volesti: Volume Approximation and Sampling for Convex Polytopes in R
by Apostolos Chalkis and Vissarion Fisikopoulos

Abstract
Sampling from high dimensional distributions and volume approximation of convex bodies are fundamental operations that appear in optimization, finance, engineering, artificial intelligence and machine learning. In this paper we present volesti, an R package that provides efficient, scalable algorithms for volume estimation, uniform and Gaussian sampling from convex polytopes. volesti scales to hundreds of dimensions, handles efficiently three different types of polyhedra and provides non existing sampling routines to R. We demonstrate the power of volesti by solving several challenging problems using the R language.

Introduction
High-dimensional sampling from multivariate distributions with Markov Chain Monte Carlo (MCMC) algorithms is a fundamental problem with many applications in science and engineering (Iyengar, 1988; Somerville, 1998; Genz and Bretz, 2009; Schellenberger and Palsson, 2009; Venzke et al., 2021). In particular, multivariate integration over a convex set and volume approximation of such sets—a special case of integration—have accumulated a broad amount of effort over the last decades. Nevertheless, those problems are computationally hard for general dimension (Dyer and Frieze, 1988). MCMC algorithms have made remarkable progress solving efficiently the problems of sampling and volume estimation of convex bodies while enjoying great theoretical guarantees (Chen et al., 2018; Lee and Vempala, 2018; Mangoubi and Vishnoi, 2019). However, theoretical algorithms cannot be applied efficiently to real life computations. For example, the asymptotic analysis by Lovász and Vempala (2006) hides some large constants in the complexity and in (Lee and Vempala, 2018) the step of the random walk used for sampling is too small to be an efficient choice in practice. Therefore, practical algorithms have been designed by relaxing the theoretical guarantees and applying new algorithmic and statistical techniques to perform efficiently while on the same time meet the requirements for high accuracy results (Emiris and Fisikopoulos, 2014; Cousins and Vempala, 2016; Chalkis et al., 2019).

In this paper, we present volesti (Fisikopoulos et al., 2020), an R package containing a variety of high-dimensional MCMC methods for sampling from multivariate distributions restricted to a convex polytope and randomized algorithms for volume estimation of convex polytopes. In particular, it includes efficient implementations of three practical volume algorithms—Sequence of Balls (SoB) (Emiris and Fisikopoulos, 2014), Cooling Gaussians (CG) (Cousins and Vempala, 2016) and Cooling convex Bodies (CB) (Chalkis et al., 2019). In addition to volume estimation, volesti provides efficient implementations for Random-Directions and Coordinate-Directions Hit and Run (RDHR and CDHR) (Smith, 1984), Ball Walk (BaW) (Hastings, 1970), Billiard Walk (BiW) (Polyak and Gryazina, 2014). The first three can be used to sample from multivariate uniform or spherical Gaussian distributions (centered at any point), while BiW can be employed, by definition, only for uniform sampling. On the whole, volesti is the first R package that:
(a) performs high dimensional volume estimation,
(b) handles efficiently three different types of polyhedra in high dimensions, namely H-polytopes, V-polytopes and Z-polytopes,
(c) provides—previously absent from R—MCMC sampling algorithms for uniform and truncated Gaussian distributions, namely BaW, CDHR and BiW,
(d) solves some challenging problems in finance, engineering and applied mathematics.

On top of volesti presentation, we illustrate the usage of volesti in the study of convergence of various random walks (e.g. Figure 3) and accuracy of volume estimation methods. Regarding applications, in the last section we illustrate how one can (a) exploit volesti to detect shock events in stock markets following the results by Calès et al. (2018), (b) evaluate zonotope approximation in engineering (Kopetzki et al., 2017) and (c) approximate the number of linear extensions of a partially ordered set which is useful in various applications in artificial intelligence and machine learning.

To improve the presentation of the current paper, detailed comparisons and benchmarking of R packages—including volesti—for solving the problems of MCMC sampling, volume computation and numerical integration are presented in a separate blog post (Chalkis and Fisikopoulos, 2021).
Figure 1: Examples of three different polytope representations. From left to right: an H-polytope, a V-polytope and a Z-polytope (a sum of four segments).

Related R software and applications
Considering MCMC methods to sample from multivariate distributions they are divided in two main categories: truncated to a convex body and untruncated distributions. For the first category—which clearly is the main focus of this paper—an important case is the truncated Gaussian distribution which arises in several applications in statistics. In (Bolin and Lindgren, 2015) they sample from truncated Gaussian distributions in a novel importance sampling method to study Markov processes that exceed a certain level. Wadsworth and Tawn (2014) use sampling from a specific truncated Gaussian distribution to develop a novel method for likelihood inference, while Huser and Davison (2013) sample from the same distribution for likelihood estimation for max-stable processes. In curve prediction they exploit Gaussian sampling to compute simultaneous confidence bands to forecast a full curve from explanatory variables (Azaïs et al., 2010). Grün and Hornik (2012) study the posterior distribution for Bayesian inference on mixed regression models to represent human immunodeficiency virus ribonucleic acid levels which is a Gaussian restricted to a convex polytope. In (Albert and Chib, 1993) the probit regression model for binary outcomes have an underlying normal regression structure on latent continuous data; sampling from the posterior distribution of the parameters involves sampling from a truncated Gaussian distribution.

Another important special case is the truncated uniform distribution. In systems biology the flux space of a metabolic network is represented by a convex polytope (Haraldsdóttir et al., 2017); uniform sampling from the interior of that polytope could lead to important biological insights. In computational finance the set of all possible portfolios in a stock market is in general a convex polytope. Volume computation and uniform sampling from that set is useful for crises detection (Calès et al., 2018) and efficient portfolio allocation and analysis (Pouchkarev et al., 2004; Hallerbach et al., 2002).

