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Unidimensional and Multidimensional
Methods for Recurrence Quantification
Analysis with crqa
by Moreno I. Coco, Dan Mønster, Giuseppe Leonardi, Rick Dale and Sebastian Wallot

Abstract Recurrence quantification analysis is a widely used method for characterizing patterns in
time series. This article presents a comprehensive survey for conducting a wide range of recurrence-
based analyses to quantify the dynamical structure of single and multivariate time series and capture
coupling properties underlying leader-follower relationships. The basics of recurrence quantification
analysis (RQA) and all its variants are formally introduced step-by-step from the simplest auto-
recurrence to the most advanced multivariate case. Importantly, we show how such RQA methods can
be deployed under a single computational framework in R using a substantially renewed version of
our crqa 2.0 package. This package includes implementations of several recent advances in recurrence-
based analysis, among them applications to multivariate data and improved entropy calculations
for categorical data. We show concrete applications of our package to example data, together with a
detailed description of its functions and some guidelines on their usage.

Introduction

In the current article, we present the updated 2.0 version of the R package crqa to perform many
variants of recurrence-based analyses (Coco and Dale, 2014), including some very recent develop-
ments for the treatment of multivariate and categorical data. Recurrence-based techniques allow the
quantification of temporal structure and generalized autocorrelation properties of individual time
series (Webber and Zbilut, 1994; Zbilut and Webber, 1992), the quantification of bivariate relationships,
and coupling between two time series (Zbilut et al., 1998; Marwan and Kurths, 2002), as well as the
quantification of multidimensional dynamics of multivariate time series (Wallot et al., 2016b; Wallot
and Mønster, 2018). Recurrence-based techniques originate from the description and analysis of
dynamical systems (Marwan et al., 2007; Marwan and Kurths, 2002) and have been widely applied to
data from physics (Alex et al., 2015; Ambrożkiewicz et al., 2019; Donner and Thiel, 2007; Hilarov, 2017;
Zolotova and Ponyavin, 2006), physiology (Marwan et al., 2002; Langbein et al., 2004; Thomasson et al.,
2001; Mestivier et al., 2001; Mønster et al., 2016; Timothy et al., 2017), and psychology (Abney et al.,
2014; Coco et al., 2018, 2016; Shockley et al., 2003; Wallot et al., 2019; Wijnants et al., 2012; Pagnotta
et al., 2020), to name a few fields.

The real success of recurrence-based analyses has revolved around their power of capturing the
dynamics of complex and non-stationary time series data and of time series exhibiting qualitatively
different patterns along with their temporal evolution (Marwan et al., 2007). This is because recurrence-
based analyses are model-free techniques that make few assumptions and hence are well suited for
the analysis of complex systems. Moreover, recurrence-based analyses are versatile and can be applied
to interval-scale data as well as nominal data, continuously sampled data, and inter-event data alike
(Dale et al., 2011; Zbilut et al., 1998).

The new version of the crqa package features the integration of major developments in recurrence
analysis, such as its extension to multidimensional data, as well as a key simplification of its design
and a marked improvement of the underlying computational procedures. It includes useful new
functions, including a tool for mining the parameter settings for continuous data and piece-wise
computation of recurrence plots to mitigate the computational cost of long time series.

The remainder of this article is divided into two broad sections. In the first section, we provide
a concise introduction to the core concepts of recurrence analysis from the simplest case of auto-
recurrence of a unidimensional time series to the most complex case of multidimensional cross-
recurrence, which is now integrated into the new version of the crqa package. In the second section,
we showcase example applications of the different analysis methods using empirical data, hence
providing a hands-on tutorial for how to use the different functions of the package.

Methodological background

In section 2.2.1, we briefly introduce the framework of recurrence quantification analysis (RQA
hereafter) with the simplest case of a unidimensional time series. Then, in section 2.2.2, we discuss
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how RQA can be applied to two different unidimensional times series. Finally, in sections 2.2.3 and
2.2.4 we explain how RQA methods can be extended to multidimensional data.

Recurrence quantification analysis (RQA)

The concept of recurrence is at the heart of all recurrence-based analyses (Marwan and Kurths, 2002;
Trulla et al., 1996), which mostly apply to time series or sequenced data (but see Wallot and Leonardi
(2018b)). As we will see, recurrences are often defined in terms of phase space coordinates, not directly
in terms of the values of a single time series, but the concept is easily demonstrated using this case—a
single time series or sequence—as a starting point. Loosely speaking, a recurrence is the repetition of a
value in a sequence of data points. More precisely, recurrence in a time series x, with n data points
x1, x2, . . . , xn is defined as:

Rij =

{
1 : xi = xj
0 : xi ̸= xj

i, j = 1, 2, . . . n (1)

The above equation defines the elements Rij of the recurrence matrix R in terms of identical
repetitions. Such a definition is useful for a nominal sequence, where there are categorical elements
that are either identical or not, and so no meaningful ‘distance’ norm among categories can be defined
(see section 2.3.3.1 for an application to text data). In order to define recurrences for continuous data,
we need to establish a threshold parameter (or radius parameter) ε, which provides the width of a
tolerance band in the chosen distance norm within which similar but not identical values in a time
series are counted as recurrent:

Rij =

{
1 : |xi − xj| ≤ ε

0 : |xi − xj| > ε
i, j = 1, 2, . . . n (2)

Setting a threshold is necessary in most cases for empirical data because such data feature intrinsic
fluctuations as well as measurement error (Marwan et al., 2007). Using recurrences as defined
above, we can convert any unidimensional time series x into a recurrence plot (RP), which is a
two-dimensional portrait of its dynamics expressed through its recurrence characteristics.

