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penPHcure: Variable Selection in
Proportional Hazards Cure Model with
Time-Varying Covariates
by Alessandro Beretta and Cédric Heuchenne

Abstract We describe the penPHcure R package, which implements the semiparametric proportional-
hazards (PH) cure model of Sy and Taylor (2000) extended to time-varying covariates and the variable
selection technique based on its SCAD-penalized likelihood proposed by Beretta and Heuchenne
(2019a). In survival analysis, cure models are a useful tool when a fraction of the population is likely to
be immune from the event of interest. They can separate the effects of certain factors on the probability
of being susceptible and on the time until the occurrence of the event. Moreover, the penPHcure
package allows the user to simulate data from a PH cure model, where the event-times are generated
on a continuous scale from a piecewise exponential distribution conditional on time-varying covariates,
with a method similar to Hendry (2014). We present the results of a simulation study to assess the
finite sample performance of the methodology and illustrate the functionalities of the penPHcure
package using criminal recidivism data.

Introduction

In contrast to other statistical methods, survival analysis models are designed to model the time to
an event of interest (e.g., death or occurrence of a disease in medical studies). A typical feature of
time-to-event data is the presence of right censoring, an incomplete information problem that arises
when a subject is lost to follow-up or does not experience the event before the end of the study. In
these cases, it is unknown whether the subject will eventually experience the event and when it will
occur, given that it can occur. The most common assumption of standard survival analysis models is
that the whole population will sooner or later experience the event of interest. However, in practice,
this may not be the case because a fraction of the population may be immune (i.e., not susceptible) to
this event. Cure models, also known as split population duration models or limited-failure population models,
were developed to handle this kind of situation. They allow us to investigate the effects of some
covariates (e.g., type of treatment, stage of the tumor, sex, or age) on the probability to be susceptible
to the event of interest (i.e., incidence), and on the survival time conditional on being susceptible (i.e.,
latency).

Originally, cure models were introduced in the medical literature by Boag (1949) and Berkson
and Gage (1952), but they have been used in several other disciplines during the years. In reliability
engineering, Meeker (1987) investigates the failure of solid-state electronic components (e.g., integrated
circuits). In social science, Schmidt and Witte (1989) investigate the timing of return to prison for a
sample of prison releases, and they use it to make predictions of whether or not individuals return to
prison. In finance, Cole and Gunther (1995) analyze the determinants of commercial bank failures in
the United States; in credit scoring, Tong et al. (2012) predict defaults on a portfolio of UK personal
loans. In political science, Svolik (2008) studies the likelihood that a democracy consolidates and the
timing of authoritarian reversals in democracies that are not consolidated. In marketing, Polo et al.
(2011) investigate the drivers of customer retention in a liberalizing market, using data for a sample of
650 consumers in the Spanish mobile phone industry. In the literature, several variants of cure models
have been proposed (see Amico and Van Keilegom (2018) for a comprehensive survey), which belong
to two main families: mixture cure models and promotion time cure models.

In this article, we present the penPHcure package (Beretta and Heuchenne, 2019b), which im-
plements the semiparametric proportional-hazards (PH) mixture cure model of Sy and Taylor (2000)
extended to time-varying covariates, where the incidence and latency distributions are modeled by a
logistic regression and a Cox’s PH model (Cox, 1972), respectively. The penPHcure package contains
two main functions: penpHcure, to estimate the regression coefficients, their confidence intervals using
the basic/percentile bootstrap method, and to perform variable selection using the SCAD-penalized
likelihood technique proposed by Beretta and Heuchenne (2019a); and penpHcure.simulate to simu-
late data from a PH cure model, where the event-times are generated on a continuous scale from a
piecewise exponential distribution conditional on time-varying covariates, using a method similar to
the one described in Hendry (2014).

At the time of writing this article, we are unaware of other R packages for estimation of semi-
parametric PH mixture cure models with time-varying covariates and, above all, that enable the
user to perform variable selection. In the context of cure models for right-censored data, available
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R packages include: the flexsurvcure package (Amdahl, 2019) for estimation of parametric mixture
and non-mixture cure models with time-invariant covariates using time-to-event distributions from
the flexsurv package (Jackson, 2016); the nltm package (Garibotti et al., 2019) for estimation of the
semiparametric PH cure model with time-invariant covariates of Tsodikov et al. (2003), as well as other
nonlinear transformation models for analyzing survival data using the method of Tsodikov (2003);
and the smcure package (Cai et al., 2012) for estimation of the semiparametric PH cure model and the
accelerated failure time cure model with time-invariant covariates and the spduration package (Beger
et al., 2018) that implements a parametric cure model with time-varying covariates using Weibull
and Log-Logistic latency distributions. Compared to spduration, the penPHcure package has some
advantages: the latency distribution is modeled by a more flexible semiparametric Cox’s PH model;
the response variable and the time to the event of interest are continuous; and, above all, it allows
the user to simultaneously select variables and estimate their parameters using a variable selection
technique based on SCAD penalties.

