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ROBustness In Network (robin): an R
Package for Comparison and Validation of
Communities
by Valeria Policastro, Dario Righelli, Annamaria Carissimo, Luisa Cutillo and Italia De Feis

Abstract In network analysis, many community detection algorithms have been developed. However,
their implementation leaves unaddressed the question of the statistical validation of the results. Here,
we present robin (ROBustness In Network), an R package to assess the robustness of the community
structure of a network found by one or more methods to give indications about their reliability. The
procedure initially detects if the community structure found by a set of algorithms is statistically
significant and then compares two selected detection algorithms on the same graph to choose the
one that better fits the network of interest. We demonstrate the use of our package on the American
College Football benchmark dataset.

Introduction

Over the last twenty years, network science has become a strategic field of research thanks to the
strong development of high-performance computing technologies. The activity and interaction of
thousands of elements can now be measured simultaneously, allowing us to model cellular networks,
social networks, communication networks, power grids, and trade networks, to cite a few examples.
Different types of data will produce different types of networks in terms of structure, connectivity,
and complexity. In the study of complex networks, a network is said to have a community structure
if the nodes are densely connected within groups but sparsely connected between them (Girvan
and Newman, 2002). The inference of the community structure of a network is an important task.
Communities allow us to create a large-scale map of a network since individual communities act
like meta-nodes in the network, which makes its study easier. Moreover, community detection can
predict missing links and identify false links in the network. Despite its difficulty, a huge number of
methods for community detection have been developed to deal with different size complexity and
made available to the scientific community by open-source software packages. In this paper, we will
address a specific question: are the detected communities significant, or are they a result of chance
only due to the positions of edges in the network?

An important answer to this question is the Order Statistics Local Optimisation Method (OSLOM,
http://www.oslom.org/) presented in Lancichinetti et al. (2011). OSLOM introduces an iterative
technique based on the local optimization of a fitness function, the C-score (Lancichinetti et al., 2010),
expressing the statistical significance of a cluster with respect to random fluctuations. The significance
is evaluated by fixing a threshold parameter P a priori.

Another interesting approach is the Extraction of Statistically Significant Communities (ESSC,
https://github.com/jdwilson4/ESSC) technique proposed in Wilson et al. (2014). The algorithm is
iterative and identifies statistically stable communities measuring the significance of connections
between a single vertex and a set of vertices in undirected networks under the configuration model
(Bender and Canfield, 1978) used as the null hypothesis. The method employs multiple testing and
false discovery rate control to update the candidate community.

Kojaku and Masuda (2018) introduced the QStest (https://github.com/skojaku/qstest/), a
method to statistically test the significance of individual communities in a given network. Their
algorithm works with different detection algorithms using a quality function that is consistent with the
one used in community detection and takes into account the dependence of the quality function value
on the community size. QStest assesses the statistical significance under the configuration model too.

Very recently, He et al. (2020) suggested the Detecting statistically Significant Communities (DSC)
method, a significance-based community detection algorithm that uses a tight upper bound on the
p-value under the configuration model coupled with an iterative local search method.

OSLOM, ESSC, and DSC assess the statistical significance of every single community analytically
while QStest adopts the sampling method to calculate the p-value of a given community. Moreover,
all of them detect statistically significant communities under the configuration model, and only QStest
is independent of the detection algorithm.

We present robin (ROBustness In Network), an R/CRAN package whose purpose is to give clear
indications about the reliability of one or more community detection algorithms understudy, analyzing
their robustness with respect to random perturbations. The idea behind robin is that if a partition
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is significant, it will be recovered even if the structure of the graph is modified. Alternatively, if the
partition is not significant, minimal modifications of the graph will be sufficient to change it. robin is
inspired by the concept presented by Carissimo et al. (2018), who studied the stability of the recovered
partition against random perturbations of the original graph structure using tools from Functional
Data Analysis (FDA).

robin provides the best choice among the variety of the existing methods for the network of interest.
It is based on a procedure that gives the opportunity to use the community detection techniques
implemented in the igraph package Csardi and Nepusz (2019) while providing the user with the
possibility to include other community detection algorithms. robin initially detects if the community
structure found by some algorithms is statistically significant, then it compares the different selected
detection algorithms on the same network. robin assumes undirected graphs without loops and
multiple edges.

robin looks at the global stability of the detected partition and not of single communities but
accepts any detection algorithm and any random model, and these aspects differentiate it from
OSLOM, ESSC, DSC, and QStest. Unlike other studies that treat the comparison between algorithms in
a theoretical way, such as Yang et al. (2016), robin aims to give a practical answer to such a comparison
that can vary with the network of interest.