Considering R packages for the truncated case, there is tmg (Pakman, 2015) implementing exact Hamiltonian Monte Carlo (HMC) with boundary reflections as well as multinomineq (Heck, 2019), lineqGPR (Lopez, 2019), restrictedMVN (Taylor and Benjamini, 2016), tvnmixnorm (Ma et al., 2020) implementing variations of the Gibbs sampler. To our knowledge, the only two R packages for uniform sampling is hitandrun (van Valkenhoef and Tervonen, 2019) and limSolve (den Meersche K. et al., 2009) which exposes the R function xsample() (den Meersche et al., 2009). For the untruncated case, packages HybridMC (Morey, 2009), rhmc (Sartório, 2018) and mcmc (Geyer and Johnson, 2020), MHadaptive (Chivers, 2012) provide implementations for HMC and Metropolis Hastings algorithms respectively. For volume computation, the only existing package, geometry (Roussel et al., 2019) computes the volume of the convex hull of a set of points and is based on the C++ library qhull (Barber et al., 1996).

Algorithms and polytopes

Convex polytopes
Convex polytopes are a special case of convex bodies with special interest in many scientific fields and applications. For example, in optimization the feasible region of a linear program is a polytope and in finance the set of portfolios is usually expressed by a polytope (i.e. the simplex). More formally, an H-polytope is defined as

\[ P := \{ x \mid Ax \leq b \} \subseteq \mathbb{R}^d \]

where \( A \in \mathbb{R}^{m \times d} \) and \( b \in \mathbb{R}^m \), and we say that \( P \) is given in H-representation. Each row \( a_i^T \in \mathbb{R}^d \) of matrix \( A \) corresponds to a normal vector that defines a halfspace \( a_i^T x \leq b_i \), \( i = [m] \). The intersection of those halfspaces defines the polytope \( P \) and the hyperplanes \( a_i^T x = b_i \), \( i = [m] \) are called facets of \( P \). A V-polytope is given by a matrix \( V \in \mathbb{R}^{d \times n} \) which contains \( n \) points column-wise, and we say that \( P \) is given in V-representation. The points of \( P \) that cannot be written as convex combinations of other points of \( P \) are called vertices. The polytope \( P \) is defined as the convex hull of those vertices, i.e. the
最小凸集，即含纳它们的最小凸集。等价地，一个 V-多面体可以被看作是矩阵 $V$ 将标准单纯形 $\Delta^{n-1}$ 的线性映射，即，

$$ P := \{ x \in \mathbb{R}^d | \exists y \in \Delta^{n-1} : x = Vy \} $$

一个 Z-多面体（或zonotope）由一个矩阵 $G \in \mathbb{R}^{d \times k}$ 给定，其中包含 $k$ 个段在列中，称之为生成器。在这种情况下，$P$ 定义为这些段的Minkowski之和，我们说它是Z-representation。我们称一个 Z-多面体的值为线段数量与维度之比。等价地，$P$ 可以表示为hypercube $[-1,1]^k$ 与矩阵 $G$ 的线性映射，即

$$ P := \{ x \in \mathbb{R}^d | \exists y \in [-1,1]^k : x = Gy \}. $$

因此，一个 Z-多面体是一个中心对称的凸体，作为一个线性映射的另一个中心对称的凸体。一个 H-多面体，一个 V-多面体和一个 Z-多面体在两个维度上的示例在图1中说明。我们推荐Ziegler（1995）的书籍。对于多面体理论的优秀引介，我们推荐Smith（1984）的书籍。

**MCMC sampling and geometric random walks**

我们在这里更正式地定义了在volesti中实现的四个几何随机行走，即，Hit and Run（两种变体，RDHR 和 CDHR），Ball walk（Baw）和 Billiard walk（BiW）。它们如图2所示。

一般而言，如果 $f : \mathbb{R}^n \rightarrow \mathbb{R}_+$ 是一个非负可积函数，则定义一个测度 $\pi_f$ 在任何可测子集 $A$ 上

$$ \pi_f(A) = \frac{\int_A f(x)dx}{\int_{\mathbb{R}^d} f(x)dx} $$

令 $\ell$ 是一个线性空间 $\mathbb{R}^d$ 上的线，并将 $\pi_\ell$ 限制为 $\ell$，

$$ \pi_{\ell,f}(P) = \frac{\int_{P+tu \in P} f(p+tu)dt}{\int_{\mathbb{R}^d} f(x)dx} $$

其中 $p$ 是线 $\ell$ 上的一个点，$u$ 是线 $\ell$ 平行的单位向量。

算法1描述了普通Hit and Run过程。当线 $\ell$ 在线段1中选择时，从所有可能的线段通过 $p$ 则当线的走是称为Random-Directions Hit and Run (Smith, 1984)。要通过点 $p \in \mathbb{R}^d$ 择取一个随机方向，我们可以从 $\mathcal{N}(0,1)$ 中采样 $d$ 个数字 $g_1, \ldots, g_d$，然后向量 $u = (g_1, \ldots, g_d)/\sqrt{\sum g_i^2}$ 是均匀分布在 $d$ 维单位球的表面上。一个特殊的情况被称为Coordinate-Directions Hit and Run (Smith, 1984) 其中我们在 $d$ 个线中均匀采样 $\ell$。
passing through $p$ and are parallel to the coordinate axes.

**Algorithm 1:** Hit and run $(P, p, f)$

**Input:** Polytope $P \subset \mathbb{R}^d$, point $p \in P$, $f : \mathbb{R}^d \rightarrow \mathbb{R}_+$

**Output:** A point $q \in P$

1. Pick a line $\ell$ through $p$.
2. return a random point on the chord $\ell \cap P$ chosen from the distribution $\pi_{\ell, f}$.

The Ball walk (Algorithm 2) needs, additionally to Hit and Run, a radius $\delta$ as input. In particular, Ball walk is a special case of Metropolis Hastings (Hastings, 1970) when the target distribution is truncated. For both Hit and Run and Ball walk $\pi_f$ is the stationary distribution of the random walk.

If $f(x) = e^{-||x-x_0||^2/2\sigma^2}$ then the target distribution is the multidimensional spherical Gaussian with variance $\sigma^2$ and its mode at $x_0$. When $f$ is the indicator function of $P$ then the target distribution is the uniform distribution.