The remainder of this article is structured as follows:

• Methodology. We present the PH cure model with time-varying covariates implemented in the
penPHcure function when the argument pen.type is set equal to "none" (default);

– Variable selection. We present the variable selection technique based on SCAD penalties
implemented in the penPHcure function when pen.type=="SCAD";

– Data generation. We describe the algorithm implemented in the penPHcure.simulate
function, which generates data from a PH cure model with time-varying covariates.

• Simulation study. We analyze the finite sample performance of the PH cure model estimates and
its variable selection technique implemented in the penPHcure function.

• An application to Criminal Recidivism data. We provide an example of practical use of the
penPHcure function to analyze a real data set.

Methodology

Let Y be a Bernoulli random variable indicating whether an individual is susceptible (Y = 1) or
immune (Y = 0) to the event of interest with probability p = P(Y = 1). Let T be the time to event,
defined only when Y = 1. Assuming that a fraction of the population is immune to the event of
interest, the marginal survival function of T is defined as

S(t) = (1 − p) + pS(t|Y = 1),

where p is the incidence (i.e., probability of being susceptible) and S(t|Y = 1) is the latency (i.e.,
survival function conditional on being susceptible).

The incidence is modeled by a logistic regression model:

p(x) = P(Y = 1|x) = exp(x′b)
1 + exp(x′b)

,

where x is a vector of time-fixed covariates (including the intercept) and b a vector of unknown
coefficients. Whereas the latency is modeled by a Cox’s PH model:

S(t|Y = 1, z̄(t)) = exp
(
−

∫ t

0
h0(u)ez′(u)βdu

)
,

where z(t) is a vector of time-varying covariates (we denote by z̄(t) the full history of the covariates up
to time t), β is a vector of unknown coefficients, and h0(t) is an arbitrary baseline conditional hazard
function.

Let O = {(ti, δi, z̄i(ti), xi); i = 1, ..., n} denote the observed data, where ti is the event/censoring
time and δi is the censoring indicator, which takes value 1 if ti is uncensored and 0 otherwise. Since
we know that yi = 1 when δi = 1, but yi is unobserved when δi = 0, we can estimate the unknown
parameters θ = (b, β, h0) using the Expectation-Maximization (EM) algorithm (Dempster et al., 1977).
The complete-data likelihood can be written as

LC (b, β, h0) =
n

∏
i=1

p(xi)
yi [1 − p(xi)]

(1−yi)

︸ ︷︷ ︸
L1(b)

×
n

∏
i=1

[
h0(ti)ez′i(ti)β

]δiyi
[

e−
∫ ti

0 h0(u)e
z′i (u)β du

]yi

︸ ︷︷ ︸
L2(β,h0)

, (1)
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i.e., the product between the incidence component L1 depending on a set of time-fixed covariates xi,
and the latency component L2 depending on a set of time-varying covariates z′i(t).

Given some starting values θ(0), the m-th iteration of the EM algorithm consists of two steps:

E step. Compute the expectation of the complete-data likelihood with respect to the conditional

distribution of the yi’s given the current parameter estimates θ̂
(m−1) and the observed data O.

This expectation is obtained by replacing the yi’s in (1) by their expectation

π
(m)
i = E

[
Yi

∣∣∣θ̂(m−1), O
]
= δi + (1 − δi)

p(xi)S(t|Y = 1, z̄i(t))
1 − p(xi) + p(xi)S(t|Y = 1, z̄i(t))

.

Note that we removed the dependence of the theoretical functions on the estimated parameters
to simplify the notation.

M step. Maximize the expected complete-data likelihood with respect to b, β, and the function h0.

Given π(m) = {π
(m)
1 , ..., π

(m)
n }, the incidence component L1 in (1) is maximized using the

Newton-Raphson method as in the classical logistic regression model. Whereas the latency
component L2 in (1) is maximized using a profile likelihood approach. The latter involves two
steps: (i) the baseline conditional hazard function is estimated nonparametrically by

ĥ0(t) =
1(

t(j) − t(j−1)

)
∑i∈Rj

π
(m)
i ez′i(t(j))β

, for t ∈ (t(j−1), t(j)], (2)

where t(1) ≤ ... ≤ t(k) are the k ordered event times and Rj is the risk set at t−
(j) (i.e., the set of all

individuals who did not experience the event of interest and have not been censored just prior
to time t(j)); and then (ii) the function h0 in L2 is replaced by its estimator given in (2) to obtain
the following partial likelihood, which does not depend on the function h0 anymore,

L̃2

(
β
∣∣∣π(m)

i

)
=

k

∏
j=1

ezi(t(j))β

∑i∈Rj
π
(m)
i ez′i(t(j))β

. (3)

Finally, the latency component is estimated by maximizing (3) with respect to β. In case of tied
event-times, (2) and (3) can be rewritten using the Breslow (1974) or Efron (1977) approximation
as in the standard Cox’s PH model.