Figure 1 shows some examples of time series of various complexity (i.e., a sinusoidal, a chaotic
attractor, and white noise) and their associated RPs, given some value for the threshold parameter ε.

If a time series x constitutes the one-dimensional measurement of an underlying multidimensional
system, and the dynamics of the underlying dimensions are co-dependent, then these underlying
dimensions can be recovered via the method of time-delayed embedding from the unidimensional
time series (Packard et al., 1980; Takens, 1981). In these cases, the time series x is delayed (or lagged)
by a certain number of data points, τ, and the number of times such delays are applied to x depends
on an embedding dimension parameter m. The time-shifted copies of x, xτ , x2τ ,. . . ,x(m−1)τ , can now
be integrated into a single m-dimensional phase space, which shows the recovered multidimensional
dynamics behind the measured unidimensional time series (Figure 2).

If the time series data comes from a multidimensional system, embedding the data into a higher
dimensional phase space before the computation of an RP will improve the quantification of the
dynamics of the systems from which that time series was recorded (Marwan et al., 2007). Now,
with embedded data, recurrences are defined not in terms of the individual values of the original,
unidimensional time series x but in terms of coordinates in m-dimensional phase space. It is possible
to construct a total of N = n − (m − 1)τ points in phase space, with the following coordinates:

X1 = (x1, x1+τ , x1+2τ , . . . , x1+(m−1)τ)

X2 = (x2, x2+τ , x2+2τ , . . . , x2+(m−1)τ)

... (3)

Xk = (xk, xk+τ , xk+2τ , . . . , xk+(m−1)τ)

...

XN = (xN , xN+τ , xN+2τ , . . . , xn)
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Figure 1: The three-time series in the first row (A) — a periodical sine wave, one of the dimensions
of the chaotic Lorenz attractor and a white noise signal — were subjected to recurrence analysis
without dimensional embedding. That is, the recurrence plots depict recurrences based on the values
of the one-dimensional time series (B). The third row (C) shows their associated recurrence plots with
dimensional embedding (the sine wave was embedded in 2 dimensions, the Lorenz attractor and the
white noise signal in 3 dimensions).
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Figure 2: Graphical exemplification of the embedding method. A unidimensional time series (B)—
here represented with time running along the y-axis—is embedded in two-dimensional phase space
(A) by choosing as the second dimension (C) of every point in panel B the τ-lagged value (here τ = 3)
of the very same original unidimensional time series (B). After selecting an appropriate value of the
threshold (or radius) parameter (here ε = 0.25), recurrence analysis can be applied to the trajectory in
the two-dimensional phase space (A), and a recurrence plot is generated (D). In the recurrence plot
(D), the recurrence points around the coordinates of (X9;X9+τ) are highlighted in red color.
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In terms of points in the m-dimensional phase space, the elements of the recurrence matrix are
then given by

Rij =

{
1 : ||Xi − Xj|| ≤ ε

0 : ||Xi − Xj|| > ε
i, j = 1, 2, . . . N (4)

where || · || is a distance norm in the m-dimensional phase space and ε is the threshold used to
determine whether the points are close enough in phase space to be considered recurring or not.
Examples of embedding and the resulting RPs are shown in Figure 1, lower panel, and in Figure 2,
panel D. Note, however, that in the process of phase space reconstruction, the number of coordinates
available in phase space is less than the number of data points in the original time series, the difference
being equal to n − N = τ(m − 1). Moreover, the resulting phase space portraits do not exactly reflect
the true underlying multidimensional dynamics but are isomorphic to them (Garland et al., 2016). For
continuous time series (i.e., not categorical), the delay τ, the embedding dimension m and the radius ε
are usually unknown and have to be estimated from the data. τ can be obtained by examining the
average mutual information function (AMI) of x (Fraser and Swinney, 1986), and the false-nearest-
neighbor function (FNN) of x, given some value for τ, can, in turn, be used to determine m (Kennel
et al., 1992). The radius ε is then chosen to achieve the desired proportion of recurrence points that is
expected given the type of data at hand (Webber Jr and Zbilut (2005); see Wallot and Mønster (2018)
for practical information on parameter estimation). The crqa package implements functions to carry
out parameter estimation semi-automatically.

RPs are a very useful visualization to qualitatively explore the dynamics of a time series. However,
their main advantage is that they provide the basis to quantify the dynamics of a time series based
on the patterns of recurrence points found in the plot (Zbilut and Webber, 1992). There are various
measures that can be computed from RPs. Here, we briefly describe a selection of measures, including
the most common ones, that are implemented in the new version of the crqa package.

The most basic measure is the recurrence rate (RR) or percentage recurrence, which is defined as
the sum of all recurrence points in an RP divided by the area of that RP. RR provides a measure for
how many individual values of a time series—or its phase space coordinates—recur over time:

RR =
1

N2

N

∑
i,j=1

Rij (5)

All other measures characterize dynamics by exploiting the patterns of recurrences along with
the vertical and diagonal structures of the RP (see Table 1 for a concise summary of the measures). In
particular, measures based on diagonal-line structures reflect repetitions of the trajectories of the time
series, whereas measures based on vertical-line structures focus on the states during which a time
series slows down its dynamics. The entropy of the time series can also be computed on the basis of
diagonal and vertical line structures of the RP. In version 2.0 of the crqa package, we include a novel
entropy measure, which is based on the distribution of the areas of the rectangular structures in an RP
generated from categorical time series. This measure provides a more accurate estimation of entropy
over the classic diagonal-line entropy for categorical time series that predominantly evolve in terms of
changes of states (Leonardi, 2018).

