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Analyzing Dependence between Point
Processes in Time Using IndTestPP
by Ana C. Cebrián and Jesús Asín

Abstract The need to analyze the dependence between two or more point processes in time appears in
many modeling problems related to the occurrence of events, such as the occurrence of climate events
at different spatial locations or synchrony detection in spike train analysis. The package IndTestPP
provides a general framework for all the steps in this type of analysis, and one of its main features is the
implementation of three families of tests to study independence given the intensities of the processes,
which are not only useful to assess independence but also to identify factors causing dependence.
The package also includes functions for generating different types of dependent point processes,
and implements computational statistical inference tools using them. An application to characterize
the dependence between the occurrence of extreme heat events in three Spanish locations using the
package is shown.

Introduction

A point process in time (PP in short) is a random collection of points in a space in R+ where each
point usually represents the time of an event. Examples of events that can be modeled as point
processes in time include the occurrence of earthquakes, heat waves, or the arrivals of insurance
claims. Many real problems involve not one but two or more PPs, and they should be studied in a
multivariate framework where a description of the independence or dependence structure between
them is required. Examples of these situations are the timing of the trades and mid-quote changes in
the stock exchange, the occurrence of temperature extremes or other climate events at different spatial
locations, or the synchrony detection in spike train analysis.

In those situations, statistical tests are required to assess the independence between two or more
PPs. If we can assume that the processes are independent, their modeling is much simpler, since it can
be carried out separately for each process without any loss of information. The tests are also useful to
identify the type of dependence and select the type of vector of point processes used to model them.
The need of testing independence between PPs appears in climate and environmental sciences (Cronie
and van Lieshout, 2016; Abaurrea et al., 2015), in neuroscience (Tuleau-Malot et al., 2014; Albert et al.,
2015), in biology (Myllymäki et al., 2017), and many other fields.

Two types of independence between PPs may be of interest, general independence (Rubin-
Delanchy and Heard, 2014a) and independence, given the intensities of the processes. The election
of the type of independence as null hypothesis depends on the aim of the study, but the second type
is more useful in modeling problems based on PPs. In effect, the most frequent approach to model
systematic dependence structures caused by common factors is the use of nonhomogeneous processes
with intensities, which are functions of the same or dependent covariates. To analyze if the dependence
is well represented by those covariates, the null hypothesis of independence given the intensities has
to be checked. When the existing dependence cannot be explained by the available covariates, models
taking into account that dependence should be considered to model the vectors of PPs.

The R package IndTestPP (Cebrián, 2020) provides a general framework for all the steps to analyze
the dependence in a vector of point processes in time: from data processing and tests of independence
to inference tools for parameters of interest. That makes it a useful tool for applications based on
the modeling of a vector of point processes. As far as we know, there is not other software for
this type of analysis. One of the main features of the package is the implementation of the three
families of independence tests by Cebrián et al. (2020), which cover a wide variety of homogeneous
and nonhomogeneous processes appearing in real problems: Poisson processes, processes with a
parametric marginal model, point processes with known marginal intensities, etc. The package also
provides functions to generate four different models of dependent PPs, and two types of independent
PPs, which are useful to develop inference tools based on computational statistical methods.

The outline of the paper is as follows. The two first sections Vector of point processes in time and Point
processes in R introduce some properties for vectors of point processes and some R packages related to
this topic. The three following sections describe the implementation in R of the tests of independence,
the measures of dependence, and the tools for generating PPs. The final section shows an illustrative
example of an analysis to characterize the dependence between the occurrence of extreme heat events
in three Spanish locations using IndTestPP.
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Figure 1: Vector of three point processes (left), and multivariate point process in a tridimensional
space (right).

Vectors of point processes in time

A point process in time, N, is defined in R+ and can be described in different equivalent ways. Here,
we will mainly use the sequence of occurrence times, T1, T2, ..., Tn, and also the set of random variables
N(A) representing the number of points in A, for each A ∈ R+. The notation for A = (0, t] is
N(t) = N((0, t]). The intensity measure of the process Λ gives the expected number of points in a set,
so that Λ((0, t]) = E(N((0, t])). Its derivative function, provided it exists, is the intensity function,

λ (t) =
∂Λ ((0, t])

∂t
.

If the intensity is constant, the process is homogeneous and nonhomogeneous otherwise. The most
known PP is the Poisson process, where N(A) has a Poisson(µA) distribution, with µA =

∫
A λ(t)dt,

and N(A1), . . . N(Ak) are independent variables provided that Ai ∩ Aj = ∅, ∀i ̸= j.
Herein, we will consider vectors of point processes N = (N1, . . . , Nd) observed in the same space

Ω = (0, T] ⊂ R+. This definition must not be mixed up with a multivariate point processes defined
as a process of random points Xi = (Xi1, . . . , Xid) in a d-dimensional space V ∈ Rd, whose simplest
example with d = 2 is a spatial point processes. Figure 1 shows the differences between the two
concepts with d = 3. A vector of PPs can be seen as a marked point process with discrete marks, and
can be represented by a countable collection of pairs (Ti, Di) where Ti ∈ R+ are the occurrence times
and Di ∈ {1, . . . , d} are the component indexes.

Most of the results in this work are developed for vectors of d = 2 processes, denoted by (Nx, Ny)
with intensities λx(t) and λy(t). If the results can be extended to higher values of d, it is specified. The
nx and ny points in each observed process are denoted t1, . . . , tnx and s1, . . . , sny , respectively.

Many types of dependence structures can appear between the marginal processes of a vector. The
most direct way of modeling it is to use models to represent the dependence between the occurrence
times of the processes, such as the common Poisson shock processes, the queue processes, the Poisson
processes with dependent marks, or the multivariate Neyman-Scott processes, described later.

Point processes in R

There exist many packages in R devoted to the analysis of spatial point processes: the extensive
spatstat (Baddeley et al., 2015), whose main functionalities include exploratory data analysis, model-
fitting, and simulation, stpp (Gabriel et al., 2020), splancs (Rowlingson and Diggle, 2017), and many
others. IDSpatialStats (Giles et al., 2019) provides spatial dependence measures, and future directions
include the extension to the spatio-temporal case. However, the number of packages dealing with
the analysis of point processes in time is not so high, and most of them deal with univariate analysis
of the processes. NHPoisson (Cebrián et al., 2015) provides a global framework for the modeling
and diagnosis of Poisson processes in time, PtProcess (Harte, 2010) fits and analyses time-dependent
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marked point processes with an emphasis on earthquake modeling, and mmpp (Hino et al., 2017)
offers various similarity and distance metrics for marked point processes.