The EM algorithm terminates whenever
∥∥∥b̂

(m) − b̂
(m−1)

∥∥∥
2
< ϵ and

∥∥∥β̂
(m) − β̂

(m−1)
∥∥∥

2
< ϵ, where

ϵ is a tolerance threshold (by default 10−6).

Variable selection

When the number of available covariates is large, fitting all possible subsets to find the most relevant
covariates would be too time consuming. Beretta and Heuchenne (2019a) proposed a regularization
method based on the maximization of a penalized version of the complete-data log-likelihood

ℓP
C (θ; λ1, λ2) = ℓ1 (b)− n

q1+1

∑
j=2

pλ1

(
|bj|

)
︸ ︷︷ ︸

ℓP
1 (b;λ1)

+ ℓ2 (β, h0)− n
q2

∑
l=1

pλ2 (|βl |)︸ ︷︷ ︸
ℓP

2 (β,h0;λ2)

,

where ℓ denotes a log-likelihood and pλ(.) a SCAD penalty function, which role is to shrink the
small coefficients toward zero. We assume that the q1 and q2 covariates in the incidence and latency
component, respectively, have been standardized, such that the coefficients in b and β are on the same
scale. The Smoothly Clipped Absolute Deviation (SCAD) penalty function (Fan and Li, 2001) is given
by

pλ(|β j|) =


λ|β j|, if |β j| ≤ λ
(a2−1)λ2−(|β j |−aλ)2

2(a−1) , if λ < |β j| ≤ aλ

(a+1)λ2

2 , if |β j| > aλ

,

for some a > 2 and λ > 0. As explained by Fan and Li (2001, 2002) in the context of linear regression,
generalized linear models, Cox’s PH model, and frailty models, the SCAD estimator has three desir-
able properties: unbiasedness (do not penalize to much large coefficients), sparsity, and continuity.
Moreover, with a proper choice of the tuning parameters (λ, a), it also possesses what is known as
the “oracle property”, meaning that the SCAD estimator is asymptotically equivalent to the oracle
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estimator (i.e., an estimator with only the relevant variables with nonzero coefficients).

For fixed values of the tuning parameters (λ1, λ2, a1, a2), estimates of θ can be obtained using an
EM algorithm close to the one described in the previous section. The only difference lies in the M-step.
Given that the penalized log-likelihoods ℓP

1 (b; λ1) and ℓ̃P
2 (β; λ2), where ℓ̃P

2 (β; λ2) is the logarithm of
(3), are non-concave and non-differentiable at the origin, b and β are now estimated using the MM
algorithm of Hunter and Li (2005) based on a perturbed Local Quadratic Approximation (LQA) of the
penalty function. By default, when the argument pen.type of the function penPHcure is set equal to
"SCAD", the initial values for b and β are vectors with all elements equal to zero. Otherwise, the user
can specify other values (e.g., the estimated coefficients of the model with all covariates) using the
argument SV.

Regarding the choice of the tuning parameters, following the suggestion of Fan and Li (2001), we
keep a1 = a2 = 3.7, and given a set of possible values for (λ1, λ2), we select the ones that minimize
the following Akaike (AIC) or Bayesian (BIC) Information Criteria:

AIC (λ1, λ2) = −2ℓ
(
θ̂λ1,λ2

)
+ 2ν; and

BIC (λ1, λ2) = −2ℓ
(
θ̂λ1,λ2

)
+ ln(n)ν,

where ℓ
(
θ̂λ1,λ2

)
is the observed data log-likelihood evaluated at the penalized MLE θ̂λ1,λ2 and ν is the

number of nonzero coefficients, identified as the number of coefficients with an absolute value greater
than a given threshold (by default 10−6).

Data generation

Let S = {s1, s2, ..., sJ} be a partition of the time scale forming J + 1 intervals (0, s1], (s1, s2], ..., (sJ−1, sJ ],
(sJ , ∞]. Define a vector of time-varying covariates piecewise constant in each interval: z(t) = zj,
for t ∈ (sj−1, sj]. Consider a transformation g, such that g(0) = 0, g(t) is strictly increasing for
t > 0, and g−1(t) is differentiable. In the implementation of the penPHcure.simulate function, we use
g(t) = t1/γ, where the parameter γ can be specified by the user via the argument gamma, which by
default is equal to 1. According to Hendry (2014), if we generate a random variable V as a piecewise
exponential distribution with density function given by

fV(t) =
j−1

∏
l=1

exp{−λl [g
−1(sl)− g−1(sl−1)]}λj exp{−λj[t − g−1(sj−1)]}, for t ∈ (g−1(sj−1), g−1(sj)],

where λj = exp(z′jβ) is the constant hazard in the interval (g−1(sj−1), g−1(sj)], then g(V) follows
a Cox’s PH model with time-varying covariates with a baseline hazard function given by h0(t) =
d
dt [g

−1(t)]. This method is part of the algorithm implemented in the penPHcure.simulate function
to simulate data from a PH cure model with time-varying covariates (see Table 1 for a detailed
description).