**Algorithm 2:** Ball walk $(P, \sigma, f)$

**Input:** Polytope $P \subset \mathbb{R}^d$, point $p \in P$, radius $\delta$, $f : \mathbb{R}^d \rightarrow \mathbb{R}_+$

**Output:** A point $q \in P$

1. Pick a uniform random point $x$ from the ball of radius $\delta$ centered at $p$.
2. return $x$ with probability $\min\{1, f(x)/f(p)\}$; return $p$ with the remaining probability.

Billiard walk, is a random walk for sampling from the uniform distribution (Polyak and Gryazina, 2014). It tries to emulate the movement of a gas particle during the physical phenomena of filling uniformly a vessel. Algorithm 3 implements Billiard walk, where $(\cdot, \cdot)$ is the inner product between two vectors, $||\cdot||$ is the $l^2$ norm and $|\cdot|$ is the length of a segment.

**Algorithm 3:** Billiard walk $(P, p, \tau, R)$

**Input:** Polytope $P \subset \mathbb{R}^d$, current point of the random walk $p \in P$, length of trajectory parameter $\tau \in \mathbb{R}_+$, upper bound on the number of reflections $R \in \mathbb{N}$

**Output:** A point $q \in P$

1. Set the length of the trajectory $L \leftarrow -\tau \ln \eta$, $\eta \sim \mathcal{U}(0,1)$; Set the number of reflections $n \leftarrow 0$ and $p_0 \leftarrow p$; Pick a uniformly distributed direction on the unit sphere, $v$;
2. Update $n \leftarrow n + 1$; If $n > R$ return $p_0$;
3. Set $\ell \leftarrow \{p + tv, 0 \leq t \leq L\}$;
4. If $\partial P \cap \ell = \emptyset$ return $p + L v$;
5. Update $p \leftarrow \partial P \cap \ell$; Let $s$ be the inner normal vector of the tangent plane on $p$, s.t. $||s|| = 1$; Update $L \leftarrow L - ||P \cap \ell||, v \leftarrow v - 2(v, s)s$; goto 2;

Every random walk starts from a point in the convex body and perform a number of steps called walk length. The larger the walk length is the less correlated the final with the starting point will be. The number of steps to get an uncorrelated point, that is a point approximately drawn from $\pi_f$, is called mixing time. We call cost per step the number of operations performed to generate a point. Hence, the total cost to generate a random point is the mixing time multiplied by the cost per step.

<table>
<thead>
<tr>
<th>random walk</th>
<th>mixing time $\mathcal{O}^*$</th>
<th>cost/step $\mathcal{O}$</th>
<th>cost/step $\mathcal{O}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDHR (Lovász and Vempala, 2006)</td>
<td>$(d^3)$</td>
<td>$md$</td>
<td>$2$ LPs</td>
</tr>
<tr>
<td>CDHR (Laddha and Vempala, 2020)</td>
<td>$(d^{10})$</td>
<td>$m$</td>
<td>$2$ LPs</td>
</tr>
<tr>
<td>BaW (Lee and Vempala, 2017)</td>
<td>$(d^{2.5})$</td>
<td>$md$</td>
<td>$1$ LP</td>
</tr>
<tr>
<td>BiW (Polyak and Gryazina, 2014)</td>
<td>?</td>
<td>$(d + R)m$</td>
<td>$R$ LPs</td>
</tr>
</tbody>
</table>

*Table 1:* Overview of the random walks implemented in volesti. LP for linear program; $R$ for the number of reflections per point in BiW; $D$ for the diameter of the polytope.

Table 1 displays known complexities for mixing time and cost per step. For the mixing time of
as mentioned before, volume computation is a hard problem, so given a polytope $P$, we do not have to compute the exact value of each ratio $\tau_i$ when $P$. The keys to success of those algorithms are the Multiphase Monte Carlo (MMC) technique as RDHR (Emiris and Fisikopoulos, 2014). For V- and Z-polytopes the cost per step of BiW is comparable with that of CDHR and moreover, converges fast to the uniform distribution (Chalkis et al., 2019). The fact that all above walks are implemented in volesti enable us to empirically evaluate their mixing time using R (e.g., Figure 3).

**Volume estimation**

As mentioned before, volume computation is a hard problem, so given a polytope $P$ we have to employ randomized algorithms to approximate $\text{vol}(P)$ within some target relative error $\epsilon$ and high probability. The keys to success of those algorithms are the Multiphase Monte Carlo (MMC) technique and sampling from multivariate distributions with geometric random walks.

In particular, we define a sequence of functions $\{f_0, \ldots, f_q\}$, $f_i : \mathbb{R}^d \rightarrow \mathbb{R}$. Then $\text{vol}(P)$ is given by the following telescopic product:

$$\text{vol}(P) = \int_P dx = \int_P f_0(x) dx \int_P f_q(x) dx \int_P f_{q-1}(x) dx \cdots \frac{\int_P dx}{\int_P f_0(x) dx}$$  \hspace{1cm} (1)

Then, we need to:

- Fix the sequence such that $q$ is as small as possible.
- Select $f_i$ such that each integral ratio can be efficiently estimated.
- Estimate $\int_P f_q(x) dx$.

For a long time researchers, e.g., Lovász et al. (1997), set $f_i$ to be indicator functions of concentric balls intersecting $P$. It follows that $\int_P f_i(x) dx = \text{vol}(B_i \cap P)$ and the sequence of convex bodies $P = P_1 \supseteq \cdots \supseteq P_q$, $P_i = B_i \cap P$ forms a telescopic product of ratios of volumes, while for $\text{vol}(P_q)$ there is a closed formula. Assuming $rB_2 \subseteq P \subseteq rB_d$, then $q = O(d \log R/r)$. The trick now is that we do not have to compute the exact value of each ratio $\tau_i = \text{vol}(P_i)/\text{vol}(P_{i+1})$, but we can use sampling-rejection to estimate it within some target relative error $\epsilon_i$. If $r$ is bounded then $O(1/\epsilon^2)$ uniformly distributed points in $P_{i+1}$ suffices. Another crucial aspect is the sandwiching ratio $R/r$ of $P$ which has to be as small as possible. This was tackled by a rounding algorithm, that is bringing $P$ to nearly isotropic position (Lovász et al., 1997).