Cross-recurrence quantification analysis (CRQA)

Until now, we focused on quantifying the dynamics of a system by way of recurrences of a single
time series. However, the concept of recurrence can be extended to that of cross-recurrence, which
extends the univariate recurrence analysis to a bivariate analysis technique that allows quantification
of the temporal coupling properties or similarity of two time series (Zbilut et al., 1998; Marwan et al.,
2007). In other words, cross-recurrence is the recurrence of a value in a time series x, with data points
x1, x2, . . . , xn with the values of a time series y, with data points y1, y2, . . . , yn. Formally:

CRij =

{
1 : |xi − yj| ≤ ε

0 : |xi − yj| > ε
i, j = 1, 2, . . . n (6)

As for Equation 2, a threshold parameter ε is applied to identify similar, but not necessarily
identical, values that are recurrent across the two time series. As in the univariate case, this parameter
can be set to values closer to 0, forcing cross-recurrences to be identical values, such as between two
nominal (categorical) sequences. Also, in the case of cross-recurrence analysis, the two time series x
and y can be embedded before computing the cross-recurrence plot (CRP):
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Measure Abbreviation Definition

Recurrence Rate RR
1

N2

N

∑
i,j=1

Rij

Determinism DET
N

∑
l=lmin

lP(l)

/
N

∑
l=1

lP(l)

Average Diagonal Line Length L
N

∑
l=lmin

lP(l)

/
N

∑
l=lmin

P(l)

Maximum Diagonal Line Length maxL max({li}
Nl
i=1), Nl = ∑

l≥lmin

P(l)

Diagonal Line Entropy ENTR −
N

∑
l=lmin

p(l) log p(l)

Laminarity LAM
N

∑
v=vmin

vP(v)

/
N

∑
v=1

vP(v)

Trapping Time TT
N

∑
v=vmin

vP(v)

/
N

∑
v=vmin

P(v)

Categorical Area-based Entropy catH −
Na

∑
a>1

p(a) log p(a)

Table 1: Summary and definition of RQA measures. Here, l is some diagonal line length on the
recurrence plot, i.e., the number of diagonally adjacent recurrence points; P(l) is the histogram or
frequency distribution of such diagonal line lengths; p(l) is the probability of some diagonal line
length; v is some vertical line length on the recurrence plot, i.e., the number of vertical adjacent
recurrence points; P(v) is the histogram or frequency distribution of such diagonal line lengths; lmin
and vmin are the minimum diagonal and vertical line lengths included in the measures (≥ 2); a is the
value of the area of a rectangular recurrence block generated in a categorical recurrence analysis; p(a)
is the probability of the recurrence blocks of area a.

CRij =

{
1 : ||Xi − Yj|| ≤ ε

0 : ||Xi − Yj|| > ε
i, j = 1, 2, . . . N (7)

Commonly, it is expected that x and y have the same number of data points, and that the delay
and embedding dimension parameters, τ and m, have to be the same too (see Wallot and Mønster
(2018); Wallot and Leonardi (2018a) for practical aspects of parameter estimation)1. The recurrence
measures obtained from cross-recurrence quantification analysis are calculated in the same way as for
the univariate recurrence quantification analysis (see Table 1). However, the values for cross-recurrence
now reflect the coupled dynamics of the two time series (Shockley et al., 2002) rather than the dynamics
of an individual time series in univariate RQA. There is a key difference between RPs and CRPs. RPs
always have recurrence points all along the main diagonal line of the plot (so-called line of identity,
LOI), because a time series is by definition recurrent with itself at lag 0, which is what recurrences
along the main diagonal reflect (i.e., xi = xj when i = j). This is not necessarily the case for CRPs as
two time series are not necessarily synchronized (xi need not be the same as yj when i = j). If the time
series are not synchronized, cross-recurrences around the main diagonal are absent or sparse. The
presence of a full LOI in a CRP implies that the dynamics of the two time series are identical or that
they have a strictly linear relationship to each other.

Multidimensional recurrence quantification analysis (MdRQA)

Multidimensional recurrence quantification analysis (MdRQA) is one of the recent extensions of RQA
(Wallot et al., 2016b) that is now also available in the crqa package. MdRQA allows the analysis
of multidimensional time series z with samples z1, z2, . . . , zn, where each point (sample) in z has d
dimensions:

1It is possible for x and y to be different lengths, and so to produce a rectangular CRP, but this is very rare in
practice and it introduces some complications in computing synchrony measures
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zk = (zk,1, zk,2, . . . , zk,d) (8)

Here, recurrences are defined on the d-dimensional coordinate space made up of the points of z:

Rij =

{
1 : ||zi − zj|| ≤ ε

0 : ||zi − zj|| > ε
i, j = 1, 2, . . . n (9)

Like their unidimensional counterparts, multidimensional time series can be embedded into a
higher dimensional space. The logic of estimating the delay and embedding dimension parameters, τ
and m, are the same as with univariate RQA (Wallot, 2017; Wallot and Leonardi, 2018a). However,
suppose one has multivariate time series and wants to estimate embedding parameters for those time
series. In that case, one should use the multivariate embedding functions which are also provided
with the new version of the crqa package, because they provide superior estimates of embedding
parameters for multidimensional time series (Wallot and Mønster, 2018).

Depending on the underlying data, MdRQA can, in principle, be used for two different purposes.
On the one hand, MdRQA can be used to quantify a multidimensional construct, such as physiological
arousal, by simultaneously looking at its different measurable dimensions (e.g., heart rate, breathing,
and body temperature). This would be the multivariate version of how univariate RQA quantifies the
dynamics of a single unidimensional time series (e.g., breathing alone). On the other hand, MdRQA
can be used to examine the shared dynamics of multiple individual time series, such as, for example,
three electrodermal signals measured from three members of a team performing a collaborative task.
Here, MdRQA variables would be interpreted as capturing higher-order inter-correlative properties
between the three signals at the level of the group (Wallot et al., 2016b).