The aim of IndTestPP is the analysis of vectors of point processes in time, in particular of its
dependence, and it provides a general framework for all the steps involved in this type of analysis:
data processing, estimation of the marginal intensities of the processes, analysis of independence given
the intensity, identification of factors causing dependence, and inference tools based on computational
statistics. mppa (Rubin-Delanchy and Heard, 2014b) provides a test for dependence between point
processes on the real line, but with a different aim since it tests general independence. The three families
of tests implemented in IndTestPP are more general since they are not restricted to Poisson processes,
and they test independence given the marginal intensities. This type of conditional independence is
more useful in statistical modeling of vectors of point processes since it helps to identify the factors
that cause the dependence. An example of how all the steps of the modeling of a vector of point
processes can be carried out using IndTestPP is shown in the application section.

Testing independence between point processes in time

Most of the analysis of independence between point processes in the literature involve spatial processes,
but few works deal with the study of independence between processes in time. IndTestPP includes
the three families of tests to assess independence between PPs in time by Cebrián et al. (2020), i.e., the
POISSON, the CLOSE, and the CROSS families, and a graphical tool, the Dutilleul plot. In all of them,
the null hypothesis is the independence between the point processes, given their marginal intensities,
and the alternative the existence of any type of random dependence between them. All the tests in
these families are constructed by keeping fixed the first observed process, a common approach to test
independence given the marginal structure. However, each test is based on different assumptions, and
all together they cover a wide range of types of processes appearing in real problems.

POISSON family

The family of tests POISSON is implemented in the function CondTest, and it includes two tests to
assess the independence between two homogeneous or nonhomogeneous processes, based on the
conditional distribution of Ny|Nx. The assumptions of the tests are that Ny is a Poisson process with
intensity function λy(t), specified in the vector argument lambday.

This family is based on the following property. If Nx and Ny are independent, and a point ti occurs
in Nx, the distribution of Ny does not change. Then, Yi, the number of points in Ny in intervals li of
length 2r around ti, follows a Poisson(µi) distribution with µi =

∫
li

λy(t)dt.

Two options are available to perform a test. The test implemented with the argument type='Poisson'
is based on the fact that under the independence between Nx and Ny and if not overlapping intervals
are used, the statistic Y = ∑nx

i=1 Yi has a Poisson(µ) distribution with µ = ∑nx
i=1 µi. A test based on a

Normal approximation is implemented with the argument type='Normal'. Again, under the null and
with not overlapping intervals, the variables (Yi − µi)/

√
µi are zero mean independent variables with

standard deviation equal to 1, and the asymptotic distribution of the statistic

Onx =
1√
nx

nx

∑
j=1

Yj − µj
√

µj

is N(0, 1). If the argument is type='All', both tests are calculated.

The intervals where the number of points is counted, li , are centered intervals around points ti
of radius r specified by the argument r. If changer=TRUE, when two intervals overlap, their lengths
are shortened by half of the intersection period; in this way the resulting intervals are disjoint and,
consequently, the corresponding variables Yi are independent.

The power study by Cebrián et al. (2020) shows that the Normal test performs better provided that
conditions to guarantee the normal approximation are fulfilled. These conditions are quite weak, even
with a complex intensity, mean values of µi around 0.6 points per interval lead to a valid approximation
with nx = 50, and around 0.3 with nx = 100.

CLOSE family

The CLOSE family includes two tests, the parametric bootstrap (PaB) and the Lotwick-Silverman (LoS)
tests, implemented in the functions TestIndNH and TestIndLS, respectively. The LoS test can only be
applied to homogeneous processes, but the PaB test also to nonhomogeneous ones. On the other
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hand, the LoS does not require any assumption to be applied, while PaB requires that Ny follows a
parametric model with a generation algorithm, such as a Poisson or a Neyman-Scott cluster process.
Although both tests allow checking the independence between d processes in general, the calculation
of the statistic is only implemented for d = 2 and d = 3.

These tests are based on the close point distance, and they aim to compare the behavior of the sets
of close points in a vector of observed processes and in vectors with the same marginal distributions
but independent components (Abaurrea et al., 2015). A point sj in Ny is a close point of ti in Nx if the
intervals to their previous points, sj−1 and ti−1, overlap. The set behavior is summarized by d̄xi, the
mean of the distances between ti and its close points, |sj − ti|. The set of close points and the mean
distance for each point ti are calculated by the functions uniogentri and DistObs, respectively.

Given the complexity of the test statistic, its distribution has to be obtained by computational
statistical methods. These methods require approaches to generate a sample of r processes N∗

j =

(Nx, N∗
y,j), where the observed process Nx is fixed, N∗

y,j has the same distribution as Ny, and Nx and
N∗

y,j are independent. The PaB and LoS tests result from two different generation approaches.

Parametric bootstrap test. In this test, the N∗
y,j processes are generated independently from Nx

using a parametric model. Two types of marginal models are implemented in TestIndNH: Pois-
son processes (type="Poisson") and Neyman-Scott cluster processes (type="PoissonCluster").The
generation of Poisson processes in a given period uses the function simNHPc, based on a two-step
algorithm which generates homogeneous occurrence times, and transform them into the points of
a NH process with intensity λ(t) (Ross, 2006). Neyman-Scott cluster processes are obtained by the
function IndNHNeyScot. Details about these processes are explained later.

Lotwick-Silverman test (LoS). TestIndLS generates processes using a Monte Carlo method condi-
tional on the observed marginal structure (Lotwick and Silverman, 1982). The steps are the following:

1. The observed processes (Nx, Ny) are wrapped onto a circumference by identifying the opposite
sides of the time interval where they are observed.

2. Fixing Nx, a new N∗
y is generated by translating Ny a random uniform amount on the circumfer-

ence. This breaks any dependence between the processes and keeps the marginal distributions,
provided they do not change over time.

The mean distances of the close point sets in the generated vectors of processes in the PaB and
the LoS tests are calculated by the functions DistSim and DistShift, respectively. The calculation
of the p-value requires the generation of processes in two steps of the algorithm, to calculate the
expectation of the mean distances d̄xij and to estimate the distribution of the statistic in a correlated
sample. This calculation is implemented so that the same generated processes are used in the two steps
and the computing time is kept low; otherwise, it would be multiplied by the number of simulations.
Moreover, parallel computation is implemented.

