESF approach and to select relevant eigenvectors using different
supervised or unsupervised selection procedures.

Supervised spatial filtering

As shown above, the ESF approach starts with the eigenfunction decomposition of a transformed and
symmetrized connectivity matrix as depicted in Equation (2). The function getEVs() allows users to
easily obtain these eigenvectors. Moreover, users have the option to specify covariates that are used in
order to construct the projection matrix M via the input covars.

R> EVs <- getEVs(W=W,covars=NULL)
R> E <- EVs$vectors

In addition to the eigenvectors and their corresponding eigenvalues, getEVs() also reports the
value of the MC associated with each of the eigenvectors.4 The first eigenvector depicts the spatial
pattern permitted by W with the largest possible degree of positive spatial autocorrelation. The
second eigenvector displays the pattern associated with the second largest possible degree of positive
autocorrelation that is uncorrelated with the first pattern, and so on (Griffith, 1996). Consequently,
while the first eigenvectors represent global patterns of positive spatial autocorrelation, the pattern
becomes more local as the degree of spatial autocorrelation approaches zero. The last eigenvectors in
the set capture patterns of negative autocorrelation (see Figure 1).

Figure 1: Visualization of Eigenvectors and their respective Moran coefficient (MC). Positive spatial
patterns are shown in the first row while negative patterns are depicted in the second row.

Based on the MC values, users can define the candidate set EC and select relevant eigenvectors
based on any desired selection criterium. Using the threshold suggested by Griffith (2003) outlined
above, the set EC consists of 31 eigenvectors. For illustrative purposes, I skip the second step of the
eigenvector selection procedure and include all eigenvectors in the ESF model so that EC = E∗.

# identify candidate set
R> Ec <- EVs$moran/max(EVs$moran)>=.25

# obtain ESF residuals
R> esf.resid <- resid(lm(y~X+E[,Ec]))

# check for remaining spatial autocorrelation in model residuals
R> MI.resid(esf.resid,x=X,W=W,alternative="greater")

4To this end, getEVs() calls the helper function MI.ev(), which calculates the MC for each supplied eigenvector
(see also Griffith, 1996; Tiefelsdorf and Boots, 1995).
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I EI VarI zI pI
-0.1836998 -0.0119261 0.01207299 -1.563326 0.941012

The results indicate that the ESF approach successfully removed positive spatial autocorrelation
from regression residuals. Furthermore, the functions partialR2() and vif.ev() included in the
spfilteR package allow users to investigate the proportion of explained variance by each eigenvector
and identify potential problems of variance inflation. In this example, eigenvector 13 accounts for
about 23.21% of the variance in y. Moreover, none of the eigenvectors induces problematic levels of
multicollinearity as the variance inflation factor (VIF) of each eigenvectors remains close to 1.

R> round(partialR2(y=y,x=X,evecs=E[,Ec]),6)

0.000377 0.060584 0.001004 0.028734 0.020554 0.004804 0.000091 0.007010
0.030418 0.079015 0.004550 0.000012 0.232083 0.011407 0.000959 0.004993
0.001714 0.000094 0.036713 0.044113 0.006588 0.005762 0.001845 0.009648
0.002761 0.031923 0.007490 0.000075 0.004271 0.004042 0.004060

R> vif.ev(x=X,evecs=E[,Ec],na.rm=TRUE)

1.004420 1.001660 1.050409 1.049729 1.011899 1.001588 1.008393 1.000929
1.034209 1.013360 1.000230 1.000027 1.005781 1.022793 1.073397 1.015425
1.014602 1.014900 1.000798 1.002998 1.004616 1.019448 1.001397 1.015900
1.005540 1.000474 1.018344 1.008363 1.000284 1.009756 1.086114

Unsupervised spatial filtering

Besides the supervised eigenvector selection procedure, the function lmFilter() performs unsu-
pervised spatial filtering and provides parameter estimates by means of OLS. Importantly, users
can specify different selection criteria. Thereby, this function eases the implementation of the ESF
approach while simultaneously providing considerable flexibility regarding the stepwise selection
of eigenvectors. Specifically, the following input arguments allow users to customize the selection
procedure and ensure the function’s flexibility:

• objfn allows users to determine the objective function of the search algorithm determining
E∗. It supports eigenvector selection based on the adjusted R2 ('R2'), residual spatial auto-
correlation ('MI'), the significance of eigenvectors ('p'), and the significance level of residual
spatial autocorrelation ('pMI'). Alternatively, all eigenvectors may be included by spefifying
objfn='all', implying that no selection takes place.

• MX (optional) specifies the covariates used to construct the projection matrix M. As Tiefelsdorf
and Griffith (2007) show, the specification of M is directly linked to the form of the spatial
misspecification in the unfiltered naïve regression model.

• sig and bonferroni indicate the significance level if the search algorithm selects eigenvec-
tors based on their significance or the significance of residual spatial autocorrelation. If
bonferroni=TRUE and objfn='p', the significance level will be adjusted in order to account
for inflated Type-I errors. If objfn='pMI', bonferroni is automatically set to FALSE.