The SoB algorithm follows this paradigm and deterministically defines the sequence of $P_0$ such that $0.5 \leq \text{vol}(P_0) / \text{vol}(P_{i+1}) \leq 1$. In the CG algorithm, each $f_i$ is a spherical multidimensional Gaussian distribution and the algorithm uses an annealing schedule (Lovász and Vempala, 2006) to fix the sequence of those Gaussians. The SoB algorithm uses a similar annealing schedule but to fix a sequence of convex bodies $P_0$. As far as performance is concerned, the CB algorithm is the most efficient choice for H-polytopes in less than 200 dimensions and for V- and Z-polytopes in any dimension. For the rest of the cases the user should choose CG algorithm.

**Package**

The package volesti combines the efficiency of C++ and the popularity and usability of R. The package is using the eigen library (Guennebaud et al., 2010) for linear algebra, Ipolve library (Berkelaar et al., 2004) for solving linear programs and boost random library (Maurer and Watanabe, 2017) (part of Boost C++ libraries) for random numbers and distributions. All the code development is performed on github platform. The package is available in Comprehensive R Archive Network (CRAN) and is regularly updated with new features and bug-fixes. We employ continuous integration to test the package on various systems and deploy environments. There is a detailed documentation of all the exposed R classes and functions publicly available. We maintain a contribution tutorial to help users and researchers who want to contribute to the development or propose a bug-fix. The package is shipped under the LGPL-3 license to be open to all the scientific communities. We use Rcpp (Eddelbuettel et al., 2020b) to interface C++ with R. In particular, we create one Rcpp function for each procedure (such as sampling, volume estimation etc.) and we export it as an R function.
In the following sections we demonstrate the use of *volesti*. The R scripts in the following sections use only standard R functions, *volesti*. In a single script in Section 2.4 we use *Rfast* to compute the assets’ compound return in a stock market.

**Polytope classes and generators**

The package *volesti* comes with three classes to handle different representations of polytopes. Table 2 demonstrates the exposed R classes. The name of the classes are the names of polytope representations as defined in the previous section. Each polytope class has a few variable members that describe a specific polytope, demonstrated in Table 2. The matrices and the vectors in Table 2 correspond to those in the polytope definitions. The integer variable type implies the representation: 1 is for H-polytopes, 2 for V-polytopes, 3 for Z-polytopes. The numerical variable volume corresponds to the volume of the polytopes if it is known. *volesti* provides standard and random polytope generators. The first, produce well known polytopes such as cubes, cross polytopes, and simplices and assign the value of the exact volume to variable. The second, are random generators using various probability distributions and methods to produce a variety of different random polytopes; notably the generated polytopes has unknown volume.

<table>
<thead>
<tr>
<th>Class</th>
<th>Constructor</th>
<th>Variable members</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;Hpolytope&quot;</td>
<td>Hpolytope(A,b)</td>
<td>$A \in \mathbb{R}^{m \times d}$, $b \in \mathbb{R}^m$, integer type, numerical volume</td>
</tr>
<tr>
<td>&quot;Vpolytope&quot;</td>
<td>Vpolytope(V)</td>
<td>$V \in \mathbb{R}^{n \times d}$, integer type, numerical volume</td>
</tr>
<tr>
<td>&quot;Zonotope&quot;</td>
<td>Zonotope(G)</td>
<td>$G \in \mathbb{R}^{k \times d}$, integer type, numerical volume</td>
</tr>
</tbody>
</table>

Table 2: Overview of the polytopes’ classes in *volesti*.

**Uniform sampling from polytopes**

A core feature of *volesti* is approximate sampling from convex bodies with uniform or spherical Gaussian target distribution using the four geometric random walks defined above.

The following R script samples 1000 points from the 100-dimensional hypercube $[-1,1]^{100}$ defined as $P$ and stores them in a list.

```r
R> d = 100
R> P = gen_cube(d, 'H')
R> samples = sample_points(P, random_walk = list(  
    "walk" = "RDHR", "burn-in"=1000, "walk_length" = 5), n = 1000)
```

We use the Random Directions Hit-and-Run (RDHR) walk. Other choices are: Coordinate Directions Hit-and-Run (CDHR), Ball Walk (BaW) and Billiard Walk (BiW). Setting the parameter burn-in to 1000 means that *volesti* burns the first 1000 points RDHR generates; setting walk_length to 5 means that we keep in the list one every five generated points. The default choice for the target distribution is the uniform distribution.

To evaluate the efficiency of *volesti* sampling routines one could measure the run-time and estimate the effective sample size (Geyer, 2011) per second. To estimate the effective sample size in R, a standard choice is the package *coda* (Plummer et al., 2020). In (Chalkis and Fisikopoulos, 2021) benchmarks show that *volesti* can be up to $\sim 2500$ times faster than *hitandrun* for uniform sampling from a polytope.

Moreover, using *volesti* and R we can empirically study the mixing time of the geometric random walks implemented in *volesti*. To this end, we sample uniformly from a random rotation of the 200-dimensional hypercube $[-1,1]^{200}$. First, we generate the hypercube and use `rotate_polytope()` that returns the rotated polytope and the matrix of the linear transformation.

```r
R> d = 200
R> num_of_points = 1000
R> P = gen_cube(d, 'H')
R> retList = rotate_polytope(P, rotation = list("seed" = 5))
R> T = retList$T
R> P = retList$P
```
Figure 3: Uniform sampling from a random rotation of the hypercube \([-1,1]^{200}\). We map the sample back to \([-1,1]^{200}\) and then we project them on \(\mathbb{R}^3\) by keeping the first three coordinates. Each row corresponds to a different walk: BaW, CDHR, RDHR, BiW. Each column to a different walk length: \(\{1, 50, 100, 150, 200\}\). That is, the sub-figure in third row and forth column corresponds to RDHR with 150 walk length.