According to the power study by Cebrián et al. (2020), both LoS and PaB tests have high power, but
LoS performs slightly better in the homogeneous processes with small samples and low dependence.

CROSS family

The CROSS family includes two tests based on the cross K and the cross J spatial functions adapted to
the case of PPs in time, implemented in the functions NHK and NHJ, respectively. These functions also
provide estimators of the cross functions. They do not require any assumption about the distribution
of the marginal processes, only to know their intensities, and the p-values are calculated using a
LoS approach. The tests can be applied to two homogeneous or nonhomogeneous processes, and
more generally to two sets of processes, C = (Nx1, Nx2, . . . , NxlC ) and D = (Ny1, Ny2, . . . , NylD ). The
information about the processes is provided by arguments posC, a vector containing all the occurrence
times in the processes in C, and typeC, a vector containing the code j of the process Nxj where each
point in posC occurs; D is specified analogously by posD and typeD. For the sake of simplicity, the
results are expressed for the case, C = (Nx) and D = (Ny) with intensities λx(t) and λy(t).

K-function. Kxy(r) is the expected value of the number of points in Ny within a distance r of a
randomly chosen point in Nx, adjusted for the possible time-varying intensity. NHK calculates two
different estimators of Kxy(r) at a given grid of r distances, and the corresponding test statistics based
on them, K = 1

R ∑rR
r=r1 K̂xy(r)/2r. The estimator calculated by default (typeEst = 2) performs better

in terms of size and power (Cebrián et al., 2020).

J-function. It compares the functions Dxy(r) (distribution function of the distances from a point in
Nx to the nearest point in Ny) and Fy(r) (distribution function of the distances from a point in the
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space to the nearest point in Ny), in terms of the ratio Jxy(r) = (1 − Dxy(r))/(1 − Fy(r)), if Fy(r) < 1.

The estimators of Dxy(r) and Fy(r), calculated by NHD and NHF, are used in NHJ to estimate Jxy(r). To
estimate Fy(r), a grid of L values is required. It can be provided in argument L or an automatic selection
is calculated otherwise. In the homogeneous PPs, the previous estimators are equal to the empirical
distribution functions, and the calculation algorithms are changed to reduce the computational cost.
The test statistic, which summarizes the deviations of the function from 1, is J = 1

R ∑rR
r=r1 | Ĵxy(r)− 1|.

In both functions, NHK and NHJ, the grid of r distances where the estimators are evaluated are
provided in argument r. If it is NULL, an automatic selection based on length T is carried out. The
test statistics are also evaluated at that grid, and since dependence often appears between close
observations, the addends with high r can make it more difficult to discriminate between dependent
and independent processes. To avoid that effect, the statistic can be calculated using only the addends
with r < r0 by using the argument rTest=r0. To identify an adequate value of r0, values K̂xy(r) or
K̂xy(r)/2r can be optionally plotted.

Computation of the p-values. The calculation of the p-value in CROSS tests is based on a LoS
approach for nonhomogenous processes. First, the observed processes (Nx, Ny) are wrapped onto
a circumference. Then, fixing Nx, a new N∗

y is generated by translating Ny and its intensity λy(t),
a random uniform amount. This breaks any dependence, but in nonhomogeneous PPs, it changes
the distribution of the marginal processes. However, since the cross functions are adjusted for the
time-varying intensity, which is also translated, valid samples of Kxy(r) (or Jxy(r)) under independence
are obtained. Using the empirical distribution of those samples, the p-value and confidence envelopes
for Kxy(r) (or Jxy(r)) are obtained. Parallel computation is implemented for these calculations.

Dutilleul plot

The function DutilleulPlot carries out Diggle’s randomization testing procedure extended by Du-
tilleul (2011), which graphically assesses the independence between two homogeneous or nonhomo-
geneous Poisson processes, given their marginal structure. The idea is to plot the cumulative relative
frequency of the nearest neighbor distances between the points in the two observed processes and to
analyze the independence using a confidence band calculated from simulated independent Poisson
processes with the observed marginal intensities.

Dependence measures

Unfortunately, there does not exist a general definition to quantify the dependence between two PPs.
However, we suggest some measures implemented in IndtestPP which can be useful to describe the
level of dependence between many types of processes.

Correlation between the counting variables of two PPs. CountingCor calculates a sample es-
timator of ρL

xy = Cor(Xi, Yi), the correlation coefficient between Xi and Yi the number of points in
processes Nx and Ny, in an interval li of length L, using a partition of the observed period. Given the
discrete character of Xi and Yi, and since the usual aim is to quantify any type of dependence, not
only linear correlation, Spearman or Kendall coefficients are often more adequate. Kendall should be
preferred with short intervals since there will be a high number of 0 or 1 occurrences per interval, and
the Kendall Tau-b coefficient implemented in the function makes an adjustment for the ties.

In nonhomogenous processes, variables Xi (and Yi) in intervals measured at different times are
not i.d. In the case of Poisson processes, CountingCor can calculate a standardized version of the
measure, so that all the variables have the same mean and variance, and if Λx,i = ∑t∈li

λx(t) and
Λy,i = ∑t∈li

λy(t) are high enough, they are also i.d.,

ρL
xy = Cor

Xi − Λx,i√
Λx,i

,
Yi − Λy,i√

Λy,i

 .

This coefficient measures the correlation given the marginal intensities. That means that the coefficient
measures the correlation once that dependence captured by the intensities (through common covariates,
for example) has been removed.

Percentage of concordant intervals. A simpler descriptive measure is the percentage of concordant
intervals, that is, the percentage of intervals with occurrences in both processes. It is calculated by
BinPer as nx,y/(nx,y + nx,0 + n0,y), where nx,y is the number of intervals with at least one point in
both processes, and n0,y and nx,0 are the number of intervals with at least one point in one process and
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0 in the other. This percentage will tend to be zero in short intervals of independent processes, while
positive values will suggest positive dependence. An adequate length of interval that depends on the
marginal intensities has to be selected to obtain useful interpretations.