Require: N, sample size; S, partition of the time scale; g(t), variable transformation; b,
incidence coefficients; β, latency coefficients.
for i = 1, ..., N do

1. Generate a vector xi from an arbitrary distribution;
2. Generate yi from a Bernoulli distribution with probability p(xi);
3. Generate zi = {zi,1, zi,2, ...zi,J} from an arbitrary distribution;
4. Generate vi from a piecewise exponential distribution with density fV(t);
5. Compute wi = g(vi) ;
6. Generate ci from an arbitrary distribution;
if yi = 0 or wi > ci then

ti = ci;
δi = 0;

else
ti = wi;
δi = 1;

end if
end for
return {(ti, δi, zi, xi); i = 1, ..., N}

Table 1: Data generation algorithm: PH cure model with time-varying covariates
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Simulation study

In this section, we present the results of a simulation study conducted to assess the finite sample
performance of the PH cure model estimation and its variable selection technique implemented in
the penPHcure function. The event-times follow a Cox’s PH model with baseline hazard function
h0(t) = 3t2 and 8 time-varying covariates. These covariates are constant within J = 30 equally-spaced
intervals (0, s1], (s1, s2], ..., (sJ−1, sJ ], where s1 = 0.2 and sJ = 6. They follow a multivariate normal
distribution zi,j ∼ N(0, Σ), where Σp,q = 0.5|p−q|, for p, q = 1, ..., 8. The censoring times follow an
exponential distribution truncated above 6 and with parameter λC. The cure indicators are generated
from a logistic regression model with 8 time-fixed covariates that follow a multivariate normal
distribution xi ∼ N(0, Σ), where Σp,q = 0.5|p−q|, for p, q = 1, ..., 8. Finally, the regression coefficients
vectors are set equal to β0 = (−0.7, 0, 1, 0,−0.5, 0.75, 0, 0)′ and b0 = (b0, 1.5, 0,−0.75, 0,−1.5, 0, 0.75, 0)′.

We consider 6 simulation settings, with different levels of censoring and proportions of non-
susceptible individuals (expressed as a fraction of the sample size), depending on different values
of b0 and λC (see Table 2). For each of these settings, we generated 500 replications using the
penPHcure.simulate function for different sample sizes N = {250, 500, 1000}. Then, for all simulated
datasets, we use the penPHcure function to (i) fit a standard PH cure model with all covariates (FULL),
(ii) fit a standard PH cure model with the covariates associated to the non-zero coefficients only (ORA-
CLE), and (iii) to perform variable selection using the regularization method with SCAD penalties and
tuning parameters chosen according to the BIC criterion. The possible values of the tuning parameters
(λ1, λ2) are obtained with the function exp(seq(-6,-1,length.out = 10)), whereas (a1, a2) are kept
equal to 3.7. Furthermore, we use the coxph function in the survival package (Therneau, 2015) to fit
the classical Cox’s PH model with the covariates associated to the non-zero coefficients only (COX).

Censoring Cure λC b0

Low (40%) High (30%) 0.02 1.45
Low (40%) Medium (20%) 0.3 2.35

Medium (60%) High (45%) 0.35 0.35
Medium (60%) Medium (30%) 0.75 1.45

High (80%) High (60%) 0.95 -0.7
High (80%) Medium (40%) 1.55 0.7

Table 2: Simulation settings (censoring and cure are expressed as fractions of all individuals).

The performance is measured in terms of Mean Estimation Error (MEE) and average number of
correct and incorrect zeros identified by the variable selection technique (SCAD). In particular, the

estimation error for the incidence component is computed as E
[
( p̂(x)− p0(x))

2
]
, where p̂(x) and

p0(x) are the estimated and true probabilities of being susceptible. Whereas the estimation error

for the latency component is computed as E
[(

Ŝ(T|Y = 1)− S0(T|Y = 1)
)2
]
, where Ŝ(T|Y = 1) and

S0(T|Y = 1) are the estimated and true survival functions conditional on being susceptible.

In Figures 1 and 2, we provide the MEEs for the incidence and latency components, respectively,
while in Figure 3, we provide the average number of correct and incorrect zeros. From those figures,
we can see that the PH cure model estimation and its variable selection technique implemented in the
penPHcure function perform reasonably well. For an increase of the sample size or a decrease of the
level of censoring, the MEE decreases, and the number of correct (resp. incorrect) zeros converges to 4
(resp. 0). The MEEs of the ORACLE model are always the lowest ones, but we notice that the ones of
the SCAD method tend towards them as the sample size increases. It is important to note that, for a
fixed level of censoring, we observe higher MEEs in the case of a lower fraction of cured individuals.
The worst results are obtained in situations of high censoring and low cure rates, but it is enough to
increase the sample size to obtain better results. This is evidence of the fact that a cure model should
always be applied to data with a sufficient number of non-susceptible individuals. Last but not the
least important, we note that the use of the classical Cox’s PH model (COX) leads to very high errors.
This was expected since the model is wrongly specified as it ignores the existence of cured subjects.