The model

robin implements a methodology that examines the stability of the recovered partition by one or more
algorithms. The methodology is useful for two purposes: to detect if the community structure found
is statistically significant or is a result of chance; to choose the detection algorithm that better fits the
network under study. These are implemented following two different workflows.

The first workflow tests the stability of the partitions found by a single community detection
algorithm against random perturbations of the original graph structure. To address this issue, we
specify a perturbation strategy (see subsection Perturbation strategy) and a null model to build some
procedures based on a prefixed stability measure (see subsection Stability measure). Given:

• a network of interest g1
• its corresponding null random model g2
• a Detection Algorithm (DA)
• a stability measure (M)

Our process builds two curves as functions of the perturbation level p, as shown in Figure 1, and tests
their similarity by two types of functional statistical tests (see subsection Statistical tests).

Figure 1: Example of Mcrandom and Mc curves generated by an M stability measure

The first curve Mc is obtained by computing M between the partition of the original network
g1 and the partition of a different perturbed version of g1. The second curve Mcrandom is obtained
by computing M between the partition of a null random network g2 and the partition of a different
perturbed version of g2.

The comparison between the two M curves enables us to reconsider the problem regarding
the significance of the retrieved community structure in the context of stability/robustness of the
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recovered partition against perturbations. The basic idea is that if small changes in the network
cause a completely different grouping of the data, the detected communities are not reliable. For a
better understanding of this point, we refer the reader to the paper Carissimo et al. (2018) where the
methodology was developed.

The choice of the null model plays a key role because we would expect it to reproduce the same
structure of the real network but with completely random edges. For this reason, robin offers two
possibilities: a degree preserving randomization by using the rewire function of the igraph package
or a model chosen by the user.

The degree preserving randomization, i.e., Configuration Model (CM), is a model able to capture
and preserve strongly heterogeneous degree distributions often encountered in real network data
sets and is the standard null model for empirical patterns. Nevertheless, it can happen that it is not
sufficient to preserve only the degree of the graph understudy, so robin allows the user to include
their own null model.

In section Example test: the American College football network, we explore the dk null random
model provided in Orsini et al. (2015), whose code is available at https://github.com/polcolomer/
RandNetGen as a possible alternative to CM. The dk-series model generates a random graph preserving
the global organization of the original network at various increasing levels of details chosen by the
user via the setting of the parameter d. More precisely, the dk-series is a converging series of properties
that characterize the local network structure at an increasing level of detail and define a corresponding
series of null models or random graph ensembles. Increasing values of d capture progressively more
properties of the network: dk 1 is equivalent to randomizing the network fixing only the degree
sequence, dk 2 fixes additionally the degree correlations, dk 2.1 fixes also the clustering coefficient, and
dk 2.5 the full clustering spectrum.

The first workflow is summarised as follows (see Figure 2):

1. find a partition C1 for the real network and a partition C2 for the null network,

2. perturb both networks,

3. retrieve two new partitions C1(p) and C2(p),

4. calculate two clustering distances (for the real network and the null network) between the
original partitions and the ones obtained from the perturbed network as:

M
(

C1(p), C1

)
and M

(
C2(p), C2

)
(1)

Steps 2) - 4) are computed at different perturbation levels p ∈ [0 : 0.05 : 0.6] to create two curves,
one for the real network and one for the null model, then their similarity is tested by two functional
statistical tests described in subsection Statistical tests.

This procedure allows the filtering of the detection algorithms according to their performance.
Moreover, the selected ones can be compared using the second workflow.

The second workflow helps to choose among different community detection algorithms the one
that best fits the network of interest, comparing their robustness two at a time. More precisely, the
technique (see Figure 3):

1. find two partitions C1 and C2 inferred by two different algorithms on the network under study,

2. perturb the network creating a new one,

3. retrieve two new partitions C1(p) and C2(p),

4. evaluate M
(

C1(p), C1

)
and M

(
C2(p), C2

)
.

Steps 2) - 4) are repeated at different perturbation levels p ∈ [0 : 0.05 : 0.6] to create two curves and
then their similarity is tested.