In either case, one has to make a decision about whether to normalize the different dimensions of
the time series or not. If each dimension of the multidimensional time series is normalized, for example,
z-scored, it would effectively give each time series equal weight for the definition of recurrence. In
particular, if one does not know how the different time series interact, or if they are measured
on different scales without regard to their potential effects on one another, then normalization is
recommended. Otherwise, the risk is to assign a greater weight to the time series bearing greater
variance. If one is certain that the values of each dimension of the multidimensional time series
are already properly scaled with regard to each other, such as when simultaneously analyzing the
three dimensions of the Lorenz system (Lorenz, 1963), then one needs not—and perhaps should
not—normalize the dimensions.

Multidimensional cross-recurrence quantification analysis (MdCRQA)

Multidimensional cross-recurrence quantification analysis (MdCRQA) extends MdRQA in the same
way that CRQA extends RQA. Effectively, MdCRQA allows for the computation of cross-recurrences
between two multidimensional time series x and y (Wallot, 2019), where cross-recurrences are defined
between the two d-dimensional coordinate spaces between the points of x and y:

xi = (zi,1, zi,2, . . . , zi,d) (10)

yj = (zj,1, zj,2, . . . , zj,d) (11)

CRij =

{
1 : ||xi − yj|| ≤ ε

0 : ||xi − yj|| > ε
i, j = 1, 2, . . . n (12)

It is important that the different dimensions of the two multivariate time series enter the analysis
in the same order. For the example of physiological arousal, if the heart rate is the first dimension
in x, breathing is the second dimension in x, and body temperature is the third dimension in x, then
heart rate also needs to be the first dimension in y, breathing needs to be the second dimension in
y, and accordingly body temperature needs to be the third dimension in y. Otherwise, the resulting
MdCRQA measure will not be interpretable.

Unidimensional and multidimensional cross-recurrence analysis can also be performed in a time-
dependent manner. This so-called windowed cross-recurrence analysis is conceptually very similar
to windowed cross-correlation analysis as in Boker et al. (2002), and it can be used to track how
cross-recurrence changes over the time course. To that end, one simply partitions the time series of
interest into a number of overlapping or non-overlapping sub-series and calculates CRPs for each of
the sub-series. For each CRP, i.e., each sub-series of the original time series, the recurrence measures
are calculated, which allows tracking changes in cross-recurrence over time.
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Figure 3: Illustration of DCRP. Time series of two of the three dimensions from the Lorenz system,
one in red, the other one in black (A). After computation of their CRP, one can define their diagonal
cross-recurrence profile (DCRP) in order to quantify their time-lagged coupling properties (B). As can
be seen, the two time series are most strongly coupled at around the lags of 5 to 9, where a peak in the
DCRP can be observed.

The diagonal cross-recurrence profile (DCRP)

Finally, from cross-recurrence plots of either two unidimensional time series (i.e., CRQA) or two
multidimensional time series (i.e., MdCRQA), it is possible to extract the diagonal cross-recurrence
profiles (DCRPs) and use them to capture leader-follower-relationships (Dale et al., 2011; Marwan
et al., 2007). To that end, one has to specify a window size w for the number of lags on the recurrence
plot that one wants to investigate. For example, a window-size of 10 data-points, i.e., w = 10 would
span recurrences of ± 10 diagonals from the LOI. Specifically, this procedure determines the cross-
recurrence rates of each diagonal, CRw, by summing up all cross-recurrence points that fall along such
diagonal and divide them by their length:

CRw =
1

N − w

N−w

∑
j−i=w

Ri,j (13)

The DCRP permits quantification of the recurrence rate over different relative lags between two
time series. If the peak of cross-recurrences falls along the central diagonal, the line of synchronization
(LOS), then this suggests strong coupling at lag 0 between the two time series. If the peak of cross-
recurrences falls instead on one of the diagonals off the LOS, it indicates that the dynamics of one
time series follow the dynamics of the other time series by some lag equal to that diagonal position
(Figure 3).

Note, however, interpreting the lags in terms of the sampling rate of the underlying measured time
series only applies to CRPs based on unembedded (often categorical) time series. If the time series
are embedded, this means that the observed lag is based on coordinates that are made up of several
data points from the respective original time series, and hence introduces a degree of uncertainty with
regard to the precise time interval of the lag when one tries to map particular recurrence points back
to data points of the original time series. In addition, the leader-follower interpretation of the lags
cannot be granted the status of a causal interpretation. For example, a parent can deliberately ‘lag’
their behavior behind that of their child. In such a case, it would be odd to say definitively that the
child’s behavior is causing the parent’s behavior. For this reason, the DCRP has to be interpreted with
caution and is best treated as a general description of relative temporal relationships.