Extremal dependence coefficients. In the case of PPs resulting from a Peak over threshold (POT)
approach, another interesting measure is the extremal dependence between the variables X and Y
where the POT approach is applied. The extremal dependence is the tendency for one variable to be
large, given that the other one is large. The extremal dependence coefficient χ of X given Y is defined
as χx|y = limu→1 χx|y(u), where

χx|y(u) = P (U > u|V > u) ,

and (U, V) are the transformed uniform marginals of X and Y. Another extremal coefficient is
χ̄x|y = limu→1 χ̄x|y(u), where

χ̄x|y(u) = 2
log P (U > u)

log P (U > u, V > u)
− 1.

χx|y is on the scale [0, 1], with the set (0, 1] corresponding to asymptotic dependence, and the
measure χ̄x|y falls within the range [−1, 1], with [−1, 1) corresponding to asymptotic independence.
Thus, (χx|y > 0, χ̄x|y = 1) signifies asymptotic dependence, and the value of χ determines the strength
of dependence within that class; (χx|y = 0, χ̄x|y < 1) signifies asymptotic independence, and χ̄x|y
determines the strength of dependence within that class. Full details can be found in Coles et al. (1999).

The function depchi estimates the functions χx|y(u) and χ̄x|y(u) in a given grid of values u. Both
χx|y(u) and χy|x(u) (or χ̄x|y(u) and χ̄y|x(u)) are calculated and optionally plotted. These graphs are
useful to estimate the limit of the function and obtain χ̂x|y (and ̂̄χx|y). In the plot of χx|y(u), the
expected behavior under independence is also plotted.

Generating point processes with different dependence structures

The generation of vectors of PPs with a given dependence structure is necessary to implement Monte
Carlo, parametric bootstrap, or other inference methods based on simulation, such as those described
in section Inference based on computational statistical methods. There are different approaches to model
the dependence between the marginal processes in a vector of PPs, but the most direct way is to model
the dependence between the occurrence times of the processes. IndTestPP includes functions for the
generation of four types of vectors of homogeneous or nonhomogeneous PPs, which will be described
later in this section: common Poisson shock processes, multivariate Neyman-Scott processes, queue
processes, and marked Poisson processes. These types of vectors allow modeling three dependence
structures frequently observed in real problems.

• Dependence between two or more PPs provoked by the same shock triggering event. This is the most
common dependence structure and can be modeled by a common Poisson shock process (CPSP)
or a multivariate Neyman-Scott process (MNSP). Both models show a short-term and positive
dependence, generated by common shocks, but in each one, the shocks yield points in the
processes in a different way. This dependence appears in the spike trains of two neurons, in
climate and environmental processes, or in financial problems, for example, when a political
crisis provokes the occurrence of large decreases in different economical indexes.

• Dependence between shifted processes. This is a point-to-point dependence, where the occurrence of
an event in a process triggers an event in the other so that the points in Nx are shifted a positive
random amount in Ny. It can be modeled by a queue or a network of queues (QUE). Examples
of this type of dependence are the processes of the reporting and resolution times of insurance
claims or the occurrence times of floods provoked by an event of intense rainfall.

• Dependence between neighbour points in different processes. It appears when the occurrence of an
event in one process boots or blocks the occurrence of an event in the others. It can be modeled
by a marked Poisson process with dependent marks generated, for example, by a Markov chain
(MPP). This model yields medium or long-term dependence, since given that the process of
all the points is a Poisson process, a model of rare events, the distance between consecutive
points tends to be large. An example of this type of dependence is the process of the growth of a
species of plant, which favors or avoids the growth of another plant during a period of time.
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Common Poisson shock processes

The function DepNHCPSP generates d dependent Poisson processes, which are the marginal processes
of a CPSP. A CPSP, see Abaurrea et al. (2015) for full details, is a multivariate PP with an underlying
Poisson process of shocks, N0, which may yield a point in one or more of d marginal processes Nj.
These marginal processes are dependent Poisson processes, where the dependence between Ni and Nj
only comes from the occurrence of simultaneous points in those processes.

Generation algorithm. The CPSPs show a property which straightforwardly leads to a generation
algorithm: they can be decomposed into m independent Poisson processes, with m = ∑d

k=1 (
d
k). The m

indicator processes are the processes of the points occurring only in N1, ..., only in Nd, simultaneously
only in N1 and N2, ..., simultaneously only in N1, N2, and N3,..., and finally, simultaneously in N1,
N2,... and Nd. For example, a CPSP with d = 2 is decomposed into three independent indicator
processes, N(1), N(2), and N(12), with intensities λ(1), λ(2), and λ(12). Each marginal process Nj can be
expressed as the sum of all the indicator processes including the index j, and its intensity is the sum of
the indicator intensities. In the case d = 2, N1 = N(1) + N(12), N2 = N(2) + N(12), λ1 = λ(1) + λ(12),
and λ2 = λ(2) + λ(12). Then, d dependent Poisson processes can be generated in two steps.

1. Generation of m independent Poisson processes N(1), N(2),..., N(12),... and N(12...d), with the
adequate intensities, using the function simNHPc.

2. Each Nj is obtained as the union of the points in the indicator processes with index j, N(.j.).

The intensity of the processes to be generated with DepNHCPSP is specified in argument lambdaiM,
a matrix whose columns are the intensity vectors of the indicator processes. Independent Poisson
processes in the same period of time cannot be generated using DepNHCPSP but with IndNHPP.

Estimation. It is simple since it reduces to the identification of the indicator processes and the
estimation of m independent Poisson processes. In the case d = 2, CPSPpoints identifies the three
indicator processes, using as input the points in the two marginal processes. The related function
CPSPPOTevents calculates the occurrence times, length, maximum, and mean intensity of the extreme
events of the indicator processes of the CPSP resulting from a POT approach. The marginal and
indicator processes of a CPSP are plotted by the functions PlotMCPSP and PlotICPSP, respectively.
Poisson processes can be fitted to the indicator processes using the package NHPoisson.

Multivariate Neyman-Scott processes

The function DepNHNeyScot generates d dependent PPs, which are the marginal processes of an MNSP.
A Neyman-Scott process (NSP) is a process of clusters of points such that the cluster centers Ci are a
Poisson process, the number of points in each cluster, Zi, are independent Poisson variables possibly
with different means µi, and the distances of each point tj in a cluster to its cluster center, Dij, are i.i.d.
variables. We call a multivariate NSP to a vector of NSP with the same cluster centers. The marginal
processes are dependent processes, but they are not Poisson.

Generation algorithm. The previous definition leads to the following generation algorithm.

