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MAINT.Data: Modelling and Analysing
Interval Data in R
by A. Pedro Duarte Silva, Paula Brito, Peter Filzmoser and José G. Dias

Abstract We present the CRAN R package MAINT.Data for the modelling and analysis of multivariate
interval data, i.e., where units are described by variables whose values are intervals of IR, representing
intrinsic variability. Parametric inference methodologies based on probabilistic models for interval
variables have been developed, where each interval is represented by its midpoint and log-range, for
which multivariate Normal and Skew-Normal distributions are assumed. The intrinsic nature of the
interval variables leads to special structures of the variance-covariance matrix, which are represented
by four different possible configurations. MAINT.Data implements the proposed methodologies
in the S4 object system, introducing a specific data class for representing interval data. It includes
functions and methods for modelling and analysing interval data, in particular maximum likelihood
estimation, statistical tests for the different configurations, (M)ANOVA and Discriminant Analysis.
For the Gaussian model, Model-based Clustering, robust estimation, outlier detection and Robust
Discriminant Analysis are also available.

Introduction

In classical statistics and multivariate data analysis, the basic units under analysis are single individuals,
described by numerical and/or categorical variables, each individual taking one single value for each
variable. For instance, a specific football player may be described by his age, height, weight, goals
marked, nationality; a specific passenger by his/her gender, age, destination, weight of luggage, etc.
Data are organised in a data-array, where each cell (i, j) contains the value of variable j for individual i.

It is however often the case that the data under analysis are not single observations, but rather
sets of values, either related to groups of units gathered on the basis of some common properties,
or observed repeatedly over time or under different specific conditions. The classical framework is
then somehow restricted to take into account variability inherent to such data. This is the case when
we are interested in describing football teams and not each specific player, or flights and not each
particular passenger. The same issue often arises in official statistics analysis. Whether it is for the
analysis’ purposes, or for confidentiality reasons, individual data – here usually called “microdata”
– is gathered into more general data arrays, related to parishes, counties, socio-economical groups,
etc. – the so-called “macro-data”. Internal variability should also be considered when the focus of the
analysis lies in concepts (i.e., all elements sharing a given set of defining properties) rather than in a
single specimen – whether it is a plant species (and not the specific plant I hold in my hand), a model
of car (and not the particular one I am driving), etc. Another pertinent case arises when we are facing
huge amounts of data, recorded in very large databases, and elements of interest are not the individual
records but some second-level entities. For instance, in a database of a hypermarket purchases, we
are surely more interested in describing the behaviour of some client (or some pre-defined class or
group of clients) rather than each purchase by itself. The analysis requires then that the purchase data
for each person (or group) be somehow aggregated to obtain the information of interest; here again
the observed variability for each client or within each group is of utmost importance, and cannot be
retained by summary statistics.

Symbolic Data Analysis (see e.g. Diday and Noirhomme-Fraiture (2008), Brito (2014)) provides a
framework where the variability observed may effectively be considered in the data representation,
and methods are developed that take that into account. To describe groups of individuals or concepts,
new variable types may now assume other forms of realisations, which allow taking intrinsic variability
into account. They may take the form of finite sets, intervals or distributions. In recent years, different
approaches have been investigated and many methods proposed for the analysis of such symbolic
data, and for the design of a symbolic counterpart of statistical multivariate data analysis methods.
Most existing methods for the analysis of such data rely however on non-parametric descriptive
approaches. Among these, interval data is by far the most investigated data type and for which more
methods have been developed.

In Brito and Duarte Silva (2012), parametric inference methodologies based on probabilistic models
for interval variables are developed where each interval is represented by its midpoint and log-range,
for which multivariate Normal and Skew-Normal (Azzalini and Dalla Valle, 1996) distributions are
assumed. The intrinsic nature of the interval variables leads to special structures of the variance-
covariance matrix, which are represented by different possible configurations.

It should be noticed that we are modelling interval-valued variables, i.e. variables whose observed
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values are intervals, and not single-valued real variables. For this reason, they should not be confused
with real-valued variables whose values are restricted to some intervals. Data structures for this latter
type are available in some R packages such as survreg (Hubeaux and Rufibach, 2015) or crch (Messner
et al., 2019), but they obviously do not apply in our context.

In this paper, we present the package MAINT.Data (Duarte Silva and Brito, 2021), which imple-
ments the proposed methodologies in R (R Core Team, 2021). MAINT.Data is built using S4 classes
and methods, introducing a specific data class for representing interval data. Functions for aggregating
microdata into interval data objects are also provided. MAINT.Data includes functions and methods
for modelling and analysing interval data, in particular maximum likelihood estimation and statistical
tests for the different considered configurations. Methods for (M)ANOVA (Brito and Duarte Silva,
2012) and Discriminant Analysis (Duarte Silva and Brito, 2015) of this data class are also provided.
For the Gaussian model, Model-based Clustering (Brito et al., 2015), robust estimation and outlier
detection (Duarte Silva et al., 2018) are implemented; corresponding methods for Robust Discriminant
Analysis are also available.

Multivariate analysis of interval-valued data has been addressed from different perspectives,
as Clustering (see, e.g., De Carvalho et al. (2006); De Carvalho and Lechevallier (2009)), Principal
Component Analysis (PCA) (see, e.g. Douzal-Chouakria et al. (2011); Le-Rademacher and Billard
(2012)), Discriminant Analysis (Duarte Silva and Brito, 2015; Ramos-Guajardo and Grzegorzewski,
2016), Regression Analysis (Dias and Brito, 2017; Lima Neto and De Carvalho, 2008, 2010, 2011),
etc. For a survey the reader may refer to Brito (2014). Those are mostly non-parametric exploratory
methodologies; recent approaches based on parametric models have also been proposed in Brito and
Duarte Silva (2012), Le-Rademacher and Billard (2011), and Lima Neto and De Carvalho (2011).

Many of the methods mentioned above for analysing interval-valued data may be found in R
packages, namely symbolicDA (Dudek et al., 2019), (general multivariate data analysis/machine
learning approaches, e.g. PCA, Discriminant Analysis, Multidimensional Scaling, Clustering), RSDA
(Rodriguez, 2021) (mainly classification and linear models), iRegression (Lima Neto et al., 2016)
(Regression) and GPCSIV (Brahim and Makosso-Kallyth, 2013) (PCA). We note that most of these
packages implement non-parametric methods, an exception being iRegression which comprehends
regression based on the parametric approach proposed in Lima Neto and De Carvalho (2011). To
the best of our knowledge, no other implementations of parametric approaches for the (multivariate)
analysis of interval-valued data are publicly available.

The remainder of the paper is organised as follows. In the next section, we introduce interval
data array and fix notation. Section Models and estimation presents the proposed models and
the estimation of corresponding parameters. Section Multivariate analysis develops multivariate
analysis methods based on those models. Section Package discusses the main structure and technical
implementation of the MAINT.Data package. In Section Applications, two applications illustrate the
use of the package and its functionalities. Finally, Section Summary concludes the paper, pointing out
perspectives for future developments.

Interval data

Let S = {s1, . . . , sn} be the set of n units under analysis. An interval variable is defined by an
application

Y : S → T such that si → Y(si) = [li, ui]

where T is the set of intervals of an underlying set O ⊆ IR. Let I be an n × p matrix containing the
values of p interval variables on S. Each si ∈ S is then represented by a p-dimensional vector of
intervals, Ii = (Ii1, . . . , Iip), i = 1, . . . , n, with Iij = [lij, uij], with uij ≥ lij, j = 1, . . . , p (see Table 1).
The models considered in MAINT.Data assume all intervals are non-degenerate, i.e., uij > lij, j =
1, . . . , p, i = 1, . . . , n.

The value of an interval variable Yj for each si ∈ S is defined by the lower and upper bounds lij
and uij of Iij = Yj(si), here assumed to be strictly different (i.e. degenerate intervals are not considered
in this framework). For modelling purposes, however, an alternative parametrisation that consists

in representing Yj(si) by the MidPoint cij =
lij + uij

2
and Log-Range r∗ij = ln(uij − lij) of Iij is often

adopted.

We note that the interval-valued data considered here do not represent uncertainty, but rather
intrinsic variability. Such interval data may occur directly, or result from the aggregation of microdata.
“Native” interval data are common e.g. in Botany and Zoology, one example being the length of the
stem of a given plant species, which of course varies from specimen to specimen. The aggregation of
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Y1 . . . Yj . . . Yp

s1 [l11, u11] . . . [l1j, u1j] . . . [l1p, u1p]
. . . . . . . . . . . .
si [li1, ui1] . . . [lij, uij] . . . [lip, uip]
. . . . . . . . . . . .
sn [ln1, un1] . . . [lnj, unj] . . . [lnp, unp]

Table 1: Matrix I of interval data

microdata from potentially large databases also provides interval data, when individual numerical
records are combined at the required level of granularity leading to a range of values representing the
underlying variability. An example of such a case is the aggregation of the values of single purchases
say, in the Bakery and Dairy section of a supermarket, for each client, during a year – we then obtain,
for each client and for each supermarket section, an interval representing the variability of purchase
values. Such aggregations are usually based on observed minima and maxima, but specific quantiles
may also be considered for this purpose.

Models and estimation

Models specification

In Brito and Duarte Silva (2012), parametric models for interval data, relying on multivariate Normal
or Skew-Normal distributions for the MidPoints and Log-Ranges of the interval-valued variables have
been proposed.