Package design

The crqa package is available from the Comprehensive R Archive Network (CRAN) at https://cran.
r-project.org/web/packages/crqa/index.html. The software is written in R with the exception of
the spdiags function, which contains a section written in Fortran. The main function is crqa, which
takes its name from the package. This function performs all types of recurrence quantification analyses
discussed in the previous section, and it returns the actual recurrence plot, along with the measures
listed in Table 1 extracted from it. Here is how to call this primary function, with arguments and
defaults:
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Argument Description Usage Notes
ts1 and ts2 The input time series, either unidimensional

or multidimensional time series
If auto-recurrence is used (see method = rqa), then t1 and
t2 should be the same time series.

delay A constant indicating the number of time
points used to lag the time series

It corresponds to the τ of the equations.

embed A constant indicating the number of embed-
ding dimensions applied to the time series

It corresponds to the m of the equations.

rescale Whether the distance matrix on which recur-
rence is evaluated should be rescaled and
how

If rescale = 0, keep the distance matrix as is; if rescale =
1, rescale the distance matrix to its mean; if rescale = 2,
rescale to distance matrix to its maximum value.

radius A constant used to decide whether the dis-
tance between two points is small enough to
be considered recurrent

For categorical time series, the radius needs to be set at
values smaller than 1. For continuous time series, the value
of the radius needs to tailored to the type of data and its
range.

normalize Normalize the time series if normalize = 0, keep the time series at their original scale;
if normalize = 1, normalize the time series to unit interval;
if normalize = 2, z-score the time series.

mindiagline The minimum number of contiguous points
along the diagonals to consider the system
into a recurrent state

The default value is usually 2, as it takes a minimum of two
points to define any line.

minvertline The minimum number of contiguous points
along the vertical lines to consider the system
into a recurrent state

The default value is usually 2, as it takes a minimum of two
points to define any line.

tw The Theiler window parameter It defines the number of diagonals off the line of identity
that are excluded from recurrence quantification.

whiteline A logical flag to calculate (TRUE) or not
(FALSE) empty vertical lines.

The default is FALSE, as the calculation of such lines adds
on the time of computation.

recpt A logical flag indicating whether measures of
cross-recurrence are calculated directly from
a recurrent plot (TRUE) or not (FALSE)

It is mostly useful if the user wants to compute joint-
recurrence analysis. The RP or CRP is supplied in place of
ts1, and ts2 needs to be assigned as NA.

side A string indicating the side of the recurrence
plot on which recurrence measures should
be calculated

For side = upper, recurrence measures are calculated on
the upper triangle of the RP, for side = lower on the lower
triangle of the RP, for size = both on the full RP. Note,
the line of identity is automatically excluded for upper and
lower setting.

method A string to indicate the type of recurrence
analysis to perform

For method = rqa, Auto-recurrence is calculated, i.e., a uni-
dimensional series; for method = crqa, cross-recurrence is
calculated; for method = mdcrqa, multidimensional recur-
rence is calculated. Note, the default value is crqa.

metric A string to indicate the type of distance met-
ric used

To see the list of all other possible metrics, see the help for
the rdist function. Note, the default is euclidean.

datatype A string (continuous or categorical) to indi-
cate the nature of the data type

If the time series contain categorical information, it will
automatically be recoded into a continuous integer-based
time series with a warning sent to the user.

Table 2: Overview of the arguments that can be used in crqa to set up the recurrence quantification
analysis.

crqa(ts1, ts2, delay, embed, rescale = 0, radius, normalize = 0, mindiagline = 2,
minvertline = 2, tw = 0, whiteline = FALSE, recpt = NULL, side = "upper",
method = "crqa", metric = "euclidean", datatype = "continuous")

Several arguments in this function allow the user to refine aspects of the computation. For example,
the user can modify the metric to obtain the distance matrix when estimating recurrence or the settings
of thresholds to accept contiguous points as recurring (see Table 2 for the list of arguments of crqa with
a brief explanation of each). drpfromts can be used to obtain the diagonal cross-recurrence profile,
and this function is built using the crqa at its core. In fact, most arguments stay exactly the same,
and we will illustrate the additional arguments that are specific to this function when describing it.
Likewise, the functions wincrqa and windowdrp are built on the main function crqa and are used to
compute windowed cross-recurrence. The package also contains functions, such as optimizeParam, to
automatically estimate the settings for the three main parameters of RQA analyses, i.e., radius ε, delay
τ, and embedding dimension m, for continuous measures. As recurrence quantification analysis is
heavy on memory requirements, the package features a function (piecewiseRQA) which can be used
to break down the analysis of long time series into smaller and more manageable chunks that are
computationally more tractable. Finally, the package provides the user with functions to simulate
data from classic examples of dynamical systems, such as the Lorenz (lorenzattractor) or categorical
series with different distributions (simts). In what follows, we briefly describe the data available with
the package. These data are used to illustrate the different functionalities of the crqa package.
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Related Packages

A search of CRAN shows very few other packages offering alternative methods to compute recurrence
quantification analysis. In particular, tseriesChaos, nonlinearTseries, and RHRV. The function recurr
in tseriesChaos computes a recurrence plot for a (section of) a single unidimensional time series, but
it does not compute any derived measures from the plot characterizing the dynamics of the system,
nor does it handle cross recurrence plots or any of the many extensions to simple recurrence plots
provided by our crqa package. Going a little further, the function rqa in nonlinearTseries returns key
measures from the recurrence plots (e.g., recurrence rate) and quick visualization of the recurrence
plot (available also with the function RecurrencePlot). Finally, the function RecurrencePlot in RHRV
is simply a wrapper built on the function in nonlinearTseries with the same name but specifically
tailored to electrocardiogram data. The functions available in nonlinearTseries provide very basic
functionality in terms of the range of metrics available and optimization routines. They do not allow
the user to examine diagonal structures for leader-follower analyses, nor explore the evolution of
recurrence rate using windowed methods. All such features are integrated into crqa, which, to the best
of our knowledge, is the most comprehensive statistical package to perform recurrence quantification
analysis in R.