Then, we use `sample_points()` to sample from the rotated cube with various walk lengths to test the practical mixing of the random walk.

```r
R> for (i in c(1, seq(from = 50, to = 200, by = 50))){
    points1 = t(T) %*% sample_points(P, n = num_of_points, random_walk = list(
        "walk" = "BaW", "walk_length" = i, "seed" = 5))
    points2 = t(T) %*% sample_points(P, n = num_of_points, random_walk = list(
        "walk" = "CDHR", "walk_length" = i, "seed" = 5))
    points3 = t(T) %*% sample_points(P, n = num_of_points, random_walk = list(
        "walk" = "RDHR", "walk_length" = i, "seed" = 5))
    points4 = t(T) %*% sample_points(P, n = num_of_points, random_walk = list(
        "walk" = "BiW", "walk_length" = i, "seed" = 5))
}
```

Finally, we map the points back to \([-1,1]^{200}\) using the inverse transformation and then we project all the sample points on \(\mathbb{R}^3\), or equivalently on the 3D cube \([-1,1]^3\), by keeping the first three coordinates. We plot the results in Figure 3.

Note that, in general, perfect uniform sampling in the rotated polytope would result to perfect uniformly distributed points in the 3D cube \([-1,1]^3\). Hence, Figure 3 shows an advantage of BiW in mixing time for this scenario compared to the other walks—it mixes relatively well even with one step (i.e. walk length). Notice also that the mixing of both CDHR and RDHR seem similar while it is slightly better than the mixing of BaW.

**Gaussian sampling from polytopes**

In many Bayesian models the posterior distribution is a multivariate Gaussian distribution restricted to a specific domain. We illustrate the usage of `volesti` for the case of the truncation being the canonical simplex \(\Delta^n = \{x \in \mathbb{R}^n \mid x_i \geq 0, \sum x_i = 1\}\), which is of special interest. This situation typically occurs whenever the unknown parameters can be interpreted as fractions or probabilities. Thus, it appears in
many important applications (Altmann et al., 2014). In particular, we consider the following density,

\[
f(x|\mu, \Sigma) \propto \left\{ \begin{array}{ll}
\exp\left[-\frac{1}{2}(x - \mu)^T \Sigma (x - \mu)\right], & \text{if } x \in \Delta^n, \\
0, & \text{otherwise.}
\end{array} \right.
\]  

(2)

Clearly, the support of the density in Equation (2) is defined by a convex subset of a linear subspace of \(\mathbb{R}^n\). Thus, to sample from \(f(x|\mu, \Sigma)\) we apply a proper linear transformation, induced by a matrix \(N \in \mathbb{R}^{n \times (n-1)}\), that maps the support to a full dimensional polytope in \(\mathbb{R}^{n-1}\), while the covariance matrix changes accordingly to \(\Sigma' = N^T \Sigma N\). Then, we apply a Cholesky decomposition to \(\Sigma' = LL^T\) and employ the linear transformation induced by \(L\) to transform the distribution into a spherical Gaussian distribution.

In the following R script we first generate a random 100-dimensional positive definite matrix \(\Sigma\). Then, we sample from the multivariate Gaussian distribution with the covariance matrix being \(\Sigma\) and the mode being the center of the canonical simplex \(\Delta^n\). To achieve this goal we first apply all the necessary linear transformations to both the probability density function and the \(\Delta^n\) to obtain the standard Gaussian distribution, \(\mathcal{N}(0, I_n)\), restricted to a general full dimensional simplex.

```r
R> d = 100
R> S = matrix(rnorm(d^2, mean=0, sd=1), d, d) # random covariance matrix
R> S = S %*% t(S)
R> shift = rep(1/d, d)
R> A = -diag(d)
R> b = rep(0, d)
R> b = b - A %*% shift
R> Aeq = t(as.matrix(rep(1, d), 10, 1))
R> N = pracma::nullspace(Aeq)
R> A = A %*% N # transform the truncation into a full dimensional polytope
R> S = t(N) %*% S %*% N
R> A = A %*% t(chol(S)) # Cholesky decomposition to transform to the standard Gaussian
R> P = Hpolytope(A=A, b=as.numeric(b)) # new truncation

Next, we use the `sample_points()` function to sample from the standard Gaussian distribution restricted to the computed simplex and we apply the inverse transformations to obtain a sample in the initial space.

```r
R> samples = sample_points(P, n = 100000, random_walk =
                 list("walk"="CDHR", "burn-in"=1000, "starting_point" = rep(0, d-1),
                 distribution = list("density" = "gaussian", "mode" = rep(0, d-1))))
R> samples_initial_space = N %*% samples +
  kronecker(matrix(1, 1, 100000), matrix(shift, ncol = 1))
```

In the previous script we set the starting point of the walk to the mode of the Gaussian i.e. the origin. Note that the default choice in volesti for the target distribution in the case of Gaussian sampling is the standard Gaussian; that is the target distribution in the above script.

Considering comparisons, volesti is at least one order of magnitude faster than restrictedMVN and tmg for computing a sample of similar quality. For more details on comparison with other packages we refer to (Chalkis and Fisikopoulos, 2021).

Volume estimation

Let us now give an example of how we approximate the volume of a polytope in volesti. Since this is a randomized algorithm it makes sense to compute some statistics for the output values using R when approximating the volume of the 10-dimensional cube \([-1,1]^10\) generated as an H-polytope.

```r
R> P = gen_cube(10, \'H\')
R> volumes <- list()
R> for (i in seq_len(20)) {
   volumes[[i]] <- volume(P, settings = list("error" = 0.2))
}

By changing the error to 0.02 we can obtain more accurate results. The results are illustrated in Figure 4. Note that the exact volume is 1024.

To understand the need of randomized computation in high dimensions implemented in volesti we can consider the state-of-the-art volume computation in R today namely, geometry. It implements
The boxplot of the estimated volumes of the hypercube $[-1,1]^d$ by \texttt{volesti}. Left the input error parameter is $\epsilon = 0.2$ and right is $\epsilon = 0.02$.

a deterministic algorithm which run-time grows exponentially with the dimension. Because of the later property, \texttt{geometry} in general, fails to terminate for polytope in dimension $d \geq 20$. See (Chalkis and Fisikopoulos, 2021) for comparison details with \texttt{geometry}.