The Gaussian model consists in assuming a joint multivariate Normal distribution N(µ, Σ) for the

MidPoints C and the logs of the Ranges R∗, with µ =
[
µt

C µt
R∗

]t and Σ =

(
ΣCC ΣCR∗

ΣR∗C ΣR∗R∗

)
where

µC and µR∗ are p-dimensional column vectors of the mean values of, respectively, the MidPoints and
Log-Ranges, and ΣCC , ΣCR∗ , ΣR∗C and ΣR∗R∗ are p × p matrices with their variances and covariances.
This model has the advantage of allowing for a straightforward application of classical multivariate
methods.

Given that the MidPoint Cij and the Log-Range R∗
ij of the value of an interval variable Yj(si) are

related to the same variable, they should, therefore, be considered together and their relation taken into
account by appropriate configurations of the global covariance matrix. Intermediate parametrisations
between the non-restricted and the non-correlation setup considered for real-valued data are, therefore,
relevant for the specific case of interval data.

The most general formulation allows for non-zero correlations among all MidPoints and Log-
Ranges (configuration 1); in another setup, interval variables Yj are independent, but for each variable,
the MidPoint may be correlated with its Log-Range (configuration 2); a third situation allows for
MidPoints (respectively, Log-Ranges) of different variables to be correlated, but no correlation between
MidPoints and Log-Ranges is allowed (configuration 3); finally, all MidPoints and Log-Ranges may be
uncorrelated, both among themselves and between each other (configuration 4). Table 2 summarizes
the different considered configurations. We note that from the normality assumption it follows that,
in this particular framework, imposing non-correlations with Log-Ranges is equivalent to imposing
non-correlations with Ranges.

Configuration Characterization Σ

C1 Not restricted Not restricted

C2 Yj’s not correlated ΣCC, ΣCR∗ = ΣR∗C,
ΣR∗R∗ all diagonal

C3 C’s not-correlated with R∗’s ΣCR∗ = ΣR∗C = 0
C4 All C’s and R∗’s are not-correlated Σ diagonal

Table 2: Different cases for the variance-covariance matrix.

It should be remarked that for configurations C2, C3 and C4, Σ can be written as a block diagonal
matrix, after a possible rearrangement of rows and columns.
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In Brito and Duarte Silva (2012) another configuration has been considered, where MidPoints
(respectively, Log-Ranges) of different variables may be correlated, the MidPoint of each variable may
be correlated with its Log-Range, but no correlation between Midpoints and Log-Ranges of different
variables is allowed. However, this case seems less natural, and leads to computational difficulties,
since Σ can no longer be written as a block diagonal matrix, and, therefore, it has not been used in
subsequent studies.

The Gaussian model has many advantages, which explains its generalized use in multivariate
data analysis; in particular, it allows for a direct modelling of the covariance structure between the
variables. Nevertheless, it does present some limitations, namely the fact that it imposes a symmetrical
distribution on the MidPoints and a specific relation between mean, variance and skewness for the
Ranges. A more general model that overcomes these limitations may be obtained by considering
the family of Skew-Normal distributions (see, for instance, Azzalini (1985); Azzalini and Dalla Valle
(1996)). The Skew-Normal generalizes the Gaussian distribution by introducing an additional shape
parameter, while trying to preserve some of its mathematical properties.

The density of a q-dimensional Skew-Normal distribution is given by

f (x; α, ξ, Ω) = 2ϕq(x − ξ; Ω)Φ(αtω−1(x − ξ)), x ∈ IRq (1)

where now ξ and α are q-dimensional vectors, Ω is a symmetric q × q positive-definite matrix, ω is
a diagonal matrix formed by the square-roots of the diagonal elements of Ω, ϕq is the density of a
Nq(0, Ω) and Φ is the distribution function of a standard Gaussian variable.

Notice that the Skew-Normal model encompasses mixed models with marginal Normal random
variables, for which the corresponding shape parameter is null.

The mean vector, variance-covariance matrix, and skewness coefficients of a q-dimensional Skew-
Normal distribution are given by (see Azzalini (2005))

µ = E(X) = ξ + ωµZ (2)

Σ = Var(X) = Ω − ωµZµt
Zω (3)

γ1,ℓ =
E[(Xℓ − E(Xℓ))

3]

Var(Xℓ)3/2 =
4 − π

2

µ3
Z;ℓ

(1 − µ2
Z;ℓ)

3/2
, ℓ = 1, . . . , q (4)

where µZ is a vector of expected values for standard Skew-Normal variables, which are defined by

µZ =

√
2
π

ω−1Ωω−1α√
1 + αtω−1Ωω−1α

As an alternative to the Gaussian model, it may be considered that (C, R∗) follows jointly a 2p-
multivariate Skew-Normal distribution, for which the different alternative configurations of the Σ ma-
trix may be assumed. Given (3), a null covariance Σ(j, j′) implies that Ω(j, j′) = Ω(j, j)

1
2 µZj Ω(j′, j′)

1
2 µZj′

or, equivalently, Ω(j, j) =
2
π

1
1 + αtω−1Ωω−1α

Ωt
jω

−1ααtω−1Ωj′ where Ωj denotes the jth column

of Ω. This defines non-linear relations between the parameters in Ω and α.

Maximum likelihood estimation

As discussed in the previous subsection, Brito and Duarte Silva (2012) consider as possible models
for interval-valued data, eight possible combinations of two multivariate distributions (Gaussian or
Skew-Normal) with four covariance configurations. Given an observed data set, the choice among
these models may be based on their maximised likelihood using usual information criteria such as the
Bayesian Information Criterion (BIC) (Schwarz, 1978), the Akaike Information Criterion (AIC) (Akaike,
1974), or pairwise likelihood ratio tests. In this subsection we will present the details of the respective
maximum likelihood estimation.

Gaussian model

Let Xi =
[
Ci

t, R∗
i

t
]t

be the 2p-dimensional column vector comprising all the MidPoints and Log-

Ranges for unit si, X̄ be sample mean of the Xi’s and E =
n

∑
i=1

(Xi − X̄)(Xi − X̄)t . For all configurations,

the log-likelihood can be written as
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ln L(µ, Σ) = l = −np ln(2π)− n
2

ln det Σ − 1
2

Tr(EΣ−1)− n
2
(X̄ − µ)

t
Σ−1 (X̄ − µ) (5)

Under the unrestricted configuration C1, the maximum likelihood estimators of µ and Σ are

obviously the classical ones, µ̂ = X̄ and Σ̂ =
1
n

E. In the restricted configurations C2 to C4, the
maximum of (5) can be obtained by separately maximising with respect to each block of Σ, and the
estimators are obtained from the non-restricted estimators simply replacing the null parameters in Σ

by zeros (see Brito and Duarte Silva (2012)).

Skew-Normal model

Azzalini and Capitanio (see, e.g., Azzalini and Capitanio (1999); Azzalini (2005)) have obtained the
log-likelihood of a q-dimensional Skew-Normal distribution as

ln L(ξ, Ω, α) = l = constant − 1
2

n ln det Ω − n
2

Tr(Ω−1V) + ∑
i

ζ0(α
tω−1(Xi − ξ)) (6)

where V = n−1 ∑i(Xi − ξ)(Xi − ξ)t and ζ0(v) = ln(2Φ(v)). The maximisation of (6) is performed in
two steps by defining a new parameter, η = αtω−1, and separating the maximisation on ξ and η from
the maximisation on Ω given ξ, which has the analytical solution Ω = V .

The optimal likelihood solution for the Skew-Normal model with restricted configurations may
not be obtained by simply replacing corresponding entries in the appropriate matrices, because of the
non-linear relations between the parameters in Ω and α. For the Skew-Normal model with restricted
configurations, we rely on a centred parametrisation (Valle and Azzalini, 2008), which employs directly
the parameters µ, Σ and γ1 given by (2), (3) and (4), respectively. The log-likelihood is maximised
with respect to µ, γ1 and the free elements in Σ. This optimisation must be done numerically; see
Subsection Implementation of Section Package for the details of the implementation adopted in
package MAINT.Data.

Robust estimation and outlier detection

Multivariate datasets often include data units that deviate from the main pattern, usually called
outliers, which may strongly influence the maximum likelihood estimators, leading to the need of
alternative (robust) estimators. In the context of interval-valued data this problem has been addressed
in Duarte Silva et al. (2018).

There is an extensive literature on robust estimation of location and scatter parameters. Trimmed
likelihood estimators (Hadi and Luceño, 1997) are based on a sample subset, keeping only the h units
that contribute most to the likelihood function. For multivariate Gaussian data, this approach is
equivalent to the well-known Minimum Covariance Determinant (MCD) method (Rousseeuw, 1984,
1985) which consists in using the sample subset that minimises the determinant of the covariance
matrix estimate (Hadi and Luceño, 1997). Since finding the true MCD is an NP-hard problem, when n
is not small, a good approximation based on a computationally fast algorithm is usually employed
(Rousseeuw and Van Driessen, 1999).

Outlier detection usually relies on Mahalanobis distances, flagging units as outliers if their dis-
tances from an appropriate estimate of the multivariate mean m is above a chosen quantile of an appro-
priate distribution. (Squared) Mahalanobis distances are defined as D2

m,C(i) = (Xi − m)tC−1(Xi −
m) where C is an estimate of the covariance matrix. Traditionally, a Chi-square approximation is used
for the distribution of MCD-robust squared Mahalanobis distances; however, Cerioli (2010) proposed
finite sample approximations with better properties for small and even moderately large sample sizes.