1. A Poisson process with a given intensity is generated to obtain the cluster centers Ci.

2. Given the number of generated cluster centers J, independent series of the number of points in
each cluster, (Zl

i ) for i = 1, . . . , J, for each marginal process l with l = 1, . . . , d, are generated
using Poisson distributions.

3. Given the series (Zl
i ), independent distances Dl

ij to the cluster center Ci for j = 1, . . . , Zl
i ,

i = 1, . . . , J are generated for each marginal process l. The points in each marginal process are
obtained as Ci + Dl

ij.

DepNHNeyScot implements two common distributions to model the distances from the points to
the cluster center, N(0, σ) or U(min, max). High values of σ or the range (max − min) lead to a high
variability around the center and to a lower dependence between the processes. Independent NSP in
the same period of time cannot be generated using DepNHNeyScot, but with IndNHNeyScot.

This is the only model whose estimation is not easy, since the cluster centers are usually unobserved,
and they are required to estimate both the underlying Poisson process and the distances of the points
in each cluster to its cluster center.

Queue processes

DepNHPPqueue generates d dependent Poisson processes using d − 1 queues in a tandem. A queue
models the input and output times of a customer in a waiting line. In a tandem of queues, the servers
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are lined up one behind the other so that an arriving customer undergoes each server before leaving
the system. DepNHPPqueue generates all the intermediate processes in a tandem where the first queue
can be M(t) \ G \ 1 or M(t) \ G \ ∞, that is, a queue where the input is a nonhomogeneous Poisson
process, service times have a general distribution G, and there are one or infinity servers.

Generation algorithm. The generation of homogeneous PPs is based on Burke’s theorem stating
that if the input of a queue is a homogeneous Poisson process, the output is a dependent Poisson
process with the same intensity λ. Keilson and Servi (1994) stated that if the input is a nonhomogeneous
Poisson process, the output is a Poisson process whose intensity is the convolution λout(t) = λ(t) ∗ g(t),
where g(t) is the density function of G. Then, the generation algorithm is:

1. Generation of the input process using a Poisson process with intensity λ(t).

2. Generation of independent time services sk with distribution G for each point ik in the input
process.

3. Generation of the output process using the generated input points and time services. If there is
only one server, the output times ok depend on the state of the queue: it is ok = ok−1 + sk if the
queue is not empty (that is if ok−1 > ik), and ok = ik + sk otherwise. If there are infinity servers,
there are no queues, and ok = ik + sk.

4. The resulting output process is the input process of the following queue.

Steps 2 to 4 are repeated up to obtain d dependent Poisson processes.

The distribution G may be any distribution in stats; see Distributions. The length of the argument
lambda fixes T, the length of the observed period, although in the homogeneous processes, we can
fix the number of points to be generated instead (argument nEv). The vector of the output intensities
λout(t) is part of the output of the function. It is expected that low λ(t) values and mean serving times
lead to short queues and, consequently, high dependence between processes.

Estimation. Since the marginal processes are Poisson, they can be fitted and modeled using the
package NHPoisson. Additionally, if the connection between the input and output points is known,
the service times are the difference between them, and their distribution can be also easily estimated.

Marked Poisson processes with dependent marks

DepNHPPMarked generates d dependent processes, which are the marginal processes of an MPP with
marks generated by a d-state Markov chain. An MPP is a Poisson process in which a variable, called a
mark, is attached to each point. In this case, the marks are discrete variables taking values in {1, . . . , d},
which determine in which of the d marginal processes Nj, a point occurs. Given the Markov chain
structure, defined by a transition matrix P = (pij), only adjacent marks are dependent. The marginal
processes are Poisson if and only if the marks are independent.

Generation algorithm. Applying the previous definition, the generation of algorithm is simple.

1. Generation of the points in a Poisson process with a given intensity λ(t).

2. Generation of marks by a Markov chain. It implies an iterative generation of values in 1, . . . , d,
given the previous mark, using a multinomial distribution with probabilities given by P.

3. Each marginal process Nj includes the points in the Poisson process with marks j.

SpecGap calculates the spectral gap, a measure of the dependence generated by a Markov chain,
which assesses the convergence speed of the transition matrix to a matrix with the same stationary
distribution and equal rows (that is, with independent marks). Processes with a lower spectral gap
yield more dependent marginal processes. Independent Poisson processes can be generated using
IndNHPP or a transition matrix with equal rows in DepNHPPMarked.

Estimation. Given that the process of all the points in the marginal processes is Poisson, λ(t) can
be estimated using NHPoisson. TranM estimates the transition matrix of the Markov chain using the
MLE based on count data. Then, the estimators of the marginal intensities are λ̂j(t) = λ̂(t)∑d

i=1 p̂ij.

Inference based on computational statistical methods

There are many parameters of potential interest in a vector of point processes, where inference tools
based on exact or asymptotic distributions are not available. Inference based on computational
statistical methods such as Monte Carlo (MC) or parametric bootstrap is a useful alternative in those
cases. IntMPP uses these methods to implement point estimation and calculation of confidence intervals
and envelopes of a parameter, or vector of parameters, related to a vector of PPs. The only requirement
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for the parameters of interest is that it must be possible to estimate them from the observed processes.
Some examples are the vector of the number of points in each process in a given time period or the
time of occurrence of the k-th point in the vector.

The idea to construct confidence intervals or envelopes using computational statistical methods is
simple when the distribution of the vector of processes is completely known (Monte Carlo approach).
In real problems, the parameters of the distribution of the vector of processes are rarely known, and
parametric bootstrap methods, where the parameters are estimated from the sample, have to be used.
The basic idea is to generate a sample of ns vectors of processes with the distribution. A value of the
statistic of interest is calculated from each generated vector so that a sample of size ns of values of the
statistic is obtained. The lower and upper bounds of an interval with a (1 − α)% confidence level are
the α/2 and 1 − α/2 quantiles of the generated sample, and the point estimator is the sample mean.
Standard tests of hypothesis can be implemented using those intervals in the usual way.

The two main arguments of IntMPP are fun.name, a function to define the estimator of the parame-
ter, and funMPP.name, a model to generate the vectors of processes. The estimator in fun.name must
be a function of the points in the vector of PPs (defined as a list which must be the first argument
of the function) and any number of additional arguments provided by argument fun.args. The
models in funMPP.name can be DepNHCPSP, DepNHPNeyScot, DepNHqueue, and DepNHPPMarked, or any
other implemented by the user. The only requirement of those models is that the first element in the
output has to be a list with d elements defining the vector of PPs. Additional arguments for the models
are given in funMPP.args. Parallel computation is implemented in this function.