• positive (TRUE or FALSE) restricts the eigenvector search to those eigenvectors associated with
positive levels of spatial autocorrelation.

• ideal.setsize (TRUE or FALSE) determines the ideal size of the candidate set EC according to
the formula given in Chun et al. (2016). Note that this is only valid when filtering for positive
spatial autocorrelation.

• alpha allows users to specify a threshold for the inclusion of eigenvectors in the candidate set
based on their MC values (see Griffith, 2003).

• tol sets a tolerance threshold for remaining residual autocorrelation if objfn='MI'. Once the
level of residual autocorrelation reaches the threshold, the selection procedure terminates.

• boot.MI (optional) takes integers indicating the number of bootstrap permutations in order to
estimate the variance of the Moran test for residual autocorrelation.

These arguments allow users to customize the ESF model and obtain parameter estimates by using
a single function call and only a few lines of code. While the print method for the output — an
object of class "spfilter" — only reports the number of selected eigenvectors in E∗ and the size of
the candidate set EC, the summary method provides a host of useful additional information.

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 455

R> (esf <- lmFilter(y=y,x=X,W=W,objfn="p",sig=.1,bonferroni=TRUE
+ ,positive=TRUE,ideal.setsize=TRUE))

3 out of 22 candidate eigenvectors selected

R> summary(esf,EV=TRUE)

- Spatial Filtering with Eigenvectors (Linear Model) -

Coefficients (OLS):
Estimate SE p-value

(Intercept) 9.370881 0.71253832 4.103548e-23 ***
beta_1 0.975771 0.08536198 1.511830e-19 ***

Adjusted R-squared:
Initial Filtered

0.4673945 0.6534442

Filtered for positive spatial autocorrelation
3 out of 22 candidate eigenvectors selected
Objective Function: "p" (significance level=0.1)
Bonferroni correction: TRUE (adjusted significance level=0.00455)

Summary of selected eigenvectors:
Estimate SE p-value partialR2 VIF MI

ev_13 -9.552977 1.626696 6.290028e-08 0.23208263 1.005781 0.6302019 ***
ev_10 -5.571465 1.632824 9.483754e-04 0.07901543 1.013360 0.7303271 ***
ev_2 4.900028 1.623316 3.261057e-03 0.06058390 1.001660 1.0004147 **

Moran's I ( Residuals):
Observed Expected Variance z p-value

Initial 0.3505680 -0.01192610 0.01207299 3.299085 0.0004850019 ***
Filtered 0.1397003 -0.03703186 0.02417938 1.136562 0.1278607838

Besides the parameter estimates of the filtered model, the summary method provides information
on the fit of the filtered and the unfiltered models, the objective function, and the Moran test for
residual autocorrelation. If users specify EV=TRUE, information on the included eigenvectors in the
order of their selection will be displayed as well. Just like above, we see that the eigenvector 13, for
example, explains 23.21% of the variance, and the VIF indicates no problems of multicollinearity in the
filtered model. The adjusted R2 also shows that the ESF approach considerably improves model fit.

Figure 2: Plotting method for objects of class "spfilter" (left), spatial pattern captured by the filter
and calculated by MI.sf() (center), and spatial patterns of filtered residuals (right).

Finally, the left part of Figure 2 demonstrates the plotting method for objects of class "spfilter"
which is produced by plot(esf). It visualizes the MC of each eigenvector and highlights the ones
selected by the unsupervised selection procedure. The grey shaded area illustrates the candidate set
EC from which the eigenvectors in E∗ are selected. Figure 2 further depicts the spatial pattern of the
spatial filter (center) and the filtered residuals (right). The function MI.sf() computes the MC value
associated with the map pattern depicted by the spatial filter E∗γ in Equation (3) (e.g., Le Gallo and
Páez, 2013).
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Spatial filtering in generalized linear models

The ESF methodology directly extends to GLMs. In fact, one of the advantages of the filtering approach
as compared to parametric spatial regression models in this context is that parameter estimates can
be obtained by standard MLE and do not require the application of more sophisticated estimation
techniques (Griffith et al., 2019).

Besides the supervised filtering procedure, the function glmFilter() from the spfilteR package
allows users to perform unsupervised spatial filtering in GLMs. While its usage is purposefully
similar to the function lmFilter() introduced above, GLMs require some adjustments of the filtering
procedure. As a result, glmFilter() not only uses MLE instead of OLS to obtain parameter estimates
but also differs in some of the function’s input. Hence, in addition the input already discussed above,
glmFilter() differs to lmFilter() with respect to the following input arguments:

• objfn defines the eigenvector selection criterium. Possible criteria are the maximization of
model fit ('AIC' or 'BIC'), minimization of residual autocorrelation ('MI'), the significance
level of candidate eigenvectors ('p'), the significance of residual spatial autocorrelation ('pMI'),
or all eigenvectors in the candidate set ('all').

• model specifies the type of model to be estimated. The current version of spfilteR (version 1.0.0)
supports 'probit', 'logit', and 'poisson' as input.

• optim.method determines the method used to optimize the likelihood function.