Moreover, more efficient one-step re-weighted MCD estimators are often used (Hubert et al.,
2008). These are obtained by giving null weight only to the units for which the raw squared robust
Mahalanobis distance exceeds a high threshold value, e.g., the 97.5% quantile of the classical Chi-
square or, alternatively, of the scaled-F approximation (Hardin and Rocke, 2005). Furthermore, the
resulting covariance estimators are usually multiplied by consistency and bias correction factors (see
Pison et al. (2002)).

In practice, one needs to specify the number h of data points to be initially used. Two common
choices are to fix this number around 50%n maximising the breakdown point, or around 75%n for
larger efficiency (Hubert et al., 2008). Recently, in the context of interval data outlier identification,
Duarte Silva et al. (2018) proposed a two-step approach where the outlier detection procedure is first
run to get an estimate of the outlier proportion and in a second step the procedure is repeated fixing
the trimming parameter at the value obtained in the first step.
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The trimmed Maximum Likelihood approach described above has been adapted to the problem
of robust parameter estimation for the Gaussian models proposed for interval-valued data. For all
considered covariance configurations, the trimmed log-likelihood can be written as

ln TL(µ, Σ) = − h
2

(
2p ln(2π) + ln det Σ + Tr(Σ̃Σ−1) + (µ̃ − µ)t Σ−1 (µ̃ − µ)

)
(7)

where h is the number of observations kept in the trimmed sample, and

µ̃ = 1
h

h

∑
i=1

Xi, Σ̃ =
1
h

h

∑
i=1

(Xi − µ̃)(Xi − µ̃)t are the trimmed mean and trimmed sample covariance,

respectively.

In the case of a restricted covariance matrix, the block diagonal structure always implies that
trimmed likelihood maximisation is equivalent to the minimisation of the determinant of the restricted
trimmed sample covariance matrix.

The one-step re-weighted bias-corrected estimators are given by

µ̂1 =

n

∑
i=1

wiXi

h1
(8)

Σ̂1 =

lh1
c1

n

∑
i=1

wi(Xi − µ̂1)(Xi − µ̂1)
t

h1
(9)

h1 =
n

∑
i=1

wi wi =

{
1, if lhc Dµ̃,Σ̃(i) ≤

√
Q0.975

0, otherwise

where Q0.975 is the 97.5% quantile of the D2
µ̃,Σ̃ distribution. In MAINT.Data this distribution is

approximated by a Chi-square distribution with 2p degrees of freedom or by a (scaled) F distribution
as proposed by Hardin and Rocke (2005).

In expression (9), lh and lh1
are consistency correction factors, whereas c and c1 are finite-sample

bias-correction factors - for more details see Duarte Silva et al. (2018).

These estimates may then be used for outlier detection in an interval-valued dataset. For that
purpose, the robust squared Mahalanobis distance for unit i, based on µ̂1 and Σ̂1, is compared with the
chosen upper quantile of either the χ2

2p distribution or using the approximations (see Cerioli (2010)):

D2
µ̂1,Σ̂1

∼ (h1 − 1)2

h1
Beta

(
p,

h1 − 2p − 1
2

)
, i f wi = 1 (10)

D2
µ̂1,Σ̂1

∼ h1 + 1
h1

(h1 − 1)2p
h1 − 2p

F (2p, h1 − 2p) , i f wi = 0 (11)

Multivariate analysis

Analysis of Variance

The models presented above for interval-valued variables allow addressing (M)ANOVA problems
with interval data - see Brito and Duarte Silva (2012). Since each interval-valued variable Yj is modelled

by
[
Cij, R∗

ij

]
, an analysis of variance of Yj is accomplished by a two-dimensional MANOVA.

Assume a one-way design, with a single factor with k levels, and let nℓ be the number of units in

group ℓ. Let Xij =
[
Cij, R∗

ij

]t
be the 2-dimensional column vector with the MidPoint and Log-Range of

variable Yj for unit si, and let µ•jℓ be the population means of the Xj’s in group ℓ. In this case, the null
hypothesis states that all µ•jℓ are equal across groups. In all cases, for both models and all covariance
configurations, we follow a likelihood ratio approach.

In the Gaussian model, the usual likelihood ratio statistic λ can be computed in a straightforward
manner. Under the unrestricted case C1, this statistic is obviously equal to the classical one; in the
restricted covariance cases, its value may be obtained replacing the null entries corresponding to each
configuration in the sum of squares and cross-products MANOVA matrices (see e.g. Huberty and
Olejnik (2006) for the definition of those matrices). For the Skew-Normal model, given there is no
closed form for the maximum likelihood estimates, the value of λ must be obtained by numerical
optimisation (see Subsection Implementation of Section Package).

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=MAINT.Data


CONTRIBUTED RESEARCH ARTICLES 342

As usual, under the null hypothesis, −2 ln λ, follows asymptotically a Chi-square distribution. For
small samples a permutation test may be used to approximate the distribution of this test statistic.

A simultaneous analysis of all the Y’s interval-valued variables may be accomplished by a 2p-
dimensional MANOVA, following the same procedure.

Discriminant Analysis

The classical decision theoretic approach to Discriminant Analysis assumes that a given vector of
attributes follows some known distribution and derives an optimal classification rule that minimises
either the misclassification probability or the expected value of the misclassification cost. Parametric
discriminant analysis of interval-value data based on the models above has been investigated in
Duarte Silva and Brito (2015).

In a problem with k groups, Γℓ, ℓ = 1, . . . , k, denote the a priori group membership probabilities by
πℓ and the within group probability or density function by fℓ(x), where x are attribute vectors. Under
the assumption that misclassification cost are equal across groups, the optimal rule assigns a unit
to the group Γℓ for which πℓ fℓ(x) is maximal (see, e.g. McLachlan (1992)); in practice the unknown
parameters in these rules must be estimated from observations with known group membership.

When fℓ(.) is a Gaussian density, and the covariance matrices are equal across groups, the approach
described above leads to a linear classification rule, whereas when covariance matrices differ from
group to group, a quadratic classification rule is obtained.

Consider the Gaussian model for interval data. For each covariance configuration, an estimate
of the optimum classification rule can be obtained by direct generalisation of the classical linear and
quadratic discriminant classification rules, leading to group assignments defined by, respectively,

Γ = argmax
ℓ

(µ̂t
ℓΣ̂−1x − 1

2
µ̂t
ℓΣ̂−1µ̂ℓ + ln π̂ℓ) (12)

Γ = argmax
ℓ

(−1
2

xtΣ̂−1
ℓ x + µ̂t

ℓΣ̂−1
ℓ x + ln π̂ℓ −

1
2
(ln det Σ̂ℓ + µ̂t

ℓΣ̂−1
ℓ µ̂ℓ)) (13)

where µ̂ℓ, Σ̂, Σ̂ℓ and π̂ℓ are appropriate estimates of µℓ, Σ, Σℓ and πℓ for the corresponding cases.

In MAINT.Data, all mean and covariance estimates in (12) and (13) may be obtained by either
classical maximum likelihood or the robust trimmed maximum likelihood approach (see Section
Robust estimation and outlier detection).

We note that for the restricted configurations C2, C3 and C4, Σ̂ and Σ̂ℓ are obtained from the
corresponding unrestricted estimates replacing all the null covariances by zeros.

For the Skew-Normal case, we consider a Location Model in which the groups differ only in terms
of the location parameter ξ, and a General Model, where the groups differ in terms of all parameters.
The corresponding classification rules are, respectively,

Γ = argmax
ℓ

(ξ̂t
ℓ Ω̂−1x − 1

2
ξ̂t
ℓ Ω̂−1ξ̂ℓ + ln π̂ℓ + ζ0(α̂

tω̂−1(x − ξ̂ℓ))) (14)

Γ = argmax
ℓ

(−1
2

xtΩ̂−1
ℓ x + ξ̂t

ℓ Ω̂−1
ℓ x + ln π̂ℓ − (15)

1
2
(ln det Ω̂ℓ + ξ̂t

ℓ Ω̂−1
ℓ ξ̂ℓ) + ζ0(α̂

t
ℓ ω̂−1

ℓ (x − ξ̂ℓ)))

where ξ̂ℓ, Ω̂, Ω̂ℓ, α̂ and α̂ℓ are estimates of location, scale, association and shape parameters (see
Azzalini and Capitanio (1999)), ω̂ and ω̂ℓ are the square-roots of the diagonal elements of the matrices
Ω̂ and Ω̂ℓ, respectively, and ζ0(v) = ln(2Φ(v)). In MAINT.Data these are all maximum likelihood
estimates.

Model-based Clustering

Model-based Clustering considers the data as arising from a distribution that is a mixture of two or
more components (Banfield and Raftery, 1993; Fraley and Raftery, 2002; McLachlan and Peel, 2000).
Each component, that can be thought as a cluster, is characterised by a conditional density/mass
function and has an associated probability or “weight”. When the conditional probability is specified
as the multivariate Gaussian density, the probability model for clustering will be a finite mixture of
multivariate Normals (known as the Gaussian mixture model).
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The problem consists in estimating the model parameters for each component, as well as the
membership (posterior) probabilities of each unit. To this purpose, the Expectation-Maximisation (EM)
algorithm (Dempster et al., 1977) is commonly used. The method alternates between an expectation
(E) step, which computes the expectation of the log-likelihood at the current parameter estimates, and
a maximisation (M) step, which estimates parameters maximising the expected log-likelihood found
in the E step.

Model-based Clustering of interval data has been addressed in Brito et al. (2015), by considering
the Gaussian parametrisation described above (see Section Models and estimation). For that purpose,
the EM algorithm has been adapted to the likelihood maximisation in our models, for the different
covariance configurations.