The following script illustrates the usage and efficiency of \texttt{volesti} to compute the volume of high-dimensional polytopes. In particular, a V-polytope, namely the cross-polytope, and an H-polytope, namely the hypercube.

```r
R> d = 80
R> P = gen_cross(80, 'V')  #generate a cross polytope in V-representation
R> time = system.time({volume_estimation = volume(P, settings = list(
                   "algorithm" = "CB", "random_walk" = "BiW", "seed" = 127)) })
R> exact_volume = 2^d/prod(1:d)
R> cat(time[1], abs(volume_estimation - exact_volume) / exact_volume)
82.874 0.074434
R> P = gen_cube(d, 'H')  #generate a hypercube polytope in H-representation
R> time = system.time({volume_estimation = volume(P, settings = list(
                   "algorithm" = "CB", "random_walk" = "CDHR", "seed" = 23)) })
R> exact_volume = 2^d
R> cat(time[1], abs(volume_estimation - exact_volume) / exact_volume)
0.657 0.067633
```

For V- and Z- polytopes the most efficient choice of random walk is BiW, while for H-polytopes is CDHR; this explains why we use different random walks in the previous script. However, notice that the run-time for the H-polytope is two order of magnitude smaller. This happens because the cost per step of a random walk in a V-polytope increases comparing to H-polytopes.

Last but not least, \texttt{volesti} provides random polytope generators. The following command estimates the volume of a randomly generated V-polytope that is the convex hull of 40 uniformly generated random points from the 20-dimensional cube.

```r
R> P = gen_rand_vpoly(20, 40, generator = list("body" = "cube", "seed" = 1729))
R> volume_estimation = volume(P)
```

The next call estimates the volume of an H-polytope randomly generated as an intersection of 180 linear halfspaces computed by random tangent hyperplanes on an 60-dimensional hypersphere.

```r
R> P = gen_rand_hpoly(60, 180, generator = list('constants' = 'sphere'))
R> volume_estimation = volume(P)
```
Figure 5: Left, a copula that corresponds to normal period (07/03/2007 – 31/05/2007), $I = 0.2316412$. Right, a copula that corresponds to a crisis period (18/12/2008 – 13/03/2009), $I = 5.610785$; x axis is for return and y axis is for volatility.

Since the exact volume of those polytopes is unknown, the accuracy of the computed estimation is unknown and statistical methods such as the effective sample size (Geyer, 2011) could be used.

Applications

We demonstrate volesi’s potential to solve challenging problems. More specifically, we provide detailed use-cases for applications in finance (crises detection and portfolio scoring), decision and control, multivariate integration and artificial intelligence.

Financial crises detection and portfolio scoring

In this subsection we present how one could employ volesi to detect financial crises or shock events in stock markets by following the method of Calès et al. (2018). For all the examples in the sequel we use a set of 52 popular exchange traded funds (ETFs) and the US central bank (FED) rate of return publicly available from https://stanford.edu/class/ee103/portfolio.html. The following script is used to load the data.

```r
R> MatReturns = read.table("https://stanford.edu/class/ee103/data/returns.txt", sep = ",")
R> MatReturns = MatReturns[-c(1, 2), ]
R> dates = as.character(MatReturns$V1)
R> MatReturns = as.matrix(MatReturns[-c(1, 54)])
R> MatReturns = matrix(as.numeric(MatReturns), nrow = dim(MatReturns)[1], ncol = dim(MatReturns)[2], byrow = FALSE)
R> nassets = dim(MatReturns)[2]
```

The method uses the copula representation to capture the dependence between portfolios’ return and volatility. A copula is an approximation of the bivariate joint distribution while both marginals follow the uniform distribution. In normal times, portfolios are characterized by slightly positive returns and a moderate volatility, in up-market times (typically bubbles) by high returns and low volatility, and during financial crises by strongly negative returns and high volatility. Thus, when a copula implies a positive dependence (see Figure 5 left) then it probably comes from a normal period. On the other side, when the dependence between portfolios’ return and volatility is negative (see Figure 5 right), the copula comes probably from a crisis period. The first case occurs when the indicator that computes the ratio between the red mass over the blue mass is smaller than 1 and the second case when that indicator is larger than 1. The function copula() can be used to compute such copulas. When two vectors of returns are given as input by the user, then the computed copula is related to the problem of momentum effect in stock markets.

The following script produces Figure 5 by setting the starting and the stopping date for the left and the right plot respectively. To compute the copula we use the compound asset return which is the rate of return for capital over a cumulative series of time (Calès et al., 2018).

```r
R> row1 = which(dates %in% "2008-12-18")
R> row2 = which(dates %in% "2009-03-13")
R> compound_asset_return = Rfast::colprods(1 + MatReturns[row1:row2, ] - 1
```

---

The R Journal Vol. XX/YY, AAAA 20ZZZ
ISSN 2073-4859
The values of the indicators from 2007-01-04 until 2010-01-04. We mark with red the crisis periods, with orange the warning periods and with blue the normal periods that volesti identifies.

```r
R> mass = copula(r1 = compound_asset_return, sigma = cov(MatReturns[row1:row2,]),
                 m = 100, n = 1e+06, seed = 5)
```

Moreover, the function `compute_indicators()` computes the copulas of all the sets of `win_len` consecutive days and returns the corresponding indicators and the states of the market during the given time period. The next script takes as input the daily returns of all the 52 assets from 01/04/2007 until 04/01/2010. When the indicator is ≥ 1 for more than 30 days we issue a warning and when it is ≥ 60 days we mark this period as a crisis (see Figure 6).

```r
R> row1 = which(dates %in% "2007-01-04")
R> row2 = which(dates %in% "2010-01-04")
R> market_analysis = compute_indicators(returns = MatReturns[row1:row2,],
                                        parameters = list("win_len" = 60, "m" = 100, "n" = 1e+06, "nwarning" = 30, 
                                                         "ncrisis" = 60, "seed" = 5))
R> I = market_analysis$indicators
R> market_states = market_analysis$market_states
```

We compare the results with the database for financial crises in European countries proposed in (Duca et al., 2017). The only listed crisis for this period is the sub-prime crisis (from December 2007 to June 2009). Notice that Figure 6 successfully points out 4 crisis events in that period (2 crisis and 2 warning periods) and detects sub-prime crisis as a W-shape crisis.