• min.reduction takes values in the interval [0, 1). It defines the minimum level of reduction
in the AIC or BIC (if either selection criterium is chosen) relative to the current AIC/ BIC a
candidate eigenvector needs to achieve in order to be included in the spatial filter.

• resid.type allows users to specify the type of residuals which is used to calculate the MC value.
Valid arguments are 'raw', 'deviance', and the default option 'pearson'.

Implementing the ESF approach in GLMs using glmFilter() requires as few lines of code as
using the lmFilter() function in the context of linear regression models. The following example
demonstrates the ease of implementation in the context of a logit, a probit, and a Poisson regression
model:

# define DVs
R> y.bin <- fakedataset$indicator
R> y.count <- fakedataset$count

# seed (because of 'boot.MI')
set.seed(123)

# logit model
R> (esf.logit <- glmFilter(y=y.bin,x=NULL,W=W,objfn="p",model="logit",optim.method="BFGS"
+ ,sig=.05,bonferroni=FALSE,resid.type="pearson",boot.MI=100))

3 out of 31 candidate eigenvectors selected

# probit model
R> (esf.probit <- glmFilter(y=y.bin,x=NULL,W=W,objfn="BIC",model="probit"
+ ,optim.method="BFGS",min.reduction=0,resid.type="deviance"
+ ,boot.MI=100))

2 out of 31 candidate eigenvectors selected

# poisson model
R> (esf.poisson <- glmFilter(y=y.count,x=NULL,W=W,objfn="pMI",model="poisson"
+ ,optim.method="BFGS",sig=.1,resid.type="pearson"
+ ,boot.MI=100))

0 out of 31 candidate eigenvectors selected

Of course, users can also define their own eigenvector selection criteria or apply the ESF approach
to models currently not supported by the glmFilter() function. Just like for linear regression models
illustrated above, the function getEVs() performs the eigenfunction decomposition of the transformed
and symmetrized connectivity matrix, and users can implement a supervised selection procedure
using the standard glm() function.
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A brief comparison to other R packages

Of course, alternative implementations of the ESF approach outlined here exist in other R packages as
well. While these packages are highly useful for spatial analysts, the spfilteR package offers a couple
of notable extensions that improve these existing implementations.5

The spmoran package developed by Murakami (2020) contains different functions for estimating
eigenvector-based spatial additive mixed models. Although the function esf() estimates a linear
spatial filtering model, the main advantages of this package are the estimation of the random effects
ESF model (e.g., Murakami and Griffith, 2019) and the fast approximation of the eigenfunction
decomposition, which makes this package especially useful for large datasets. Moreover, users can
also use the functions meigen() and meigen_f() to obtain eigenfunctions and perform supervised
eigenvector selection.

At the same time, the eigenvector selection criteria implemented in esf() only allow for the
identification of relevant eigenvectors based on model fit statistics such as the adjusted R2, the AIC, or
the BIC. The specification of the projection matrix M also does not allow for the inclusion of covariates.
Furthermore, the spmoran package does not support the ESF approach in the context of GLMs.

Alternatively, the spatialreg package, which encompasses a great variety of different spatial
estimation techniques, not only provides the SpatialFiltering() function estimating spatially filtered
linear models. It also allows for the estimation of spatially filtered GLMs by using ME(). Yet, both of
these functions utilize an objective function that selects eigenvectors based on the overall reduction
of residual autocorrelation. While it is possible to restrict the candidate set size and to customize
the level of remaining autocorrelation at which the search terminates, users cannot select alternative
objective functions. Moreover, ME() does not allow for the inclusion of covariates in the construction
of M. Since there is no function to perform the eigenfunction decomposition shown in Equation (2),
the package offers no support for supervised spatial filtering.

Therefore, the spfilteR package provides additional flexibility – especially for the estimation of
filtered linear and generalized linear models where the ESF approach is predominantly applied. Since
the eigenvector selection procedure is the crucial step in the ESF approach, the options provided
by lmFilter() and glmFilter() allow users to tailor the ESF procedure to their specific needs. The
option to estimate the ideal size of the eigenvector candidate set EC according to Chun et al. (2016), the
specification of different residual types in GLMs, and the ability to define a threshold for the minimum
increase in model fit when an objective function is chosen accordingly are examples of features unique
to the spfilteR package.

Despite this additional flexibility, the functions that perform unsupervised eigenvector selection
are very easy to use and only require a minimum of code. Moreover, the getEVs() command and
several additional helper functions such as MI.ev(), MI.sf(), partialR2(), and vif.ev() introduced
above facilitate the estimation of spatially filtered (generalized) linear models. Consequently, while
the spmoran and the spatialreg packages cover additional model types and estimation strategies,
the flexibility provided by the spfilteR package constitutes a great advantage in the most common
applications of the ESF approach.

Summary

This article briefly covers the basics of spatial filtering with eigenvectors and introduces the spfilteR
package. Using the synthetic dataset provided by the package, it discusses the main functions and
their implementation in the context of supervised and unsupervised spatial filtering as well as its
extension to GLMs. By comparing the package to alternative implementations of the ESF approach,
this article highlights that the flexibility provided by the spfilteR package constitutes an important
improvement in settings where the ESF approach is commonly applied.
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