Data

Different types of categorical and continuous time series, both unidimensional and multidimensional,
are available with the package. The command load(crqa) will load the data into the R workspace. In
particular, we include a nursery rhyme “The wheels on the bus” by Verna Hills to illustrate the most
basic recurrence quantification analysis. This text is a vector of 120 strings (i.e., the words of the song),
and as it is extremely simple and highly repetitive, it makes it a very good example to illustrate the
core concept of recurrence. Then, we move on to cross-recurrence quantification analysis and include
in the data object of the package eye-tracking data from the study by Richardson and Dale (2005). In
this study, a narrator describes the characters of a TV series (Friends) to a listener, who will have to
later answer some comprehension questions about them, while their eye-movement is co-registered.
Here, we use a single trial of this study, which is stored as a data frame of 2,000 observations of six
possible screen locations that are looked at by the narrator and the listener. These are numerically
coded from 1 to 6, representing a 2x3 visual grid2. This data will also be used to illustrate diagonal and
windowed cross-recurrence. Finally, we illustrate multidimensional cross-recurrence analysis using
the hand movement data from the study by Wallot et al. (2016a). In this study, dyads were instructed
to cooperate in a complex LEGO joint construction task under different conditions, while their hand
movements and heart rates were co-registered. Again, we select only a single trial of hand-movement
from the turn-taking condition. The data frame comprises 5,799 observations from two participants
(P1 and P2) for the dominant (_d) and non-dominant (_n) hand.

Using the crqa package

RQA

As explained in section 2.2.1, RQA entails computing the auto-recurrence of a unidimensional time
series. In the context of the nursery rhyme, we expect clear phases of recurrence to emerge because the
words greatly repeat. In order to run this analysis, we use the main function crqa and specify in the
argument method that we are running an RQA analysis (method = "rqa"). As the data that we use
is categorical, we need to specify in the argument datatype that the nature of the data is categorical
(datatype = "categorical"). This will automatically recode the categorical states of the series (i.e.,
the words) into unique numerical integers so that recurrence can be computed using a radius that has
to be smaller than 1 (e.g., radius = 0.01) so that we can capture the recurrence of identical words.
For categorical RQA, the delay and embedding dimension have to be set to 1 (delay = 1; embed =
13.). We also need to set the Theiler window parameter to 1 (tw = 1) so that we can exclude the LOI
from all recurrence measures. Finally, the same unidimensional time series has to be input both as ts1
and ts2 to obtain its auto-recurrence.

2There are two more states, 10 and 11, to indicate when the listener or the narrator blinked or looked outside of
the screen or to identify possible blinks. They are coded with a different number so that these two states will not
recur when the radius is set near 0.

3If embedding dimension is set to higher values,this becomes equivalent to doing recurrence on n-grams,where
m = n. In fact,this interpretation of categorical recurrence creates bridges to traditional natural language process-
ing,summarized in Dale et al. (2018)
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Figure 4: Recurrence quantification of the nursery rhyme ‘wheels on the bus’. On the left panel, we
show the full recurrence and the red box indicates the region of RP that is zoomed in on the right
panel.

res <- crqa(text, text, delay = 1, embed = 1, rescale, radius = 0.01, normalize,
mindiagline, minvertline, tw = 1, whiteline, recpt, side, method = "rqa",
metric = "euclidean", datatype = "categorical")

We can use the plotting function plotRP to visualize the resulting recurrence plot. This function
provides some basic arguments to change the size of the points in the plot (pcex), the color (cols), or
their type (pch), which are taken verbatim from the generic plot function.

RP <- res$RP
parC <- list(unit = 10, labelx = "Time", labely = "Time", cols = "black", pcex = .5,

pch = 15, las = 0, labax = seq(0, nrow(RP), 10),
labay = seq(0, nrow(RP), 10))

plotRP(RP, parC)

In order to get a closer understanding of recurrences, we zoom in into a segment of the text, re-run
the crqa() function, and visualize it (Figure 4). We add the labels of the axes (x,y), print the words
vertically using the las argument, and decrease the temporal unit argument to print each individual
word on the axes.

text_zoom <- text[81:110]
ans_zoom <- crqa(text_zoom, text_zoom, delay, embed, rescale, radius, normalize,

mindiagline, minvertline, tw, whiteline, recpt, side, method, metric,
datatype)

RP <- ans_zoom$RP
parC$labay <- parC$labax <- text_zoom
parC$las <- 2
parC$unit <- 1
parC$labelx <- parC$labely <- "Words"
plotRP(RP, parC)

As it can be clearly seen in Figure 4, the bulk of recurrence in that portion is driven by the repeated
use of the single word wah. When looking at a few measures associated with the RP, we observe an
overall determinism of 85.4%, which implies that the system is fairly repetitive, an average diagonal
line length of 3.88, which implies that on average, there are sequences of four words that repeat, and a
maximum diagonal length of 9, which means that the longest sequence repeating is made of 9 words.
Some measures such as determinism or the average diagonal line length depending on the setting of
the argument mindiagline (equivalent to lmin in Table 1). The default value of this argument is 2, as
two contiguous points form a line, but it can depend on the type of data (e.g., words vs. eye-movement)
or the sample rate at which it is acquired (55 Hz vs. 1,000 Hz). For example, if we have acquired data
at 1,000 Hz, we would practically have one data point every 2 ms. This means that if we use a default
mindiagline of 2, we would be considering as lines any states that contiguously repeat over a 4 ms
window. This value would certainly be unrealistic for some type of responses that unfolds over a
longer period of time (e.g., an eye-movement fixation lasts for an average of 200 ms).
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Figure 5: Cross-recurrence using a single trial of eye-movement data measured on a listener and
a narrator. On the left panel, we visualize the full cross-recurrence plot. The transparent red band
represents the lags around the line of coincidence that have been used to calculate the diagonal
cross-recurrence plot (center panel), whereas the transparent blue squares within it are the overlapping
windows used to compute the windowed cross-recurrence profile (right panel).