The finite mixture model with k components for 2p-dimensional data vector x is defined by

f (x;φ) =
k

∑
ℓ=1

τℓ fℓ(x; θℓ) (16)

where all τℓ > 0 and τ1 + . . . + τk = 1; θℓ denotes parameters of the conditional distribution of
component ℓ.

Here the conditional distribution is given by N(µℓ, Σℓ); maximum likelihood parameter estimation
involves the maximisation of the log-likelihood function:

ln L(φ; x) =
n

∑
i=1

ln f (xi;φ) (17)

where φ = (τ1, . . . , τk, θ1, . . . , θk).

In Model-based clustering of interval data, Xi =
[
Ct

i , R∗
i

t
]t

is defined as the 2p-dimensional vector
comprising all the MidPoints and Log-Ranges for si, and the “complete” data are considered to be
(xi, zi), where zi = (zi1, . . . , zik) is assumed as the “missing” data, with ziℓ = 1 if si ∈ component ℓ
and ziℓ = 0 otherwise. In the unrestricted case, the M-step formulas for Σ̂, Σ̂ℓ are the classical ones;
for the restricted configurations Σ̂ and Σ̂ℓ, ℓ = 1, . . . , k are obtained maximising the likelihood for each
block separately (see Brito and Duarte Silva (2012)).

For the selection of the appropriate model and the number of components k, we use the Bayesian
Information Criterion (BIC).

Package

Design

MAINT.Data is built around S4 classes and methods, the most important being the IData class and
classes derived from the virtual IdtE (IData Estimates) classes. Further specialised classes used
to store the results of various multivariate analysis (e.g. Model-based Clustering, MANOVA and
Discriminant Analysis) are also available. Figure 1 shows common interactions between different
objects of MAINT.Data classes.

We note that in addition to the flow shown in Figure 1, objects containing the results of Discriminant
Analysis of Interval Data may also be obtained from appropriate objects of class IdtMANOVA, or directly
from the combination of objects of class IData with a grouping factor.

Class Idata, which is used to store datasets of interval-valued variables, is the central class in
the MAINT.Data package. Its design aims at replicating the functionalities of classical data frames
as smoothly as possible. As seen in Figure 1, objects of class IData may be created in one of two
alternative ways: (i) directly from data frames containing either lower and upper bounds or MidPoints
and Log-Ranges, using the creator function IData; (ii) by aggregation of a data frame of the microdata
by a given aggregating factor and criterion (e.g. min-max or a given pair of quantiles), using the
function AgrMcDt.

The creator function IData takes five arguments as input. The first one, named Data refers to a
data frame or matrix containing either the lower and upper bounds or the MidPoints and Log-Ranges
of the observed intervals, where each row corresponds to a different unit. Then, Seq is a string which
describes the sequence of the data for each unit, namely, lower and upper bounds variable by variable
(“LbUb_VarbVar”, default), MidPoints and Log-Ranges variable by variable (“MidPLogR_VarbVar”), all
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Figure 1: Typical flow of a MAINT.Data application.

lower bounds followed by all upper bounds (“AllLb_AllUb”), or all MidPoints followed by all Log-
Ranges (“AllMidP_AllLogR”). The third and fourth arguments, named VarNames and ObsNames, allow
the user to specify the variables’ and units’ names, respectively. Finally, the last argument NbMicroUnits
provides the number of micro observations corresponding to each unit, when available. A typical call
of this function would be ExampleIdt <-IData(dataDF,VarNames=c(``Var1'',``Var2'')) (no names
for the units, number of micro observations corresponding to each unit not available).

Function AgrMcDt has three arguments. The first one, MicDtDF indicates a data frame with the
microdata. The second argument, agrby refers to a factor with the categories according to which the
microdata should be aggregated. The last argument agrcrt specifies whether aggregation is done with
the minimum and maximum observed values, or else based on user-defined quantiles. An example is
shown in Section Applications.

A UML diagram of class Idata is shown in Figure 2. As seen here, class Idata implements
specialised versions of standard R methods such as summary, print, nrow and ncol, rownames and
colnames, rbind, cbind and plot. Special care has been taken in the development of indexing operators
and of a specialised cbind method, so that they work as smoothly as with data frames, but treating
each column of Idata as one interval-valued variable.

The remaining Idata methods perform parameter estimation and/or multivariate analysis leading
to objects of class IdtE (parameter estimation), IdtMANOVA (Multivariate Analysis of Variance), Idtda
(Discriminant Analysis), or IdtMclust (Model-based Clustering). All these methods include a Covcase
argument used to specify the covariance configurations assumed, which by default compares the BIC
of the results for all four configurations, and select the one with the lowest BIC value.

The IdtE class is an abstract (virtual) class used to store parameter estimates of the models assumed
for interval-valued variables. As shown in Figure 3 there are currently eight such specialisations,
depending on the model assumed and type of estimation performed. The names of these classes
always start with the letters Idt followed by Sng or Mx (estimates of parameters of a single or several
distributions), ND, SND or NandSND (Gaussian, SkewNormal or both Gaussian and SkewNormal
distributions), and end with E or RE (Maximum Likelihood or Robust estimates).

As shown in Figure 4 the same reasoning applies to classes derived from the virtual class IdtMANOVA.
However, in this case, only Maximum Likelihood estimation has been considered and the specialisa-
tions distinguish classical MANOVA (class IdtClMANOVA), heterocedastic MANOVA based on Gaussian
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Idata

MidP: data.frame
LogR: data.frame
Obsnames: character
Varnames: character
Nobs: numeric
NIVar: numeric
NbMicroUnits: integer

summary(): void
show(): void
ncol(): numeric
colnames(): character
plot(): void
…
mle(): IDataE
fasttle(): IDataSngNDRE
fulltle(): IDataSngNDRE
MANOVA(): IdtMANOVA
RobMxtDEst(): IdtMxNDRE
lda(): Idtlda
qda(): Idtqda
snda(): IdtSNlocda
snda(): IdtSNgenda
Idtmclust(): IdtMclust

Figure 2: IData class.

IdtE
Modelnames: character
ModelType: character
ModelConfig: numeric
NIVar: numeric
SelCriteria: character

logLiks: numeric

BICs: numeric

AICs: numeric

BestModel: numeric

SngD: logical

BestModel(): numeric
show(): void
testModcol(): numeric

IdtSngNDE
…
…

IdtSngSNDE
…
…

IdtSngNDRE
…
…

IdtMxNDE
…
…

IdtMxNDRE
…
…

IdtMxSNDE
…
…

IdtSngSNandSNDE
…
…

IdtMxSNandSNDE
…
…

Figure 3: IdtE classes.
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IdtMANOVA
NIVar: numeric
grouping: factor

H0res: IdtDE

H1res: IdtDE

QuiSq: numeric

df: numeric

pvalue: numeric

H0logLik: numeric

H1logLik: numeric

show(): void

H0res(): IdtDE

H1res(): IdtDE

…

IdtClMANOVA
…
…

IdtLocSNMANOVA
…
…

IdtHetNMANOVA
…
…

IdtLocNSNMANOVA
…
…

IdtGenSNMANOVA
…
…

IdtGenNSNMANOVA
…
…

Figure 4: IdtMANOVA classes.

distributions (IdtHetNMANOVA), Skew-Normal based MANOVA assuming that groups may differ only
in location (IdtLocNMANOVA) or on all parameters (IdtGenNMANOVA), and analyses that consider both
Gaussian and SkewNormal assumptions (IdtLocNSNMANOVA and IdtGenNSNMANOVA).

Maximum likelihood estimation is performed by the mle method, which has six arguments. The
first one, Idt refers to an IData object representing interval-valued units. The second argument, Model
indicates the joint distribution assumed for the MidPoint and LogRanges; alternatives are “Normal”
for Gaussian (default), “SKNormal” for Skew-Normal and “NrmandSKN” for both Gaussian and
Skew-Normal distributions. The next argument, CovCase indicates the configurations of the variance-
covariance matrix to be used (default: 1:4). The fourth argument, SelCrit indicates the model selection
criterion, BIC (default) or AIC. The argument kmax specifies a tolerance criterion to identify singular
correlation matrices. Finally, OptCntrl provides a list of optional control parameters to be passed to the
optimization routine.

Robust estimation is usually performed by the fasttle method. Note that for small datasets, the
fulltle method may be used, whose arguments are common to fasttle. The first three arguments of
fasttle are the same as for the mle method. Arguments alpha and getalpha specify how the trimming
proportion is chosen. Other important arguments are the following: use.correction indicates whether to
use finite sample correction factors, default is TRUE. rawMD2Dist provides the assumed reference
distribution of the raw MCD squared distances used to find the cutoffs defining the observations kept
in one-step reweighted MCD estimates; alternatives are “ChiSq” for the usual Chi-square (default),
“HardRockeAsF” and “HardRockeAdjF”, respectively asymptotic and adjusted scaled F distributions
proposed by Hardin and Rocke (2005). MD2Dist - assumed reference distribution used to find
cutoffs defining the observations assumed as outliers; alternatives are “ChiS” and “CerioliBetaF”,
respectivelly for the usual Chi-square, and the Beta and F distributions proposed by Cerioli (2010).
reweighted indicates whether a (Re)weighted estimate of the covariance matrix should be used in the
computation of the trimmed likelihood or just a “raw” covariance estimate; default is TRUE. Argument
outlin specifies the type of outliers to be considered, alternatives are “MidPandLogR” if outliers may
be present in both MidPoints and LogRanges, “MidP” if outliers are only present in MidPoints, or
“LogR” if outliers are only present in LogRanges.