Analysis of the occurrence of extreme heat events in three locations using
IndTestPP

This section illustrates how the package IndTestPP can be used to carry out all the steps in the analysis
of the occurrence of the extreme heat events (EHEs) in three Spanish locations, Barcelona (B), Zaragoza
(Z), and Huesca (H) using a vector of point processes.

Data

The series TxB, TxH, and TxZ are the daily maximum temperature, in Celsius degrees, during the
warm season (May to September) from 1951 to 2016 at Barcelona, Huesca, and Zaragoza, respectively.
The series were provided by the Spanish Meteorological Office (AEMET), and they are stored in
the data frame TxBHZ in the data set TxBHZ, available in the package. The days which are not
observed in the three series are considered as missing observations so that three series with 8262
complete observations are available. The date (day, month, and year), day within year (dayyear) of the
observations, and some variables representing the general temperature evolution are also available in
the data set. The three locations are sited in a triangle where Barcelona is in the East, around 250km
away from the others, and Huesca is 67 km to the North of Zaragoza.

Using the peak over threshold (POT) approach, an EHE is defined as a run of consecutive days
where the temperature is over an extreme threshold, and its occurrence point is the day of maximum
temperature in the run. The threshold is the 95th percentile of the series in a reference period (months
of June, July, and August in 1981-2010), being 31.3, 36.4, and 37.8◦ C in Barcelona, Huesca, and
Zaragoza, respectively. The series are recorded at a discrete time scale, but given that the time unit
is short compared with the length of the observed period and that the occurrence intensity of EHEs
is quite low, the use of the continuous point processes to model the occurrence of EHEs in a series is
justified. The EHEs may affect the three locations depending on the type of atmospheric situations that
caused them. Then, our aim is to model the occurrence of the EHEs in the three series using a vector
of point processes which take into account the dependence between them and identify the factors
causing that dependence.

Processing data and preliminary analysis

To identify the occurrence times of the EHEs in a series using the POT approach, the function
POTevents.fun in NHPoisson is used. The case of Zaragoza is shown as an example, and their
104 occurrence times are stored in posZ. Analogously, the 106 and 121 occurrences in Barcelona and
Huesca are stored in posB and posH.

R> library(NHPoisson)
R> library(IndTestPP)
R> data(TxBHZ)
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R> attach(TxBHZ)

R> auxZ<-POTevents.fun(TxZ, thres=37.8)

Number of events: 104
Number of excesses over threshold 37.8 : 176

R> posZ<-auxZ$Px

Then, PlotMargP is used to plot the points in the three processes:

R> T<-length(TxZ)
R> PlotMargP(list(posB, posH, posZ), T=T, cex.axis=0.6,cex=0.6,

cex.main=0.7, cex.lab=0.7)

0 2000 4000 6000 8000

Marginal processes

Time index

N1
N2
N3

Figure 2: Plot from PlotMargP: Point processes of the occurrences times of the EHEs in Barcelona (N1),
Huesca (N2), and Zaragoza (N3).

The temperature series are highly correlated, with Pearson coefficients ρBH = 0.76, ρBZ = 0.73,
and ρHZ = 0.94, but to measure their extremal dependence, a more specific measure, such as the
extremal dependence coefficients are used. The functions for the analysis between TxZ and TxB are
shown as an example, but the pairwise dependence between the three locations is analyzed.

R> aux<-depchi(TxB,TxZ,indgraph=FALSE,xlegend='topright',
thresval=c(9000:9975)/10000)
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Figure 3: Plots from depchi of χ̂x|y(u) and ˆ̄χx|y(u) to estimate the extremal dependence coefficients.

The estimators χ̂B|Z = χ̂Z|B = 0 and ˆ̄χB|Z = ˆ̄χZ|B = 0.5 suggest an asymptotic independence
between TxB and TxZ. However, ˆ̄χZ|B > 0 suggests dependence at extreme levels, in particular in the
threshold χ̂Z|B(0.95) ≈ 0.38. Similar conclusions are obtained for TxB and TxH, while TxH and TxZ
are asymptotically dependent, with χ̂H|Z = χ̂Z|H = 0.5, ˆ̄χZ|H = ˆ̄χH|H = 1, and χ̂Z|H(0.95) ≈ 0.7.

The functions CountingCor and BinPer calculate another extremal dependence measures, the
correlation coefficient between the number of EHEs in intervals of a given length ll, and the percentage
of concordant intervals,
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R> aux<-CountingCor(posB,posZ, ll=10, T=T, method='kendall')
R> aux

tau
0.3554213

R> aux<-BinPer(posB,posZ, ll=10, T=T)

Percentage of concordant intervals: 0.272

with ll = 10 days, to measure short-term dependence. All the correlations, ϱ10
BZ = 0.36, ϱ10

BH = 0.33, and
ϱ10

ZH = 0.68 are significantly different from zero. Similar conclusions are provided by the percentage of
concordant intervals, BP10

BZ = 0.27, BP10
BH = 0.25, and BP10

ZH = 0.55.

The dependence given the empirical intensity of one process (obtained by function emplambda.fun
in NHPoisson) can be graphically analyzed using the Dutilleul plot. Figure 4 shows the plot for
Zaragoza-Barcelona, resulting from the following commands, and the plots for Barcelona-Huesca and
Zaragoza-Huesca. All the previous results and the plots show that there exists a pairwise dependence
between the three locations and that it is stronger between Zaragoza and Huesca.

R> lambdaEB<-emplambda.fun(posE=posB, t=c(1:T), lint=100, plot=F)$emplambda
R> aux<-DutilleulPlot(posZ, posB, lambdaEB, main="Zaragoza-Barcelona")
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Figure 4: Dutilleul plot between the pairs of the EHE processes in the three locations, given the
empirical intensities.