Finally, in Table 3, we also present the coverage probabilities of the estimated 95% confidence
intervals for the ORACLE model using the basic and percentile bootstrap methods with 500 resamples.
In most cases, the basic bootstrap method outperforms the percentile bootstrap method, especially for
the smallest sample sizes, with coverage probabilities closer to the 95% nominal level.

The R code used to obtain the results in Figures 1 to 3 (resp. Table 3) are provided in Section 2
(resp. Section 3) of the supplementary material (‘beretta-heuchenne.R’). Moreover, in the file ‘beretta-
heuchenne-suppl.pdf’, we provide a table with all the results contained in Figures 1 to 3.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=survival


CONTRIBUTED RESEARCH ARTICLES 121

Figure 1: Results of the simulations: mean estimation errors (incidence component).

Figure 2: Results of the simulations: mean estimation errors (latency component).

Figure 3: Results of the simulations: average number of correct/incorrect zeros identified by the
variable selection technique (SCAD).
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cens cure N Method b0 b1 b2 b3 b4 β1 β2 β3 β4

0.40 0.30 250 basic 0.97 0.97 0.98 0.97 0.97 0.96 0.97 0.96 0.94
perc 0.9 0.91 0.94 0.91 0.94 0.93 0.94 0.95 0.94

500 basic 0.97 0.95 0.95 0.94 0.96 0.96 0.96 0.96 0.96
perc 0.91 0.91 0.94 0.92 0.94 0.94 0.91 0.95 0.95

1000 basic 0.95 0.96 0.95 0.97 0.97 0.93 0.95 0.95 0.96
perc 0.94 0.94 0.93 0.95 0.97 0.93 0.95 0.95 0.95

0.40 0.20 250 basic 0.95 0.96 0.99 0.96 0.97 0.96 0.97 0.97 0.96
perc 0.89 0.9 0.94 0.91 0.93 0.94 0.96 0.96 0.96

500 basic 0.98 0.97 0.97 0.97 0.98 0.95 0.96 0.96 0.96
perc 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.93 0.93

1000 basic 0.97 0.96 0.96 0.95 0.95 0.94 0.93 0.96 0.95
perc 0.95 0.94 0.94 0.93 0.94 0.94 0.94 0.96 0.95

0.60 0.45 250 basic 0.98 0.95 0.96 0.96 0.97 0.98 0.98 0.97 0.97
perc 0.95 0.91 0.93 0.93 0.94 0.93 0.94 0.94 0.94

500 basic 0.98 0.95 0.94 0.97 0.96 0.94 0.94 0.96 0.95
perc 0.96 0.93 0.94 0.92 0.93 0.94 0.92 0.95 0.95

1000 basic 0.95 0.96 0.96 0.95 0.95 0.95 0.94 0.93 0.95
perc 0.95 0.94 0.94 0.93 0.94 0.94 0.92 0.94 0.93

0.60 0.30 250 basic 0.96 0.94 0.98 0.94 0.99 0.97 0.96 0.96 0.96
perc 0.89 0.9 0.91 0.89 0.93 0.94 0.94 0.95 0.95

500 basic 0.96 0.97 0.98 0.95 0.97 0.96 0.96 0.95 0.95
perc 0.94 0.91 0.94 0.93 0.93 0.95 0.96 0.95 0.95

1000 basic 0.96 0.96 0.96 0.95 0.96 0.96 0.95 0.95 0.96
perc 0.95 0.94 0.94 0.92 0.94 0.94 0.94 0.94 0.95

0.80 0.60 250 basic 0.99 0.97 0.98 0.97 0.97 0.97 0.96 0.97 0.97
perc 0.94 0.91 0.92 0.91 0.92 0.94 0.92 0.96 0.94

500 basic 0.98 0.95 0.97 0.95 0.97 0.97 0.96 0.98 0.98
perc 0.94 0.93 0.95 0.93 0.94 0.95 0.94 0.95 0.96

1000 basic 0.96 0.95 0.96 0.94 0.96 0.96 0.95 0.94 0.96
perc 0.93 0.95 0.94 0.93 0.95 0.95 0.94 0.93 0.93

0.80 0.40 250 basic 0.98 0.95 0.99 0.98 1 0.97 0.96 0.99 0.99
perc 0.92 0.88 0.91 0.91 0.93 0.95 0.93 0.97 0.95

500 basic 0.97 0.95 0.97 0.96 0.98 0.96 0.96 0.97 0.96
perc 0.94 0.9 0.93 0.91 0.93 0.94 0.94 0.96 0.94

1000 basic 0.96 0.96 0.97 0.95 0.95 0.98 0.95 0.93 0.96
perc 0.96 0.95 0.95 0.94 0.93 0.94 0.94 0.93 0.93

Table 3: Results of the simulations: coverage probabilities.