Method MANOVA applies multivariate analysis of variance. The arguments Idt, Model, CovCase,
SelCrit, k2max and OptCritl are identical to the corresponding ones of method mle. Argument grouping
indicates the factor whose levels are the different groups. MxT indicates the type of mixing distri-
butions to be considered: “Hom” (homoscedastic) or “Het” (heteroscedastic) for Gaussian models,
“Loc” (location model) or “Gen” (general model) for Skew-Normal models (see Section Discriminant
Analysis above). CVtol provides a tolerance value to identify almost constant variables within groups.

To perform discriminant analysis, three methods may be applied, namely, lda (linear discriminant
analysis), qda (quadratic discriminant analysis) and snda (skew-normal based discriminant analysis).
In all these methods, the first argument x denotes an IData object representing the interval-valued
units, or else an object of class IdtMANOVA. Arguments grouping, CVtol, CovCase, SelCrit and k2max are
identical to the corresponding ones of method MANOVA. The argument prior is used to specify the prior
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probabilities of group membership, by default they are fixed at the training set corresponding pro-
portions. In method snda, argument MxT indicates the type of mixing distributions to be considered:
“Loc” (location model, default) or “Gen” (general model).

Method Idtmclust performs model-based clustering based on finite mixtures of Gaussian distri-
butions. Arguments Idt, CovCase, and SelCrit are identical to the corresponding ones in the previous
methods. The argument G provides the number of clusters (segments) of the mixture, by default it is
set as 1:9. MxT indicates the type of mixing distributions to be considered, “Hom” (homoscedastic,
default), “Het” (heteroscedastic), or “HomandHet” (both). Finally, the argument control provides a list
of control parameters for the EM algorithm.

Implementation

The implementation of the Idata class, as well as maximum likelihood estimation and multivariate
methods based on the Gaussian distribution, is relatively straightforward. As shown in Figure 2, the
internal structure of the Idata class consists of two data frames, containing MidPoints and Log-Ranges,
respectively, a couple of auxiliary constants and vector strings, and the integer vector NbMicroUnits
which stores the number of microunits aggregated to form each interval-valued unit, when known.
Therefore, Idata objects require roughly twice the memory space used by traditional data frames.
The Idata slots may be retrieved by the accessor methods MidPoints, LogRanges, rownames, colnames,
nrow, and ncol.

The structure of the classes derived from the virtual IdtE class (see Figure 3) depends on the
type of model specified and estimation performed. In addition to the common slots of the IdtE class,
these classes include vector and/or matrix slots with estimates that are constant across all covariance
configurations, and a list slot named ConvConfCases in which each component contains estimates
obtained under the assumption of a particular configuration. We note that, although the estimates
corresponding to one single configuration are displayed and used in further analysis, all estimates
resulting from the configurations specified by the argument CovCase are stored, and available to the
user. The same logic applies to analyses that consider more than one model, with the results for all
models being stored, but only one displayed by summary and print methods.

The maximum likelihood estimation and multivariate analysis based on the Gaussian distribution
do not entail any particular difficulties, usually involving well known formulae and the replacement
of some values by zero according to the covariance configuration assumed. Covariance matrices of
Gaussian estimators are also computed in a straightforward manner and passed, if so requested, to
the appropriate stdEr and vcov methods.

Maximum likelihood estimation of Skew-Normal parameters requires the numerical optimisation
of the non-convex function (6). As this function often has many different local optima, MAINT.Data
adopts a repeated local search strategy, calling a given local optimiser from different starting points.
This is implemented in the auxiliary function RepLOptim that works as described below.

First, a local optimiser is called from an initial starting point leading to a local optimum. Then, this
optimum is modified by a random perturbation, and the modified optimum is used as the starting
point of a new call to the local optimiser. This process is repeated until several (default: 50) consecutive
calls to the optimiser fail to improve the current best solution, or a limit (default: 250) on the total
number of local optima, is reached. This limit, the maximum number of non-improving consecutive
local optimisations, and several other control options, are set by default to reasonable values, but
can be modified by the components of a list supplied as the value of the argument control. The same
applies to methods (such as mle or MANOVA or snda) that internally call RepLOptim, using in this case a
list supplied to their Optcontrol argument.

The default local optimiser of RepLOptim is the nlminb PORT function (Gay, 1990). However, in
the case of maximum likelihood estimation of Skew-Normal parameters with unrestricted covariance
configuration (C1), MAINT.Data overrides this default with the msn.mle function of Azzalini’s sn
package (Azzalini, 2021). For the remaining configurations, the local optimisation relies on a quasi-
Newton optimiser (by default nlminb) using the analytical gradient of the centred Skew-Normal
parametrisation derived by Valle and Azzalini (2008). In order to improve computational efficiency,
the computation of the log-likelihood (6) and of its gradient was coded in C++, taking advantage
of the numerical functions and classes provided in the Rcpp (Eddelbuettel and François, 2011) and
RcppArmadillo (François et al., 2021) packages. We note that global optimality cannot be ensured and
even with this strategy sometimes MAINT.Data identifies different local optima in different runs.

Once the optimisation of the log-likelihood (6) is completed, MAINT.Data approximates the
covariance of the estimators using the evaluation of the expected Fisher information matrix imple-
mented in the sn package. This approximation may fail if either the expected information matrix is
ill-conditioned or the parameter estimates fall on the frontier of their domain. In such cases, posterior
calls to the stdEr or vcov methods will result in appropriate warning messages.
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The robust estimation of Gaussian model parameters by the trimmed maximum likelihood princi-
ple is implemented in the fulltle and fasttle methods. Method fulltle makes a full combinatorial
search for the Trimmed Maximum Likelihood estimates, and should only be used when the number of
units is relatively small (say, not much larger than 40). Method fasttle adapts the fast algorithm of
Rousseeuw and Driessen (Rousseeuw and Van Driessen, 1999). Both methods were coded in C++,
using functions and classes from Rcpp and RcppArmadillo. Furthermore, the methods RobMxtDESt,
Roblda and Robqda call fasttle or fulltle in order to get robust estimates in different groups that
may be used for robust discriminant analysis.

The interface of the MAINT.Data robust methods and classes is partially based on the framework
developed in the popular rrcov package (Todorov and Filzmoser, 2009). In particular, the control
options for the estimation algorithm used in the fasttle, RobMxtDESt, Roblda and Robqda methods can
be provided by an argument of class RobEstControl which inherits and extends the class CovControl
of the package rrcov. This way, algorithmic options may be specified in a uniform and familiar manner.
The additional slots of class RobEstControl specify new options, such as indicators of the distributions
assumed for the robust Mahalanobis distances, the nature of the outliers (only in MidPoints, only in
Log-Ranges or (default) both in MidPoints and Log-Ranges), whether a two-step procedure should
be used to find trimming parameters, and other choices that are available in MAINT.Data but not in
rrcov.

The MANOVA methods available in MAINT.Data are always based on the maximum likelihood
principle. By default, the Chi-square distribution is used for the test statistic. However, for small
samples, a permutation test has been implemented in the auxiliary function MANOVAPermTest (see
Seber (2009)).

The design and interface of class IdtMclust is modelled after class Mclust of the mclust package
(Scrucca et al., 2016). As a result, the IdtMclust print and summary methods with their default
argument values, display only a very general description of the clustering results. A characterization
of the obtained clusters, and the partition itself, may be inspected by changing the summary arguments
parameters, and classification from FALSE to TRUE. A difference between the mclust and IdtMclust
classes lies in that in the former case detailed clustering results can only be retrieved directly from
the Mclust slots while IdtMclust provides accessor methods such as parameters, pro, mean, var, cor
and classification to retrieve these results. The EM algorithm used in IdtMclust is implemented in
C++, using facilities of the Rcpp and RcppArmadillo packages.

Application I: flights dataset

To illustrate the modelling and methods presented above, we use the flights dataset from the R data
package nycflights13, available at CRAN, which contains on-time data for all flights that departed
New York city in 2013. The original microdata consists of 336776 flights characterized by nineteen
variables.

From this data, we created a data frame named FlightsDF, after removing all rows with missing
data, and with six columns corresponding to the following descriptive variables at microdata level:
Month, Carrier (16 different carriers), Departure delay (min), Arrival delay (min), Air time(min), and
Distance (miles).

We consider as units of interest classes formed by crossing Month with Carrier, leading to 185
units (note that not all the 192 possible combinations are present in the microdata). Therefore, we
created a factor, named FlightsUnits, defining the class each individual case belongs to.

The command

R> FlightsIdt <- AgrMcDt(FlightsDF,FlightsUnits)

creates an interval data object FlightsIdt, where the values of the numerical variables Departure delay
(DD), Arrival delay (AD), Air time (AT) and Distance (DT) are aggregated in the form of intervals for
each unit. Leaving the aggregation argument agrcrt at its “minmax” default, the lower and upper
bounds of the obtained intervals are the minimum and maximum values observed in the microdata,
respectively.

However, we prefer to use the robust aggregation alternative, by filtering out the 5% lowest and
highest values for each variable; in this case the aggregation argument specifies the chosen pair of
quantiles:

R> FlightsIdt <- AgrMcDt(FlightsDF,FlightsUnits,agrcrt=c(0.05,0.95))

We note that the 43 units for which, for any variable, the lower and the upper bound are equal
(degenerate interval) are eliminated, so that the final interval dataset has 142 units.
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Table 3 shows a few rows of the resulting interval data table. The full interval dataset is available
on MAINT.Data.