As a second financial application we will use volesti to evaluate the performance of a given portfolio. In particular, volesti computes the proportion of all possible allocations that the given portfolio outperforms. This score independently introduced in (Pouchkarev, 2005; Guegan et al., 2011; Banerjee and Hung, 2011) and is an alternative to more classical choices for the evaluation of the performance of a portfolio as the Sharpe-like ratios proposed in the 1960’s by Jensen (1967); Sharpe (1966); Treynor (2015). However the efficient computation of that score was uncertain until Cales et al. (2018) notice that Varsi’s algorithm (Varsi, 1973) can be used to perform robust computations in high dimensions. Varsi’s algorithm is implemented in volesti by the function `frustum_of_simplex()` and computes volumes in thousands of dimensions in just a few milliseconds on modest hardware. As an example, the following R script, let us know that in 03/13/2009 any portfolio with return 0.002 outperforms almost the 48% of all possible portfolios.

```r
R> R = MatReturns[which(dates %in% "2009-03-13"),]
R> R0 = 0.002
R> tim = system.time({ exact_score = frustum_of_simplex(R, R0) })
R> cat(exact_score, tim[3])

0.4773961 0.001
```
Figure 7: With blue color a 2D Z-polytope. With grey color the over-approximation of $P$ computed with PCA method.

Zonotope volumes in decision and control

Volume approximation for Z-polytopes (or zonotopes) could be very useful in several applications in decision and control (Kopetzki et al., 2017), in autonomous driving (Althoff and Dolan, 2014) or human-robot collaboration (Pereira and Althoff, 2015). The complexity of algorithms that manipulate Z-polytopes strongly depends on their order. Thus, to achieve efficient computations the approach that is common in practice is to over-approximate the Z-polytope at hand $P$, as tight as possible, with a second Z-polytope $P_{red}$ of smaller order. Then the ratio of fitness $\rho = (\text{vol}(P_{red})/\text{vol}(P))^{1/d}$ is a good measure for the quality of the approximation. However, this ratio cannot computed for dimensions typically larger than 10 (see (Kopetzki et al., 2017)). volesti is the first software to the best of our knowledge that efficiently approximates the ratio of fitness of a high dimensional Z-polytope–typically up to 100 and order 200–or a Z-polytope of very high order in lower dimensions–e.g., order 1500 in 10 dimensions.

As an illustration, the following R script, generates a random 2D zonotope, computes the over-approximation with the PCA method and estimates the ratio of fitness. The sample_points function is then used to plot the two polygons (Figure 7).

```r
R> Z = gen_rand_zonotope(2, 8, generator = list("distribution" = "uniform", 
"seed" = 1729))
R> points1 = sample_points(Z, random_walk = list("walk" = "BRDHR"), n = 10000)
R> retList = zonotope_approximation(Z = Z, fit_ratio = TRUE, 
generator = list("seed" = 5))
R> P = retList$P
R> cat(retList$fit_ratio)
1.116799539
R> points2 = sample_points(P, random_walk = list("walk" = "BRDHR", "seed" = 5), 
n = 10000)
```

High-dimensional integration

Computing the integral of a function over a convex set (i.e. convex polytope) is a hard fundamental problem with numerous applications. volesti can be used to approximate the value of such an integral by a simple MCMC integration method, which employs the $\text{vol}(P)$ and a uniform sample in $P$. In particular, let

$$I = \int_P f(x)dx. \quad (3)$$

Then sample $N$ uniformly distributed points $x_1, \ldots, x_N$ from $P$ and,

$$I \approx \text{vol}(P) \frac{1}{N} \sum_{i=1}^{N} f(x_i). \quad (4)$$
Table 3: We compute the integral of the function in Equation (5) over a random generated V-polytope.

<table>
<thead>
<tr>
<th>dimension</th>
<th>Exact value</th>
<th>Estimated value</th>
<th>Rel. error</th>
<th>Exact Time (sec)</th>
<th>Est. Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.02738404</td>
<td>0.02446581</td>
<td>0.1065667</td>
<td>0.023</td>
<td>3.983</td>
</tr>
<tr>
<td>10</td>
<td>3.224286e-06</td>
<td>3.204522e-06</td>
<td>0.00612976</td>
<td>3.562</td>
<td>11.95</td>
</tr>
<tr>
<td>15</td>
<td>4.504834e-11</td>
<td>4.867341e-11</td>
<td>0.08047068</td>
<td>471.479</td>
<td>33.256</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>1.140189e-16</td>
<td>-</td>
<td>64.058</td>
<td>-</td>
</tr>
</tbody>
</table>

The following R script generates a V-polytope for \( d = 5, 10, 15, 20 \) and estimates the integral of,

\[
f(x) = \sum_{i=1}^{n} x_i + 2x_1^2 + x_2 + x_3,
\]

over the generated V-polytope \( P \).

Considering the efficiency of \texttt{volesti}, the Table 3 reports the exact value of \( I \) computed by \texttt{SimplicialCubature} (Nolan et al., 2016). It computes multivariate integrals over simplices. Hence, to compute an integral of a function over a convex polytope \( P \) in \( \mathbb{R} \) one should compute the Delaunay triangulation with package \texttt{geometry} and then use the package \texttt{SimplicialCubature} to sum the values of all the integrals over the simplices computed by the triangulation. The pattern is similar to volume computation, for \( d = 5, 10 \) the exact computation is faster than the approximate, for \( d = 15 \) \texttt{volesti} is 13 times faster and for \( d = 20 \) the exact approach halts while \texttt{volesti} returns an estimation in less than a minute.

```r
R> num_of_points = 5000
R> f = function(x) { sum(x^2) + (2 * x[1]^2 + x[2] + x[3]) }
R> for (d in seq(from = 5, to = 20, by = 5)) {
  P = gen_rand_vpoly(d, 2 * d, generator = list("seed" = 127))
  points = sample_points(P, random_walk = list("walk" = "BiW",
          "walk_length" = 1, "seed" = 5), n = num_of_points)
  sum_f = 0
  for (i in seq_len(num_of_points)){
    sum_f = sum_f + f(points[, i])
  }
  V = volume(P, settings = list("error" = 0.05, "seed" = 5))
  I2 = (sum_f * V) / num_of_points
}
```

Combinatorics and artificial intelligence

We focus now on a different problem, namely, counting the linear extensions of a given partially ordered set (poset), which arises in various applications in artificial intelligence and machine learning such as partial order plans (Muise et al., 2016), and learning graphical models (Nimimäki et al., 2016).