CRQA: crqa

As already explained in section 2.2.2, cross-recurrence is an extension of auto-recurrence to two
different unidimensional time series. In order to run a cross-recurrence analysis with the crqa package,
we simply need to change the method argument to method = "crqa". Here, we illustrate its use through
two time series of eye-movement data explained in section 2.3.2. Also, we input two different time
series of eye-movement data, narrator and listener, rather than just one. An optional argument that
is available in the crqa function is the side (upper, lower, or both) of the recurrence plot on which
recurrence measures are computed. This may be useful, for example, for researchers interested in
leader-follower dynamics (see Figure 5, left panel, for the visualization of the cross-recurrence plot).

Diagonal-CRQA: drpfromts

In section 2.2.2, we explained what diagonal cross-recurrence is and how it can be used. In the crqa
package, this measure is computed by the function drpfromts, which utilizes the same arguments
of the main crqa function plus an additional argument, windowsize, to define the number of lags
(or diagonals) around the line of synchronization (LOS) of the CRP over which recurrence rate is
computed. In the example visualized in Figure 5, center panel, we have chosen a window of 100 lags,
which spans about ±3 seconds around the LOS. We can clearly see that the peak recurrence is shifted
by ≈ 1 second from the LOS, i.e., lag 0. This reflects the time taken by the listener to look at the same
panel the narrator was looking at—namely, about 1 second for a listener to “catch up” to the speaker.

res <- drpfromts(narrator, listener, windowsize = 100, radius = 0.001,
delay = 1, embed = 1, rescale = 0, normalize = 0, mindiagline = 2,
minvertline = 2, tw = 0, whiteline = F, recpt = F, side = "both",
method = "crqa", metric = "euclidean", datatype = "continuous")

Windowed-CRQA: windowdrp

Windowed cross-recurrence captures the evolution of recurrence rate over time. In the context of
the eye-movement data, this measure reflects how consistently listener and narrator are looking at
the same scene location at any given point in time. More importantly, the windowed methodology
reveals how recurrence changes over time (refer to section 2.2.5 for more details). We use the function
windowdrp to compute this measure, which again shares the same arguments of crqa, plus three more
that are specific to it. In particular, we have to set: (a) the size of the window that slides over the
time-course, e.g., windowsize = 100, (b) the step that we want this window to move, e.g., windowstep =
20, and (c) the number of lags4 within the window of interest over which recurrence rate is computed,
e.g., lagwidth = 50. In Figure 5, right panel, we observe that the recurrence rate grows over time,
which means that the narrator and the listener tend to look more and more at the same panels as the
trial progresses.

4Note, that the number of lags cannot be greater than the size of the window.
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res <- windowdrp(narrator, listener, windowstep = 20, windowsize = 100, lagwidth = 50,
radius = 0.001, delay = 1, embed = 1, rescale = 0, normalize = 0,
mindiagline = 2, minvertline = 2, tw = 0, whiteline = F, side = "both",
method = "crqa", metric = "euclidean", datatype = "continuous")

MdCRQA

Finally, we compute multidimensional cross-recurrence by setting the method argument, i.e., method
= "mdcrqa". Note, in order to compute multidimensional recurrence, the user needs to provide the
same data frame as input to both ts1 and ts2. This method is also available for drpfromts and
windowdrp. Applied to the hand movement data, we first restructure the data of the two participants
into independent sets. We re-use the same parameter settings of Wallot et al. (2016a) to compute
MdCRQA and leave all other arguments with their default values.

P1 <- cbind(handset$P1_TT_d, handset$P1_TT_n)
P2 <- cbind(handset$P2_TT_d, handset$P2_TT_n)
res <- crqa(P1, P2, delay = 5, embed = 2, rescale = 0, radius = 0.1,

normalize = 0, mindiagline = 10, minvertline = 10, tw = 0,
whiteline, recpt, side, method = "mdcrqa", metric, datatype)

Breaking down the computation: piecewiseRQA

Often, researchers are interested in time series which contain several thousands of observations.
Sometimes the dimensionality of these time series can be reduced without losing too much information,
such as by down-sampling. This strategy may not always be possible or serve the researcher’s purpose.
Recurrence quantification analysis can require more RAM than is available in standard laptops or
personal workstations, making it nearly impossible to run. In the new version of the crqa package, we
provide the user with the piecewiseRQA function, which can be used to compute all different variants
of recurrence quantification analysis described above on long time series. Conceptually, this function
divides the time series into blocks, obtains a recurrence plot for each individual block, and then fills
the original recurrence plot with all such sub-blocks, before computing the measures.5

For example, if we are handling a time series of 10,000 observations, we could divide it into
10 blocks of 1,000 observations each. piecewiseRQA has exactly the same arguments that we have
already encountered in the main crqa function but has an additional two that are used to control
the size of the block, e.g., blockSize = 100, and the argument typeRQA, which can take two options,
either full or diagonal. If the value for typeRQA is diagonal, only the diagonal cross-recurrence will
be computed; if full, the recurrence measures will be obtained out of the full plot6. In Figure 6,
we visualize the computational speed (left panel) and memory demand (right panel) on simulated
time series of sinusoids of increasing size and compare what happens if we run the piecewiseRQA,
also with blocks of increasing size, as compared to running the main crqa function. We can clearly
see that for time series of increasing length, memory demands are kept lower by the piecewiseRQA
function as compared to the crqa. However, we can also see that there is a wide variance for blocks of
different sizes. Therefore, it may be wise to explore the block sizes to find the one that can optimize
the computational performance over a single trial before running the piecewise recurrence analysis on
an entire dataset.