Departure Arrival Air time Distancedelay delay
Jan-9E [−10, 120] [−32, 116] [31, 176] [94, 1029]
Jan-AA [−9, 65] [−31, 59] [115, 354] [733, 2475]
· · · · · · · · · · · · · · ·

Dec-YV [−10.9, 68.2] [−33.5, 66] [39.4, 102.8] [96, 544]

Table 3: Flights interval data - partial view.

Figure 5 illustrates the two alternative outputs - (a)-crosses, (b)-rectangles - of the method plot,
resulting respectively from the commands

R> plot(FlightsIdt[,"distance"],FlightsIdt[,"arr_delay"],
cex.main=3, cex.lab=1.9, cex.axis=2)

R> plot(FlightsIdt[,"distance"],FlightsIdt[,"arr_delay"],type="rectangles",
cex.main=3, cex.lab=1.9, cex.axis=2)

showing the intervals corresponding to the 142 units in two different forms for variables Distance and
Arrival delay.

We note that the graphical arguments of traditional R plots are also available in MAINT.Data
plot methods. In this example, the default graphical settings were adequate for online display, but
resulted in too small axis and legends, when the resulting graphs were exported to an external text file.
Therefore, we used the cex.main, cex.lab, and cex.axis traditional R plot arguments, to improve
their readability. This particular example worked well on a PC under Linux, but since graphical
characteristics are machine and operation system dependent, other argument values may be required
in different computer environments.

Figure 6 plots the MidPoints versus the Log-Ranges for variable Arrival delay, resulting from the
command

R> plot(MidPoints(FlightsIdt)[,"arr_delay.MidP"],
LogRanges(FlightsIdt)[,"arr_delay.LogR"],
xlab="Mid Points",ylab="Log Ranges",
main="Mid Points vs. Log Ranges for Arrival delays",
cex.main=2, cex.lab=1.5, cex.axis=1.5)

We observe a strong positive correlation between the MidPoints and the Log-Ranges of the Arrival
delay, which is not uncommon for interval-valued variables.
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Figure 5: Interval representation of the 142 flights units – Distance versus Arrival delay.

Modelling of flights interval data

The following statistical analyses of the data will be directed towards the methods proposed earlier.
Accordingly, a first analysis relates to statistically characterize the input variables and possible rela-
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Figure 6: Midpoints VS Log-Ranges of variable Arrival delay for the 142 flights units.

tionships between them. Then the interest is in possible outliers in the interval data. Are there specific
carrier/month combinations which are atypical for the observed features? The identified outliers
will be excluded from the data for the subsequent analyses, which could be affected by data outliers.
The data are split into two groups, the mainline carriers and the regional carriers. Do these groups
differ for the considered variables (MANOVA)? Is it possible to distinguish the observations of the two
groups from each other (discriminant analysis)? Are there even more subgroups in the multivariate
data, and how can those be characterized (cluster analysis)?

We start by adjusting the Gaussian and Skew-Normal models for all four considered covariance
configurations using the commands

R> Flightsmle <-mle(FlightsIdt,Model="NrmandSKN")
R> summary(Flightsmle)

which produce the output

Log likelihoods:
NModCovC1 NModCovC2 NModCovC3 NModCovC4 SNModCovC1 SNModCovC2
-2278.626 -3249.162 -2547.369 -3564.026 -2207.444 -3183.179
SNModCovC3 SNModCovC4
-2491.175 -3498.258
Bayesian (Schwartz) Information Criteria:
NModCovC1 NModCovC2 NModCovC3 NModCovC4 SNModCovC1 SNModCovC2
4775.309 6597.440 5233.501 7207.346 4672.591 6505.121
SNModCovC3 SNModCovC4
5160.760 7115.455
Selected model:
[1] "SNModCovC1"

We recall that for the Skew-Normal model only local optima are identified, so that in different runs
slightly different solutions may be obtained.

Among the eight models × configurations, the BIC recommends the Skew-Normal model with
covariance configuration C1. The likelihood ratio tests between pairs of models may be performed by
command testMod(Flightsmle). In this case, for any reasonable significance level, these tests suggest
also the Skew-Normal model with covariance configuration C1.

The estimates of mean, standard deviation and skewness coefficient vectors and the variance-
covariance matrix may be extracted by the usual coef() method. Alternatively, the standard methods
mean(), sd(), var() and cor() may also be used. Furthermore, standard errors and variances and
covariances of the estimates may be obtained, as usual, by the methods stdEr() and vcov().

The estimates for mean values, standard deviations and skewness coefficients are:
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C R∗

DD AD AT DT DD AD AT DT

µ̂t = ( 38.14 27.98 179.70 1244.63 4.45 4.72 4.89 6.84 )

σ̂t = ( 19.30 20.68 61.89 476.72 0.42 0.32 0.59 0.66 )

γ̂t = ( 0.000 −0.001 0.271 0.247 0.000 0.000 −0.046 −0.064 )

The estimate of the correlation matrix is :

R̂ =



C R∗

DD AD AT DT DD AD AT DT

C

DD 1.00 0.96 −0.32 −0.30 0.96 0.96 −0.32 −0.31
AD 1.00 −0.40 −0.39 0.92 0.92 −0.33 −0.33
AT 1.00 0.99 −0.37 −0.27 0.47 0.43
DT 1.00 −0.35 −0.24 0.49 0.45

R∗

DD 1.00 0.97 −0.31 −0.29
AD 1.00 −0.25 −0.23
AT 1.00 0.99
DT 1.00



We observe that MidPoints are positively correlated with the corresponding Log-Ranges, with
strong correlations for the delay variables and moderate correlations for Distance and Air Time. The
MidPoints of Departure delay and Arrival delay on the one hand, and Air time and Distance, on
the other hand, have, as expected, strong correlations; the corresponding Log-Ranges also present
high correlations. The observed correlation values explain the choice of the unrestricted covariance
configuration C1.

Robust estimation results are obtained by the commands:

R> Flightstle <-fasttle(FlightsIdt)
R> summary(Flightstle)

which produce the output

Log likelihoods:
NModCovC1 NModCovC2 NModCovC3 NModCovC4
-1416.930 -2069.002 -1720.921 -2490.111
Bayesian (Schwartz) Information Criteria:
NModCovC1 NModCovC2 NModCovC3 NModCovC4
3040.279 4231.831 3573.200 5055.283
Selected model:
[1] "NModCovC1"

The estimates for mean values and standard deviations are now:

C R∗

DD AD AT DT DD AD AT DT

µ̂t = ( 35.99 26.51 159.09 1096.43 4.454 4.70 5.22 7.23 )

σ̂t = ( 18.02 19.65 58.82 459.60 0.42 0.32 0.56 0.59 )

To identify outliers, we employ the default options for the robust methods and functions im-
plemented in MAINT.Data, namely a cut-off based on the Chi-square distribution, and a trimming
parameter based on a two step procedure using 75% of the sample in the first step.

The following command allows obtaining the list of units identified as outliers:

R> Flights_Otl <- getIdtOutl(FlightsIdt,Flightstle)
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R> print(Flights_Otl)

which returns

Jan-FL Jan-VX Feb-FL Feb-VX Mar-FL Mar-VX Apr-FL Apr-VX Apr-YV
6 10 17 21 28 32 39 43 45
May-FL May-VX Jun-9E Jun-FL Jun-VX Jun-WN Jun-YV Jul-9E Jul-FL
51 55 58 63 67 68 69 70 75
Jul-VX Aug-FL Aug-VX Aug-YV Sep-VX Sep-YV Oct-FL Oct-VX Nov-FL
79 87 91 93 103 105 111 115 123
Nov-OO Nov-VX Nov-YV Dec-FL Dec-VX
125 128 130 136 140

From this list it is visible that FL (AirTran Airways) is an outlier for almost all months. When
inspecting the aggregated data, it can be seen that the upper bound of the Distance is clearly lower
than for the other airlines, and consequently also the upper bound of Air time. The contrary happens
for airline VX (Virgin America), which is an outlier for all months. Note, however, that outlyingness
can also be caused by a different multivariate behaviour of an observation.

Figure 7 shows the values of robust Mahalanobis distances (to the mean) for all 142 units, the
horizontal line indicates the 97.5% quantile of the respective Chi-square distribution; it is obtained by
the command

R> plot(Flights_Otl, cex.main=2, cex.lab=1.5, cex.axis=0.3)
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Figure 7: Values of robust Mahalanobis distances (to the mean) for the 142 flights units.

MANOVA

We now consider a partition of the 110 regular (i.e. not flagged as outliers) flights units into two groups
according to whether the airline is a mainline or a regional one; the 5 regional airlines are Endeavor
Air Inc. (9E), ExpressJet Airlines Inc. (EV), Envoy Air (MQ), SkyWest Airlines Inc. (OO), and Mesa
Airlines Inc. (YV).