An application to Criminal Recidivism data

In this section, we illustrate the use of the penPHcure R package using a Criminal Recidivism dataset,
which contains a sample of 432 inmates released from Maryland state prisons and followed for one
year after release (Rossi et al., 1980). The aim of this study was to investigate the relationship between
the time to first arrest after release and some covariates observed during the follow-up period. In
particular, to study the effect of providing financial aid at the moment of release. The original source
of the data is the Rossi dataset in the RcmdrPlugin.survival package (Fox and Carvalho, 2012), which
has been converted into a counting process format and included in the penPHcure package.

Let us load and illustrate the dataset:

> library(penPHcure)
> data("cpRossi", package = "penPHcure")
> head(cpRossi)
id tstart tstop arrest fin age race wexp mar paro prio educ emp

1 1 0 20 yes no 27 black no no yes 3 3 no
2 2 0 9 no no 18 black no no yes 8 4 no
3 2 9 14 no no 18 black no no yes 8 4 yes
4 2 14 17 yes no 18 black no no yes 8 4 no
5 3 0 16 no no 19 other yes no yes 13 3 no
6 3 16 17 no no 19 other yes no yes 13 3 yes
> str(cpRossi)
'data.frame': 1405 obs. of 13 variables:
$ id : int 1 2 2 2 3 3 3 4 4 4 ...
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$ tstart: int 0 0 9 14 0 16 17 0 4 21 ...
$ tstop : int 20 9 14 17 16 17 25 4 21 31 ...
$ arrest: Factor w/ 2 levels "no","yes": 2 1 1 2 1 1 2 1 1 1 ...
$ fin : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 2 2 2 ...
$ age : int 27 18 18 18 19 19 19 23 23 23 ...
$ race : Factor w/ 2 levels "black","other": 1 1 1 1 2 2 2 1 1 1 ...
$ wexp : Factor w/ 2 levels "no","yes": 1 1 1 1 2 2 2 2 2 2 ...
$ mar : Factor w/ 2 levels "yes","no": 2 2 2 2 2 2 2 1 1 1 ...
$ paro : Factor w/ 2 levels "no","yes": 2 2 2 2 2 2 2 2 2 2 ...
$ prio : int 3 8 8 8 13 13 13 1 1 1 ...
$ educ : Factor w/ 3 levels "3","4","5": 1 2 2 2 1 1 1 3 3 3 ...
$ emp : Factor w/ 2 levels "no","yes": 1 1 2 1 1 2 1 1 2 1 ...

The object cpRossi is a data.frame in counting process format with 1405 observations for 432
individuals on 13 variables. The id variable provides the unique identification number for every
individual in the study. The variables tstart and tstop denote the time interval of the observation
(measured in weeks). The variable arrest denotes whether the individual has been arrested during
the 1-year follow-up period. The remaining explanatory variables are described hereafter.

• fin. Financial aid received after release: yes or no;

• age. Age in years at the time of release;

• race. Race of the individual: black or other;

• wexp. Full-time work experience before incarceration: yes or no;

• mar. Married at the time of release: yes or no;

• paro. Released on parole: yes or no;

• prio. Number of convictions prior to incarceration;

• educ. Level of education: <=9th degree (“3”), 10th or 11th degree (“4”), or >=12th degree (“5”);

• emp. Working full time during the observed time interval: yes or no. This is the only variable
which is varying over time (e.g., the individual with id = 2 did not work full time during the
first 9 weeks after release, then he did for 5 weeks, and, finally, he has been arrested after 3
weeks without working full time).

Using the penPHcure function, by default, we can fit the standard PH cure model. First, we use
a formula object with the response on the left of the tilde operator and the explanatory variables
to be included in the latency component on the right. The response is a survival object returned
by the Surv(tstart,tstop,arrest) function. Then, using the argument cureform, we specify the
explanatory variables to be included in the incidence component. By default, these covariates are
set equal to the last observation, but in this case, we set the argument which.X = "mean" to compute
the time-weighted average over the full history. Finally, setting the argument inference = TRUE,
we conduct inference about the parameter estimates via bootstrapping (by default, 100 bootstrap
resamples). The user can increase/decrease the number of bootstrap resamples with the argument
nboot.

> set.seed(123) # for reproducibility
> fit <- penPHcure(Surv(tstart,tstop,arrest)~fin+age+race+wexp+mar+paro+prio+educ+emp,
+ cureform = ~fin+age+race+wexp+mar+paro+prio+educ+emp,
+ data = cpRossi,which.X = "mean",inference = TRUE)

Initializing PH cure model with time-varying covariates...