Estimating starting parameters: optimizeParam

The last function we showcase is optimizeParam, which helps the user exploring the space of values
for the parameters of delay, embedding dimension and radius to compute recurrence quantification
on continuous-valued time series. In particular, optimizeParam first estimates the average mutual
information (AMI) of either the unidimensional or multidimensional time series and chooses the
value that minimizes it. Then, it takes such a delay value and evaluates the embedding dimensions
maximizing the false-nearest neighbors (FNN)7. As a last step, optimizeParam applies the values of
delay and embedding dimension obtained to find a radius which returns a recurrence rate within
a minimum and maximum value established by the user. We apply optimizeParam() to simulated

5This function is similar to the crp_big function in the long-standing CRP-toolbox for MATLAB by Marwan
and colleagues: http://tocsy.pik-potsdam.de.

6Currently, the windowed cross-recurrence is not implemented to work with the piecewiseRQA.
7Users can also access the functions to compute delay (MdDelay) and embedding dimensions (MdFnn) indepen-

dently of optimizeParam.
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Figure 6: Evaluating the speed (time in seconds, left panel) and memory (peak RAM in MB, right
panel) performance of crqa() and piecewiseRQA() for simulated data of increasing size (from 3000 to
7000 data points). We compare the use of blocks of different sizes (from 1000 to 6500 in increments of
500, coded using color and point type) with the case of running crqa() on the entire sequence of data
points.

sinusoids to show the unidimensional case, and to the hand movement data of Wallot et al. (2016a) to
show the multidimensional case.

In order to set up the estimation of the delay and embedding dimensions for unidimensional time
series, the user has to decide how to choose the value of average mutual information (i.e., typeami =
mindip, the lag at which minimal information is observed, or typeami = maxlag, the maximum lag at
which minimal information is observed) and the relative percentage of information gained in FNN,
relative to the first embedding dimension, when higher embeddings are considered (i.e., fnnpercent).
Then, as crqa is integrated into the optimizeParam to estimate the radius, most of the arguments are
the same (e.g., mindiagline or tw), except the number of values of that are considered (i.e., radiusspan
= 100).

ts1 <- seq(0.1, 200, .1)
ts1 <- sin(ts1) + linspace(0, 1,length(ts1))
ts2 <- ts1
par <- list(method = "rqa", metric = "euclidean", maxlag = 20, radiusspan = 100,

normalize = 0, rescale = 4, mindiagline = 10, minvertline = 10, tw = 0,
whiteline = FALSE, recpt = FALSE, side = "both", datatype = "continuous",
fnnpercent = 10, typeami = "mindip")

results <- optimizeParam(ts1, ts2, par, min.rec = 2, max.rec = 5)
print(unlist(results))

radius emddim delay
0.17 2 18

For multidimensional series, the user needs to specify the right RQA method (i.e., method =
"mdcrqa"). Then, for the estimation of the delay via AMI: (1) nbins, which is the number of breaks
used to define the bins within which the two-dimensional histogram (or frequency distribution) of the
original and delayed time series are computed, and (2) the criterion to select the delay (firstBelow
to use the lowest delay at which the AMI function drops below the value set by the threshold
argument, and localMin to use the position of the first local AMI minimum). The estimation of the
embedding dimensions instead needs the following arguments: (1) maxEmb, which is the maximum
number of embedding dimensions considered, (2) noSamples, which is the number of randomly drawn
coordinates from phase space used to estimate the percentage of false-nearest neighbors, (3) Rtol,
which is the first distance criterion for separating false neighbors, and (4) Atol, which is the second
distance criterion for separating false neighbors. The radius is estimated as before.

par$method <- "mdcrqa"
par$nbins <- 50
par$criterion <- "firstBelow"
par$threshold <- 1.6
par$maxEmb <- 20
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par$numSamples <- 500
par$Rtol <- 10
par$Atol <- 2
results <- optimizeParam(P1, P2, par, min.rec = 2, max.rec = 5)
print(unlist(results))

radius emddim delay
0.032 11 2

Conclusion

This paper describes recurrence quantification analysis, a statistical method to characterize the nonlin-
ear dynamics of a system. It has received a growing interest from researchers across very different
fields from physiology to psychology because of its flexibility, ease of application, and explanatory
power. In particular, we explain recurrence analysis from the simplest case of auto-recurrence of a
unidimensional time series to the most complex case of multidimensional cross-recurrence. More
importantly, we presented a significantly updated version of the crqa to perform all different variants
of recurrence analysis described in the theoretical section of this manuscript. We showcased the
different functions available in crqa with real data of categorical and continuous nature, and illustrated
how starting parameters for continuous data could be obtained (i.e., radius, embedding dimension,
and delay) as well as handling long time series in a memory-efficient way using additional functions
available in crqa.

It is useful to end with some observations regarding the broader relevance of the package presented
here. The RQA methodology and the updated crqa tap into a number of evolving problems in data
analysis across various disciplines. For example, there is a drive to improve measures and models
of multimodal data (Abawajy, 2015; Dale, 2015; Lahat et al., 2015), including multi-person measures
(Cooke et al., 2013; López Pérez et al., 2017; Schilbach et al., 2013; von Zimmermann and Richardson,
2016; Wallot et al., 2016a). RQA and its multidimensional counterpart implemented in our package
constitute an extraordinarily expansive analysis tool for exploring varied kinds of complex and
multidimensional data. In addition, a demand for more dynamic quantitative analyses has now
also penetrated into the social sciences (Chemero, 2011; Friedenberg, 2009; Spivey, 2008; Ward, 2002;
Pagnotta et al., 2020). crqa is designed to be a comprehensive analysis package for studying the
dynamics of diverse systems, especially systems that exhibit high degrees of interdependence, and
that show signatures in their dynamics that are critical for understanding them.
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