MANOVA analysis was performed for all flights units, considering this two group decomposition.
We compared both a Gaussian and a Skew-Normal model, with all four covariance configurations
(default), with a homoscedastic setup (default), and using the BIC (default) as comparison criterion.
For that purpose we used the commands

R> out1<-Flights_Otl@outliers
R> carr <- substring(rownames(FlightsIdt[-out1,]),5,6)
R> carr_class <- factor(ifelse(carr=="9E"|carr=="EV"|carr=="MQ"|
carr=="OO"|carr=="YV","REG","MAIN"))
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R> MANOVAres <- MANOVA(FlightsIdt[-out1,],carr_class,Model="NrmandSKN")
R> summary(MANOVAres)

leading to the output

Null Model Log likelihoods:
NModCovC1 NModCovC2 NModCovC3 NModCovC4 SNModCovC1 SNModCovC2 SNModCovC3 SNModCovC4
-1437.000 -2094.997 -1743.016 -2521.166 -1397.125 -2060.841 -1735.816 -2444.528
Full Model Log likelihoods:
NModCovC1 NModCovC2 NModCovC3 NModCovC4 SNModCovC1 SNModCovC2 SNModCovC3 SNModCovC4
-1318.227 -1874.335 -1566.672 -2184.943 -1259.869 -1821.942 -1536.026 -2085.836
Full Model Bayesian (Schwartz) Information Criteria:
NModCovC1 NModCovC2 NModCovC3 NModCovC4 SNModCovC1 SNModCovC2 SNModCovC3 SNModCovC4
2880.879 3880.282 3302.561 4482.697 2801.767 3813.102 3278.874 4322.088
Selected Model:
[1] "SNModCovC1"

Chi-squared statistic: 274.5117
degrees of freedom: 8
p-value: 1.082712e-54

The Skew-Normal model with variance-covariance configuration C1 is selected (on the
basis of BIC values) as the best model in this case, results indicate that the two carrier groups
are indeed different for the considered variables.

These results were to be expected given that regional carriers tend to fly short distances
and therefore with shorter air times, than mainlines.

We then proceeded to investigate whether the two carrier groups are different when it
comes to each of the delay variables, using the commands

R> MANOVA_Dep_delay_res <- MANOVA(FlightsIdt[-out1,"dep_delay"],carr_class,Model="NrmandSKN")
R> summary(MANOVA_Dep_delay_res)
R> MANOVA_Arr_delay_res <- MANOVA(FlightsIdt[-out1,"arr_delay"],carr_class,Model="NrmandSKN")
R> summary(MANOVA_Arr_delay_res)

that produced the outputs

Null Model Log likelihoods:
NModCovC1 NModCovC2 NModCovC3 NModCovC4 SNModCovC1 SNModCovC2 SNModCovC3 SNModCovC4
-313.5688 NA NA -492.4602 -287.8342 NA NA -473.1451
Full Model Log likelihoods:
NModCovC1 NModCovC2 NModCovC3 NModCovC4 SNModCovC1 SNModCovC2 SNModCovC3 SNModCovC4
-296.6978 NA NA -469.0213 -272.3174 NA NA -449.6624
Full Model Bayesian (Schwartz) Information Criteria:
NModCovC1 NModCovC2 NModCovC3 NModCovC4 SNModCovC1 SNModCovC2 SNModCovC3 SNModCovC4
626.2990 NA NA 966.2455 586.9391 NA NA 936.9286
Selected Model:
[1] "SNModCovC1"

Chi-squared statistic: 31.03359
degrees of freedom: 2
p-value: 1.824489e-07

Null Model Log likelihoods:
NModCovC1 NModCovC2 NModCovC3 NModCovC4 SNModCovC1 SNModCovC2 SNModCovC3 SNModCovC4
-366.8737 NA NA -473.4313 -360.3910 NA NA -457.5188
Full Model Log likelihoods:
NModCovC1 NModCovC2 NModCovC3 NModCovC4 SNModCovC1 SNModCovC2 SNModCovC3 SNModCovC4
-357.0406 NA NA -456.5808 -351.1153 NA NA -441.4999
Full Model Bayesian (Schwartz) Information Criteria:
NModCovC1 NModCovC2 NModCovC3 NModCovC4 SNModCovC1 SNModCovC2 SNModCovC3 SNModCovC4
746.9845 NA NA 941.3644 744.5350 NA NA 920.6036
Selected Model:
[1] "SNModCovC1"

Chi-squared statistic: 18.55139
degrees of freedom: 2
p-value: 9.367357e-05

The results show that the two carrier groups present different patterns for both departure
and arrival delays.
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Discriminant Analysis

We consider again the 110 regular flights units grouped in two carrier classes, as in Section
Analysis of Variance.

The function DACrossVal estimates error rates by c-fold cross-validation or by leave-one-
out. Its main arguments are: (i) the data object, (ii) the grouping factor, (iii) a function with
the training algorithm (e.g. lda, qda, snda, see Subsection Design of Section Package), (iv)
the number of cross-validation folds (default: 10), (v) the number of replications (default: 20),
(vi) a boolean flag indicating whether the folds should be stratified according to the original
class proportions (default), or randomly generated from the whole training sample, ignoring
class membership, and (vii) a boolean flag (false by default) stating if the leave-one-out
method should be used instead of c-fold cross-validation.

Different discriminant methods were compared by leave-one-out cross-validation: Linear
and Quadratic Discriminant Analysis for the Gaussian model, and both the Location and the
General models of Skew-Normal discriminant analysis. In each case the variance-covariance
configuration (see Table 2) was chosen by minimising the value of BIC. The global errors,
which are also provided, are computed as a weighted average of the estimated class specific
errors.

The code below computes and displays these estimates.

R> DACrossVal(FlightsIdt[-out1,],carr_class,TrainAlg=lda,loo=TRUE)
R> DACrossVal(FlightsIdt[-out1,],carr_class,TrainAlg=qda,loo=TRUE)
R> DACrossVal(FlightsIdt[-out1,],carr_class,TrainAlg=snda,loo=TRUE)
R> DACrossVal(FlightsIdt[-out1,],carr_class,TrainAlg=snda,Mxt="Gen",loo=TRUE)

We note that while the first two commands are executed quite fast (a few seconds), the last
two (for the Skew-Normal model) typically need several hours, given that a computationally
heavy Skew-Normal estimation is repeated many times.

These commands lead to the output below. Note that when snda is used without any
additional arguments, the default location model is assumed.

Error rate estimates of algorithm lda
MAIN REG Global
0.013888889 0.000000000 0.009090909

Error rate estimates of algorithm qda
MAIN REG Global
0.00000000 0.05263158 0.01818182

Error rate estimates of algorithm snda
MAIN REG Global
0.08333333 0.07894737 0.08181818

Error rate estimates of algorithm snda with argument Mxt=Gen
MAIN REG Global
0.05555556 0.18421053 0.10000000

These results suggest that lda performs better than the other alternatives in the problem
at hand. The predicted classes using the lda method may be obtained, as usual, by the
commands

R> ldares <- lda(FlightsIdt[-out1,],carr_class)
R> ldapred <- predict(ldares,FlightsIdt[-out1,])
R> print(ldapred$class)

We observed that all but one units are correctly classified, namely carrier FL in September,
the only FL unit which was not flagged as an outlier.
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Clustering the Flights units

Model-based Clustering described in Section Model-based Clustering was applied to the
Flights dataset, without the identified outliers, to identify up to 16 components. This is
accomplished by the command:

R> mclust_res <- Idtmclust(FlightsIdt[-out1,],1:16,Mxt="HomandHet")

where again, by default, the recommended solution is selected by the BIC. The corresponding
values may be graphically compared using the command

R> plotInfCrt(mclust_res, cex.lab=1.5, outlegsize=10, outlegdisp=0.25)

which provided the graphic in Figure 8 and the output below. A homocedastic nine compo-
nent model has been selected with an unrestricted covariance configuration C1.
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Figure 8: BIC values for different models and number of components.

Best BIC values:
HomG9C1 HomG10C1 HomG11C1 HomG15C1 HomG16C1
BIC 2555.407 2602.228 2653.101 2674.13 2692.822
BIC diff 0 46.82063 97.69343 118.7225 137.4153

The value returned by Idtmclust is an object of class IdtMclust with the same structure,
and similar methods, of the corresponding Mclust class of package mclust (Scrucca et al.,
2016). In particular, the classification results may be inspected by the command:

R> summary(mclust_res,classification=TRUE)

which returns

----------------------------------------------------
Gaussian finite mixture model fitted by EM algorithm
----------------------------------------------------
Homoscedastic C1 model with 9 components
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log.likelihood NObs BIC
-1005.076 110 2555.407

Clustering table:
CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9
12 12 14 12 10 12 24 9 5

Classification:
Jan-9E Jan-AA Jan-B6 Jan-DL Jan-EV Jan-MQ Jan-UA Jan-US Jan-WN Feb-9E
"CP5" "CP2" "CP7" "CP4" "CP5" "CP6" "CP7" "CP3" "CP3" "CP1"
Feb-AA Feb-B6 Feb-DL Feb-EV Feb-MQ Feb-UA Feb-US Feb-WN Mar-9E Mar-AA
"CP2" "CP7" "CP4" "CP5" "CP6" "CP7" "CP3" "CP3" "CP1" "CP2"
Mar-B6 Mar-DL Mar-EV Mar-MQ Mar-UA Mar-US Mar-WN Apr-9E Apr-AA Apr-B6
"CP7" "CP4" "CP5" "CP6" "CP7" "CP3" "CP8" "CP1" "CP2" "CP7"
Apr-DL Apr-EV Apr-MQ Apr-UA Apr-US Apr-WN May-9E May-AA May-B6 May-DL
"CP4" "CP5" "CP6" "CP7" "CP3" "CP8" "CP5" "CP2" "CP7" "CP4"
May-EV May-MQ May-UA May-US May-WN May-YV Jun-AA Jun-B6 Jun-DL Jun-EV
"CP1" "CP6" "CP7" "CP3" "CP8" "CP9" "CP2" "CP7" "CP4" "CP5"
Jun-MQ Jun-UA Jun-US Jul-AA Jul-B6 Jul-DL Jul-EV Jul-MQ Jul-UA Jul-US
"CP6" "CP7" "CP3" "CP2" "CP7" "CP4" "CP5" "CP6" "CP7" "CP3"
Jul-WN Jul-YV Aug-9E Aug-AA Aug-B6 Aug-DL Aug-EV Aug-MQ Aug-UA Aug-US
"CP8" "CP9" "CP1" "CP2" "CP7" "CP4" "CP1" "CP6" "CP7" "CP3"
Aug-WN Sep-9E Sep-AA Sep-B6 Sep-DL Sep-EV Sep-FL Sep-MQ Sep-UA Sep-US
"CP8" "CP1" "CP2" "CP7" "CP4" "CP1" "CP9" "CP6" "CP7" "CP3"
Sep-WN Oct-9E Oct-AA Oct-B6 Oct-DL Oct-EV Oct-MQ Oct-UA Oct-US Oct-WN
"CP8" "CP1" "CP2" "CP7" "CP4" "CP1" "CP6" "CP7" "CP3" "CP8"
Oct-YV Nov-9E Nov-AA Nov-B6 Nov-DL Nov-EV Nov-MQ Nov-UA Nov-US Nov-WN
"CP9" "CP1" "CP2" "CP7" "CP4" "CP1" "CP6" "CP7" "CP3" "CP8"
Dec-9E Dec-AA Dec-B6 Dec-DL Dec-EV Dec-MQ Dec-UA Dec-US Dec-WN Dec-YV
"CP5" "CP2" "CP7" "CP4" "CP5" "CP6" "CP7" "CP3" "CP8" "CP9"