Testing independence and analyzing dependence factors

Our next aim is to identify the factors which cause the dependence. To that end, the independence tests
given the marginal intensities are applied. The first step is to model each process individually. This has
a twofold objective: first, to identify the factors that influence the occurrence of EHEs in each series,
which may cause the dependence, and second to estimate the marginal intensities of the processes.
The second step is to check if the occurrence processes are independent given the fitted intensities. If
the tests do not reject the null hypothesis, it can be concluded that the dependence between the EHE
processes is explained by the considered covariates since once its effect is removed, the processes are
independent. The rejection of independence gives evidence that there are other non-identified factors
causing dependence, which have not been included as predictors in the intensities. In those cases, a
multivariate model allowing dependence should be used.

Step 1. To model the occurrence of the EHEs in each series, we consider a nonhomogeneous
Poisson process with an intensity that is a function of a harmonic term (to model the seasonal behavior)
and the available covariate, which represents the local atmospheric situation (Abaurrea et al., 2015).
After the modeling process, based on a likelihood ratio test, the harmonic term, the covariate, and the
squared covariate are selected in Zaragoza. The same terms are included in Huesca, and the same
plus interaction between the covariate and the harmonic in Barcelona. These models are fitted using
fitPP.fun in NHPoisson. The fit of Zaragoza is shown as an example, and the others are carried
analogously to obtain lambdaH and lambdaB.

R> ss<-sin(2*pi*dayyear/366)
R> cc<-cos(2*pi*dayyear/366)
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R> covZ<-cbind(ss,cc, Txm15Z, Txm15Z**2 )
R> dimnames(covZ)<-list(NULL, c("Sin", "Cos", "Txm15", "Txm152"))
R> ModZ<-fitPP.fun(covariates = covZ, posE = posZ, inddat = auxZ$inddat,

dplot=F, tit = "Sin+Cos+Txm15+Txm152",
start = list(b0 = 1, b1=-1,b2=1, b3=0, b4=0))

Number of observations not used in the estimation process: 72
Total number of time observations: 8262
Number of events: 104
Convergence code: 0
Convergence attained
Loglikelihood: -430.087

Estimated coefficients:
b0 b1 b2 b3 b4

-54.209 0.190 -2.496 2.434 -0.029
Full coefficients:

b0 b1 b2 b3 b4
-54.209 0.190 -2.496 2.434 -0.029

attr(,"TypeCoeff")
[1] "Fixed: No fixed parameters"

R> lambdaZ<-ModZ@lambdafit

The three fitted models are satisfactorily validated using globalval.fun in NHPoisson.

Step 2. The independence tests are used to study the pairwise independence given the fitted
intensities. Since it can be assumed that the marginal processes are Poisson, the three families of tests
POISSON, CLOSE, and CROSS can be applied. In the CLOSE family, only the PaB test is applied since
the processes are nonhomogeneous; in the others, the most powerful test, according to Cebrián et al.
(2020), is selected, that is the Normal test and the K test. Only the functions for the analysis between
TxZ and TxB are shown, but all the pairwise comparisons are summarized in Table 1.

POISSON family. The Normal test is applied using an interval length r = 15 that guarantees the
Normal approximation of the statistic.

R> aux<-CondTest(posZ, posB, lambday=lambdaB, r=15)

WARNING: there are overlapping intervals. The independence hypothesis
is not guaranteed.

The intervals have been shortened to obtain disjoint intervals.
The length of the intersection priods are:
[1] 23 21 28 19 11 12 27 26 20 22 15 27 22 18 18 22 28 16 26 25 17 26 12 26 6
[26] 8 24 17 28 20 27 20 17 13 17 27 24 23 23 18 27 5 28 10 7 22 27 27 28 23
[51] 27 26 24 21 19 26 14 14
The shortest length of the considered intervals is: 3
The median of the mui values is: 0.5

R> aux$pvN

Normal p-value
0.6859921

CLOSE family. In the PaB test, the parametric marginal model of the second process, the Poisson
process fitted to Barcelona in this case, has to be specified.

R> PBZB<-TestIndNH(posZ, posB, nsim = 5000, type = "Poisson",
lambdaMarg =cbind(lambdaB), fixed.seed=35)

R> PBZB$pv

p-value
0.2107578

CROSS family. The K test is implemented using an r-grid with values from 1 to 15, the value
selected with the help of the plot of the estimated K(r). Both the p-value and Figure 5 suggest the
independence between Z-B given the intensities, since all the values K̂(r) lie inside the confidence
band. On the other hand, the plot for Z-H, also shown in Figure 5, rejects independence for short-term
dependence.
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Z-B B-H Z-H
Normal PaB K Normal PaB K Normal PaB K

pv .69 .21 .0.16 .44 .25 .00 (0.29) .03 .00 .03

Table 1: P-values of the tests to assess pairwise independence between the occurrence of EHEs in
Zaragoza, Barcelona, and Huesca.

R> auxZB<-NHK(lambdaZ, lambdaB, posC=posZ, posD=posB, r=c(1:15),
typePlot='Kfun', cores=2,fixed.seed=36)

R> auxZB$pv

p-value
0.1558442
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Figure 5: Plot from NHK: Estimation of the K function and confidence band under independence for
Zaragoza-Barcelona (left) and Zaragoza-Huesca (right).

Table 1 summarizes the three pairwise comparisons. The three tests lead to the non-rejection of
independence between the occurrences in B-Z, and to the rejection between Z-H. On the other hand,
in pair B-H, the K test rejects the null while all the other tests do not. It is found that the high value of
the K statistic is only due to the occurrence of a point in Huesca in t = 901 and in Barcelona in t = 902
when the intensity in both locations is low. In order to analyze the influence of this event, the point
in Barcelona is removed, and the resulting p-value, 0.29, does not reject the independence anymore.
This suggests that the K test is more sensitive than the others to the existence of an influential point.
Given that all the tests are built by conditioning on the occurrences of the first process, the tests are
also applied, changing the order of the locations, and the same conclusions are obtained.

These results are graphically confirmed by the Dutilleul plots given the fitted intensities, where
only the plot between Zaragoza and Huesca gives evidence of dependence.

R< aux<-DutilleulPlot(posZ, posB, ModB@lambdafit,main="Barcelona-Zaragoza",
cex.main=0.9)
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Figure 6: Dutilleul plot for the pairs of EHE processes given the fitted intensities.