Number of individuals: 432
Censoring proportion: 0.736
Tied failure times: TRUE
Number of unique failure times: 49
Number of covariates in the survival component: 10
Number of covariates in the cure component: 10

Checking starting values...

Fitting standard PH cure model with time-varying covariates... Please wait...

Performing inference via bootstrapping... Please wait ...
|==============================================================================| 100%

DONE!
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This call to the penPHcure function returned an object of class "PHcure", and we can print a
summary of the results using the summary method. By default, confidence intervals are computed
using the basic bootstrap method (the alternative is percentile bootstrap) and a confidence level of 95%.
In order to control these features, the user can provide the arguments conf.int and conf.int.level,
respectively.

> summary(fit)

------------------------------------------------------
+++ PH cure model with time-varying covariates +++
------------------------------------------------------
Sample size: 432
Censoring proportion: 0.7361111
Number of unique event times: 49
Tied failure times: TRUE

log-likelihood: -643.65

------------------------------------------------------
+++ Cure (incidence) coefficient estimates +++
+++ and 95% confidence intervals * +++
------------------------------------------------------

Estimate 2.5% 97.5%
(Intercept) 1.136709 -34.041743 9.769052
finyes -0.455199 -2.299870 12.188817
age -0.067715 -0.382429 0.413001
raceother -0.100950 -2.988104 35.336024
wexpyes 0.251663 -3.257339 2.193371
marno 0.261947 -15.041406 35.102574
paroyes -0.041289 -3.156395 1.659637
prio 0.068443 -0.285553 0.237089
educ4 -0.570782 -2.614311 2.532353
educ5 -1.163257 -39.473732 34.360612
empyes -0.860659 -3.299354 1.216299

------------------------------------------------------
+++ Survival (latency) coefficient estimates +++
+++ and 95% confidence intervals * +++
------------------------------------------------------

Estimate 2.5% 97.5%
finyes 0.062630 -1.427436 1.446067
age 0.046192 -0.067209 0.176043
raceother -0.759985 -2.770654 0.720247
wexpyes -0.552549 -1.672866 0.576657
marno 0.123655 -2.327914 1.600195
paroyes 0.040388 -0.816177 1.110058
prio 0.048407 -0.107942 0.195763
educ4 0.588156 -0.545885 1.881803
educ5 0.838098 -2.527512 5.118107
empyes -1.431782 -1.980471 -0.781978

------------------------------------------------------
* Confidence intervals computed by the basic
bootstrap method, with 100 replications.

------------------------------------------------------

As you can see, only one covariate (emp) in the latency component is statistically significant (the
95% confidence interval does not include zero). The negative sign of the estimated coefficient implies
that the individuals working full time after release have a lower risk of being rearrested (among the
individuals susceptible to be rearrested). The lack of significance of the other covariates might be
explained by the small sample size, the high level of censoring (only 114 out of 432 individuals have
been rearrested), or by potential confounding factors.

We now perform variable selection with the proposed SCAD-penalized likelihood method to
check whether other covariates may be relevant to explain incidence and latency. First, we specify
the possible values of the tuning parameters (using the argument pen.tuneGrid) and set the starting
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values equal to the coefficient estimates from the unpenalized model (using the argument SV). Then,
we still use the penPHcure function, but we now include the argument pen.type = "SCAD".

> pen.tuneGrid <- list(CURE = list(lambda = seq(0.01,0.12,by=0.01),
+ a = 3.7),
+ SURV = list(lambda = seq(0.01,0.12,by=0.01),
+ a = 3.7))
> SV <- list(b=fit$b,beta=fit$beta)
> tuneSCAD <- penPHcure(Surv(tstart,tstop,arrest)~fin+age+race+wexp+mar+paro+prio+educ+emp,
+ cureform = ~fin+age+race+wexp+mar+paro+prio+educ+emp,
+ data = cpRossi,which.X = "mean",pen.type = "SCAD",
+ pen.tuneGrid = pen.tuneGrid,SV = SV)

Initializing PH cure model with time-varying covariates...

Number of individuals: 432
Censoring proportion: 0.736
Tied failure times: TRUE
Number of unique failure times: 49
Number of covariates in the survival component: 10
Number of covariates in the cure component: 10

Checking starting values...

Tuning SCAD-penalized PH cure model with time-varying covariates... Please wait...

iter aCURE aSURV lambdaCURE lambdaSURV AIC BIC df
1 3.70 3.70 0.01 0.01 1319.1625 1384.2573 16
2 3.70 3.70 0.01 0.02 1319.1625 1384.2573 16
3 3.70 3.70 0.01 0.03 1316.0665 1360.8192 11
4 3.70 3.70 0.01 0.04 1318.0458 1358.7300 10
5 3.70 3.70 0.01 0.05 1318.0457 1358.7300 10

... ... (omitted rows) ... ... (omitted rows) ... ...