We observe that units corresponding to the same carrier tend to cluster together, for
instance, component 2 gather all AA units, component 4 gathers DL units and component 6
the MQ units.

In order to have a better description of the obtained partition, we then print the corre-
sponding mixing probabilities and the component-wise mean vectors.

R> print(pro(mclust_res), digits=3)
R> print(mean(mclust_res),digits=3)

obtaining

CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9
0.10684 0.10909 0.12727 0.10752 0.09316 0.10909 0.21976 0.08182 0.04545

CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9
dep_delay.MidP 40.26 31.02 21.06 27.39 59.83 35.15 34.85 43.51 44.85
arr_delay.MidP 25.84 18.28 15.44 16.45 51.08 31.89 25.00 32.63 34.63
air_time.MidP 99.13 223.40 163.22 208.73 101.86 98.97 193.37 171.20 72.08
distance.MidP 640.43 1604.00 1163.86 1481.65 632.53 616.50 1360.07 1165.50 411.80
dep_delay.LogR 4.59 4.35 4.07 4.19 4.92 4.48 4.41 4.55 4.68
arr_delay.LogR 4.76 4.68 4.42 4.59 5.05 4.71 4.69 4.80 4.80
air_time.LogR 4.83 5.47 5.55 5.56 4.86 4.63 5.71 4.91 3.97
distance.LogR 6.86 7.46 7.58 7.59 6.81 6.69 7.75 6.81 5.85

These mean vectors can be compared by a parallel coordinate plot, using the pcoordplot
method as follows

R> pcoordplot( mclust_res, cex.main=2, cex.lab=2,
legendpar=list(cex.main=2.5, cex.lab=2.5) )

which produces the graph shown in Figure 9.
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Figure 9: Parallel coordinate plot of best clustering solution, with nine components.

We observe that component 5 is mainly characterised by the largest delays both at
departures and arrivals, also displaying their highest variability. Component 3, on the
other hand, presents the lowest delays, with lowest variability, and concerns long flights.
Component 9 corresponds to the shortest flights, with also low variability of distance and
airtime. Components 4 and 7 present similar patterns in the distance and airtime variables,
although component 4 displays slightly larger midpoints while component 7 has a higher
variability; in terms of delays, we observe in component 7 higher values together with a
more important variability.

From Figure 8 we observe that the best heterocedastic model corresponds to configuration
C2 and identifies six components.

The corresponding mean vectors may again be displayed by a parallel coordinate plot,
using the pcoordplot method, now indicating the solution of interest:

R> pcoordplot(mclust_res, model="HetG6C2", cex.main=2, cex.lab=2,
legendpar=list(cex.main=2.5, cex.lab=2.5) )

leading to the graph shown in Figure 10.

Application II: diamonds dataset

This second example explores the diamonds dataset (from the R package tidyverse available
at CRAN). The original microdata consists of 53940 diamonds characterised by ten variables.
Descriptive variables are: carat (weight of the diamond), x (length in mm), y (width in mm),
and z (depth in mm). All rows with missing data or null values in at least one of these
variables were removed. Because the distribution of these variables is positive skewed, they
were log-transformed (natural logarithm).

The units of analysis were defined by the variables: cut (quality of the cut: Fair, Good,
Very Good, Premium, Ideal), color (diamond color, with seven levels: J (worst) to D (best)), and
clarity (measurement of how clear the diamond is, with eight levels: I1 (worst), SI2, SI1, VS2,
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Figure 10: Parallel coordinate plot of best heterocedastic solution, with six components.

VS1, VVS2, VVS1, IF (best)), totalising 271 units (out of the 280, four were not present in the
data, and five were degenerated). The variable DiamondsUnits defines these combinations.

The commands

R> library(tidyverse)

R> valid_diamonds <- diamonds %>%
R> filter(carat !=0, x != 0, y != 0, z != 0) %>%
R> drop_na() %>% mutate(logcarat = log(carat),

logx = log(x),
logy = log(y),
logz = log(z))

R> DiamondsUnits <- factor( paste(
valid_diamonds$cut,valid_diamonds$color,valid_diamonds$clarity, sep="-"

) )

R> DiamondsIdt <- AgrMcDt(valid_diamonds[,c("logcarat","logx","logy","logz")],
agrby=DiamondsUnits)

do the initial data processing and create the interval data object DiamondsIdt using the
default option (min-max). In the application we do not filter out potential outliers as we
want to use the finite mixture model to detect them. Indeed, outliers can be seen as an
unstructured component of the mixture model (Aitkin and Wilson, 1980).

From the estimation of mixtures from one to eight components, we have

R> Diamd_mclust_res <- Idtmclust(DiamondsIdt,1:8,Mxt="HomandHet")
R> plotInfCrt(Diamd_mclust_res, cex.lab=1.5, outlegsize=10, outlegdisp=0.25)

Best BIC values:
HetG3C3 HetG4C3 HetG3C1 HetG5C3 HetG6C3

BIC -7818.702 -7789.946 -7752.533 -7702.916 -7637.323
BIC diff 0 28.75589 66.16948 115.7865 181.3797
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Figure 11: BIC values for different models and number of components.

Selection based on BIC recommends configuration 3 with three components (see Figure
11). Thus, the best solution is a heteroscedastic solution in which centers are not correlated
with ranges.

R> summary(Diamd_mclust_res)
----------------------------------------------------
Gaussian finite mixture model fitted by EM algorithm
----------------------------------------------------
Heteroscedastic C3 model with 3 components
log.likelihood NObs BIC

4150.242 271 -7818.702

Clustering table:
CP1 CP2 CP3
11 176 84

R> print(pro(Diamd_mclust_res), digits=3)
CP1 CP2 CP3

0.0407 0.6328 0.3265

We conclude that the size of CP1 is 0.0407 and contains eleven observations (hard
classification), i.e., it is an outlier or niche group. Whenever a population/sample is well
represented by the Normal distribution, a single component (or point of support) is enough
to model its density. Often, however, distributions tend to have skewness and kurtosis that
are far from the multivariate Normal distribution. In that case, Gaussian mixture models
(GMM) have been used to estimate densities as an alternative to nonparametric or semi-
parametric Kernels (Scott, 2015). Indeed, this application of finite mixtures is more general
than model-based clustering as the latter tends to be specific to the correspondence between
modes and clusters or groups. In this example, the departure from normality (skewness and
kurtosis) is modeled using two additional components.

R> plot(MidPoints(DiamondsIdt)[,"logz.MidP"],
LogRanges(DiamondsIdt) [,"logz.LogR"],
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xlab="Mid Points",ylab="Log Ranges",
main="Mid Points vs. Log Ranges for logdepth in mm",
col = ifelse(Diamd_mclust_res@classification == 'CP1',1,

ifelse(mclust_res@classification == 'CP2',2,7)),
pch = 19, cex.lab=1.5)
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Figure 12: Representation of classified units (logdepth).

Figure 12 obtained from the code above illustrates the approximation of the density of
the data by the finite mixture. The core group is well defined by the multivariate normal
distribution. As the result of skewness, a second group is added. And then, finally, the
heavy (multidimensional) “tail” is given by the outlier component (black dots) with its large
estimated variances and co-variances.

Summary

The MAINT.Data R package implements models and methods for the analysis of interval-
valued data, relying on multivariate Normal or Skew-Normal distributions for the MidPoints
and Log-Ranges of the interval-valued variables. Implemented in the S4 framework, it intro-
duces a data class for representing interval data and functions and methods for parametric
modelling and analysis.

The available tools for interval variable management include interval-data versions
of most of the standard R methods such as print and summary, index and subseting,
and plot. Moreover, functions for aggregating microdata into interval data objects are also
provided. The multivariate methodologies available include maximum likelihood estimation
and statistical tests for the different configurations, (M)ANOVA, parametric Discriminant
Analysis, and Model-based Clustering. Moreover, outlier detection and estimation based on
robust techniques are provided; discriminant parametric methods based on robust estimates
are implemented accordingly.

MAINT.Data, currently in its 2.6.1 version, offers an integrated solution for the man-
agement and parametric analysis of interval-valued data, from aggregation to modelling,
analysis and visualisation, extending the R “programming with data” paradigm to new and
complex data types.
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