Let \( G = (V, E) \) be an acyclic digraph with \( V = [n] := \{1, 2, \ldots , n\} \). One might want to consider \( G \) as a representation of the poset \( V : i > j \) if and only if there is a directed path from node \( i \) to node \( j \). A permutation \( \pi \) of \( [n] \) is called a linear extension of \( G \) (or the associated poset \( V \)) if \( \pi^{-1}(i) > \pi^{-1}(j) \) for every edge \( i \rightarrow j \in E \).

Let \( P_{LE}(G) \) be the polytope in \( \mathbb{R}^n \) defined by

\[
P_{LE}(G) = \{ x \in \mathbb{R}^n \mid 1 \geq x_i \geq 0 \text{ for all } i = 1, 2, \ldots , n \},
\]

and \( x_i \geq x_j \) for all directed edges \( i \rightarrow j \in E \). It is well known (Stanley, 1986) that the number of linear extensions of \( G \) equals the normalized volume of \( P_{LE}(G) \) i.e.,

\[
\#_{LE} G = \text{vol}(P_{LE}(G)) / n!
\]

It is also well known that counting linear extensions is \#P-complete (Brightwell and Winkler, 2016).
1991). Thus, as the number of graph nodes (i.e., the dimension of $P_{LE}(G)$) grows the problem becomes intractable for exact methods. Interestingly, volesti provides an efficient approximation method that could be added to the ones surveyed by Talvitie et al. (2018).

As a simple example consider the graph in Figure 8 that has 9 linear extensions. This number can be estimated in milliseconds using volesti as in the following script, where the estimated number of linear extensions is 9.014706.

```r
R> A = matrix(c(-1,0,1,0,0,0,
               -1,1,0,0,0,-1,
               0,1,0,0,0,-1,
               1,1,0,0,0,0,
               1,0,0,0,0,1,
               0,0,0,0,1,0,
               0,0,0,1,-1,
               0,0,0,0,-1,
               0,0,0,0,-1,
               0,0,0,0,-1),
               ncol = 5, nrow = 14, byrow = TRUE)
R> b = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
R> P_LE = Hpolytope(A = A, b = b)
R> time = system.time({ LE = volume(P_LE, settings = list("error" = 0.01,
                                  "seed" = 1927)) * factorial(5) })
```

Concluding remarks and future work

volesti is an R package that provides MCMC sampling routines for multivariate distributions restricted to convex polytopes and volume estimation. It supports three different polytope representations and thus, it is useful for several applications. We illustrate the usage of volesti with simple reproducible examples and show how volesti can be used to address challenging problems in modern applications.

Regarding future work, the expansion of volesti to support general log-concave sampling methods would be of special interest for several applications. Efficient log-concave sampling could also lead to additional sophisticated methods to estimate a multivariate integral over a convex polytope (Lovasz and Vempala, 2006).

Computational details

The results in this paper were obtained using R 3.4.4 and R 3.6.3 and volesti 1.1.2-2. The versions of the imported by volesti packages are stats 3.4.4 (R Core Team, 2020b) and methods 3.4.4 (R Core Team, 2020a); of the linked by volesti packages, Repp 1.0.3, BH 1.69.0.1 (Eddelbuettel et al., 2020a), ReppEigen 0.3.3.7.0 (Bates and Eddelbuettel, 2013), and the suggested package testthat 2.0.1 (Wickham, 2011). For comparison to volesti and for plots this paper uses, geometry 0.4.5, hitandrun 0.5.5, SimplicialCubature 1.2, Rfast 2.0.3 (Papadakis et al., 2021), ggplot2 3.1.0 (Wickham, 2016), plotly 4.8.0 (Sievert, 2020), rgl 0.100.50 (Adler et al., 2021), coda 0.19.4. All packages used are available from CRAN.

All computations were performed on a PC with Intel® Pentium(R) CPU G4400 @ 3.30GHz × 2 CPU and 16GB RAM.

---

1Example taken from https://people.inf.ethz.ch/fukudak/lect/pclect/notes2016/expoly_order.pdf
Acknowledgments

The main part of the work has been done while A.C. was supported by Google Summer of Code 2018 and 2019 grants and V.F. was his mentor. The authors acknowledge fruitful discussions with Ioannis Emiris, Ludovic Calès, Elias Tsigaridas, the R-project for statistical computing and the R community.

Bibliography


D. W. Heck. **multinomineq**: Bayesian Inference for Multinomial Models with Inequality Constraints, 2019. R package version 0.2.1. [p]


V. Sartório. rhmc: Hamiltonian Monte Carlo, 2018. R package version 1.0.0. [p]


G. van Valkenhoeof and T. Tervonen. hitandrun: “Hit and Run” and “Shake and Bake” for Sampling Uniformly from Convex Shapes, 2019. URL https://CRAN.R-project.org/package=hitandrun. R package version 0.5-5. [p]


Apostolos Chalkis
Department of Informatics & Telecommunications
National & Kapodistrian University of Athens
Greece
GeomScale org.
ORCiD: 0000-0002-4628-1907
achalkis@di.uoa.gr

Vissarion Fisikopoulos
Department of Informatics & Telecommunications
National & Kapodistrian University of Athens
Greece
GeomScale org.
ORCiD: 0000-0002-0780-666X
vritisop@di.uoa.gr