140 3.70 3.70 0.12 0.08 1325.5349 1333.6718 2
141 3.70 3.70 0.12 0.09 1325.5349 1333.6718 2
142 3.70 3.70 0.12 0.10 1325.5349 1333.6718 2
143 3.70 3.70 0.12 0.11 1325.5349 1333.6718 2
144 3.70 3.70 0.12 0.12 1325.5349 1333.6718 2

DONE!

This time, the call to the penPHcure function returned an object of class "penPHcure". We can print
a summary of the results using the summary method, and, by default, the fitted model with the lowest
BIC criterion is returned.

> summary(tuneSCAD)

------------------------------------------------------
+++ PH cure model with time-varying covariates +++
+++ [ Variable selection ] +++
------------------------------------------------------
Sample size: 432
Censoring proportion: 0.7361111
Number of unique event times: 49
Tied failure times: TRUE
Penalty type: SCAD
Selection criterion: BIC

------------------------------------------------------
+++ Tuning parameters +++
------------------------------------------------------
Cure (incidence) --- lambda: 0.09

a: 3.7
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Survival (latency) - lambda: 0.05
a: 3.7

BIC = 1329.481

------------------------------------------------------
+++ Cure (incidence) +++
+++ [ Coefficients of selected covariates ] +++
------------------------------------------------------

Estimate
(Intercept) 1.776907
age -0.076498

------------------------------------------------------
+++ Survival (latency) +++
+++ [ Coefficients of selected covariates ] +++
------------------------------------------------------

Estimate
prio 0.101202
empyes -1.537286

The Bayesian Information Criterion is minimized for λ1 = 0.09 and λ1 = 0.05. In this case, the
covariate age is selected in the incidence component. The negative sign of the estimated coefficient
implies that younger individuals are more susceptible to be rearrested. The covariates prio and emp
are selected in the latency component. The positive sign of the estimated coefficient (prio) implies that
a higher number of convictions prior to incarceration increases the risk of being rearrested (among the
individuals susceptible to be rearrested).

Let us now have a look at the fitted model with the lowest AIC criterion:

> summary(tuneSCAD,crit.type = "AIC")

------------------------------------------------------
+++ PH cure model with time-varying covariates +++
+++ [ Variable selection ] +++
------------------------------------------------------
Sample size: 432
Censoring proportion: 0.7361111
Number of unique event times: 49
Tied failure times: TRUE
Penalty type: SCAD
Selection criterion: AIC

------------------------------------------------------
+++ Tuning parameters +++
------------------------------------------------------
Cure (incidence) --- lambda: 0.06

a: 3.7

Survival (latency) - lambda: 0.03
a: 3.7

AIC = 1310.79

------------------------------------------------------
+++ Cure (incidence) +++
+++ [ Coefficients of selected covariates ] +++
------------------------------------------------------

Estimate
(Intercept) 1.829260
finyes -0.585638
age -0.067130
educ5 -0.887636

------------------------------------------------------
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+++ Survival (latency) +++
+++ [ Coefficients of selected covariates ] +++
------------------------------------------------------

Estimate
raceother -0.586626
prio 0.103746
empyes -1.552737

The Akaike Information Criterion is minimized for λ1 = 0.06 and λ1 = 0.03. As expected the AIC
criterion selected a less penalized and more complex model. In the incidence component, also the
covariates fin and educ have been selected. The negative signs imply that individuals who received
financial aid or with a high level of education (>=12th degree) are less susceptible to be rearrested. In
the latency component, also the covariate race has been selected. The negative coefficient implies that
individuals of a race other than black have a lower risk of being rearrested (among the individuals
susceptible to be rearrested).

Conclusion

In survival analysis studies, it may be the case that a fraction of the population is likely to be not
susceptible to the event of interest. In this article, we presented the penPHcure R package, which
implements the semiparametric proportional-hazards (PH) cure model of Sy and Taylor (2000) ex-
tended to time-varying covariates. This model can measure the effects of some covariates on the
probability of being susceptible and on the time until the occurrence of the event. The penPHcure
package is composed of two main functions: penpHcure, to estimate the regression coefficients, their
confidence intervals using the basic/percentile bootstrap method and to perform variable selection
using the SCAD-penalized likelihood technique proposed by Beretta and Heuchenne (2019a); and
penpHcure.simulate to simulate data from a PH cure model with time-dependent covariates. We first
explained the methodology behind these functions and presented the results of a simulation study to
assess its finite-sample performance. Then, we illustrated the use of the penPHcure function through
an example based on the Criminal Recidivism dataset.

Availability

The latest release and a development version of the penPHcure package are respectively avilable on
CRAN and at https://github.com/a-beretta/penPHcure.
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