The PaB test can also be used to test independence between the three processes simultaneously:
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R> PBBHZ<-TestIndNH(posB, posH, posZ, nsim = 1000, type = "Poisson",
lambdaMarg =cbind(lambdaH, lambdaZ), fixed.seed=65, cores=2)

R< PBBHZ$pv

p-value
0.002997003

Then, we conclude that, given the fitted intensities, the occurrence of the EHEs in Zaragoza-
Barcelona and Barcelona-Huesca are independent, while there is dependence not explained by the
covariates in Zaragoza-Huesca, which are the closest locations. Given these results, the best model
for Barcelona is the previously fitted model, while the occurrence processes of Huesca and Zaragoza
should be modeled by a vector of PPs taking into account the dependence between them. A model
that allows us to include that dependence is a CPSP. The occurrences of the three indicator processes,
the process of the events only in Huesca, only in Zaragoza, and the simultaneous events, are obtained
by the function CPSPPOTevents. Then, the CPSP can be estimated by fitting a Poisson process to each
of the three indicator processes using fitPP.fun; see Cebrián et al. (2015) for some examples.

Inference based on computational statistical methods

This section shows two examples of inference based on computational statistical tools using the
function IntMPP. The first example uses the CPSP, which models the occurrence of EHEs in Huesca
and Zaragoza, taking into account the dependence between them. It is fitted using NHPoisson, and
the estimated intensities of the three indicator processes are the three last elements of the data.frame
TxBHZ, lambdaOZ, lambdaOH, and lambdaZH.

In the first example, we calculate the point estimate and a confidence interval of the time of the first
EHE in Zaragoza or Huesca. We need the function firstt, whose output is the minimum occurrence
time in a vector of processes.

R> firstt<-function(posNH){minpos<-min(unlist(posNH))}
R> lambdaiZH<-cbind(lambdaOZ,lambdaOH,lambdaZH)
R> aux<-IntMPP(funMPP.name="DepNHCPSP",

funMPP.args=list(lambdaiM=lambdaiZH, d=2, dplot=F),
fun.name="firstt", fun.args=NULL, clevel=0.95, cores=2, fixed.seed=125)

Lower bound of CI: 50.4648
Point estimator: 116.7493
Upper bound of CI: 233.4015

This type of inference also allows us to obtain confidence bands for two or more values, for
example, the number of EHEs in Huesca and in Zaragoza in a given time interval I. To that end, we
use the function NumI, included in the package, whose output is a vector containing the number of
points in an interval I in each marginal process of a vector of processes. To see the evolution of the
number of extremes, we consider two intervals, the three first and the three last years of the period. A
clear increase in the number of EHEs is observed in the two locations.

R> aux<-IntMPP(funMPP.name="DepNHCPSP",
funMPP.args=list(lambdaiM=lambdaiZH, d=2, dplot=F),
fun.name="NumI", fun.args=list(I=c(1,459)), fixed.seed=125)

Lower bound of CI: 1 1
Point estimator: 3.058 3.765
Upper bound of CI: 6 7

R> aux<-IntMPP(funMPP.name="DepNHCPSP",
funMPP.args=list(lambdaiM=lambdaiZH, d=2, dplot=FALSE),
fun.name="NumI", fun.args=list(I=c(7803,8262)), fixed.seed=125)

Lower bound of CI: 9 10
Point estimator: 15.269 16.952
Upper bound of CI: 22 24

Simulating and characterizing vectors of processes

In this section, some of the tools to generate vectors of processes in IndTestPP are used to characterize
the effect of the dependence in the distribution of the nearest distances between two-point processes.
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To that end, two dependent processes with a given dependence structure and two independent
processes with the same marginal distribution that the previous ones are generated. The distributions
of the samples of nearest distances are compared using histograms and qqplots.

We generate two dependent Neyman-Scott processes using DepNHNeyScot, with mean cluster size
equal to 3 and 4, respectively, and N(0, 3) and N(0, 2) distributions for the distances to the center.
The independent processes with the same marginal distribution are generated using IndNHNeyScot.
The distribution of the nearest distances is very different in the two cases, as the qqplot shows. In
the dependent processes, it is concentrated in low values, while in the independent ones the density
decreases more smoothly.

R> set.seed(123)
R> lambdaParent<-runif(2000)/10

R> aux<-DepNHNeyScot(lambdaParent=lambdaParent, d=2, lambdaNumP=c(3,4),
dist="normal", sigmaC=c(3,2),fixed.seed=123, dplot=F)

R> posxd<- aux$posNH$N1
R> posyd<- aux$posNH$N2

R> aux<-IndNHNeyScot(lambdaParent=lambdaParent, d=2, lambdaNumP=c(3,4),
dist = "normal", sigmaC=c(3,2), fixed.seed=123, dplot=F)

R> posxi<- aux$N1
R> posyi<- aux$N2

R> par(mfrow=c(1,3))
R> distxyd<-nearestdist(posxd , posyd)
R> hist(distxyd , main='Dependent processes', xlab='Nearest dist',

xlim=c(0,60), ylim=c(0,270),breaks=seq(0,60, by=4) )
R> distxyi<-nearestdist(posxi , posyi)
R> hist(distxyi , main='Independent processes', xlab='Nearest dist',

xlim=c(0,60), ylim=c(0,270),breaks=seq(0,60, by=4) )
R> qqplot(distxyi, distxyd, xlab='Independent processes',

ylab='Dependent processes')
R> lines(distxyd, distxyd, col="red")
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Figure 7: Histograms of nearest distance in two dependent and independent MNS processes and
qqplot of the previous nearest distances.

Conclusions

Many modeling problems related to the occurrence of events require to analyze the dependence
between two or more point processes in time. However, not many tools to carry out this type of
analysis are available. IndTestPP provides a useful general framework for applications based on
the modeling of a vector of point processes in time since it includes functions for processing data,
estimating the marginal intensities of the processes, testing independence, identifying factors causing
dependence, and making an inference. In particular, the three families of independence tests by
Cebrián et al. (2020) are implemented. They are useful in different types of modeling problems
since they cover a wide variety of processes, homogeneous and nonhomogeneous, Poisson processes,
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processes with a parametric marginal model, point processes with known marginal intensities, etc.
The package also provides functions to generate four different types of vectors of point processes,
Common Poisson Shock processes, multivariate Neyman-Scott cluster processes, Poisson processes
from queues in a tandem, and vectors of processes resulting from a marked Poisson process with
discrete marks from a Markov chain. These generation functions are used to carry out inference based
on computational statistical methods. The applicability of the package in real modeling problems is
shown by analyzing the dependence between the occurrence of extreme temperature events in three
Spanish locations, Zaragoza, Barcelona, and Huesca.
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