Perturbation strategy

The perturbed network has been restricted to have the same number of vertices and edges as the
original unperturbed network. Therefore, only the positions of the edges are changed. It is expected
that if a community structure is robust, it should be stable under small perturbations of the edges.
This is because perturbing the network edges by a small amount will imply just a small percentage of
nodes to be moved in different communities; on the other hand, perturbing a high percentage of the
edges in the network will produce random clusters. Note that zero perturbation p = 0 corresponds to
the original graph while a maximal perturbation level p = 1 will correspond to the random graph.
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Figure 2: Workflow to test the goodness of a community detection algorithm.

Figure 3: Workflow to compare two different community detection algorithms.

Therefore, in robin, the perturbation of a network preserves the degree distribution of the original
network.

Two different procedures for the perturbation strategy are implemented, namely independent
and dependent types. The independent strategy introduces a percentage p of perturbation in the
original graph at each iteration, for p = 0, . . . , pmax. Whereas the dependent procedure introduces 5%
of perturbation at each iteration on the previous perturbed graph, starting from the original network,
until pmax of the graph’s edges are perturbed. In the implementation of the perturbation strategy, we
set up pmax = 0.6, because the structure of the network becomes random if we perturb more than 50%
of the edges.

In particular, we noticed that the greatest modification of the network structure happens for
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a perturbation level between 30% and 40% if a network is robust, while it happens at very low
perturbation levels if the network is not robust.

We stress again that the M curve for a network with a strong structure grows rapidly (perturbation
level between 0% and 40%) then levels off when 50% < p < 100%.

Moreover, the choice pmax = 0.6 reduces computational time and shows more clearly the differ-
ences between the curves.

Varying the percentage of perturbation, many graphs are generated and compared by means of
the stability measure chosen. For each perturbation level, we generated 10 perturbed graphs and
calculated the stability measure. From each of these graphs, we generated 9 more by rewiring an
additional 1% of the edges. Therefore, the procedure generates 100 graphs with the respective stability
measures for each level of p and gives as output the mean of the stability measure for every 10 graphs
generated.

Stability measure

The procedure we implemented is based on four different stability measures:

• the Variation of Information (VI) proposed by Meilǎ (2007),
• the Normalized Mutual Information (NMI) measure proposed by Danon et al. (2005),
• the split-join distance of van Dongen (2000),
• the Adjusted Rand Index (ARI) by Hubert and Arabie (1985).

VI measures the amount of information lost and gained in changing from one cluster to another, while
split-join distance calculates the number of nodes that have to be exchanged to transform any of the
two clusterings into the other; but for both of them, low values represent more similar clusters, and
high values represent more different clusters. On the contrary, NMI and ARI are similarity measures,
and therefore, lower values identify more different clusters and higher values more similar ones. To
make all the measures comparable, we considered the 1-1 transformation for the NMI and the ARI
since they vary between [0, 1] as:

f (X) = 1 − X (2)

Only two of the four proposed stability measures, i.e., split-join and VI, are distances. They differ in
their dependency on the number of clusters K: while the VI distance grows logarithmically with K,
the split-join metric grows with K toward the upper bound of 1. To make the four different stability
measures comparable, we normalized VI and split-join between 0 and 1 (i.e., we divided the VI and
the split-join by their maximum, respectively log (n) and 2n, where n indicates the number of vertices
in the graph).

Statistical tests

robin allows different multiple statistical tests to check the differences between the real and the
random curve or between the curves built from two different detection algorithms. The variation of p
from 0 to 0.6 induces an intrinsic order to the data structure as in temporal data. This lets p assume,
the same role as a time point in a temporal process, and as a consequence, we can use any suitable time
series approach to compare our curves. In the following, we describe the use of two such approaches.

The first is a test based on the Gaussian Process regression (GP) described in Kalaitzis and Lawrence
(2011b). In this paper, the authors use GP to compare treatment and control profiles in biological
time-course experiments. The main idea is to test if two time series represent the same or two different
temporal processes. A Gaussian process is a collection of random variables, any finite number of
which have a joint Gaussian distribution and is completely specified by its mean function and its
covariance function, see e.g., Rasmussen and Williams (2006). Given the mean function m (x) and the
covariance function k (x, x′) of a real process f (x), we can write the GP as:

f (x) ∼ GP
(
m (x) , k

(
x, x′

))
. (3)

The random variables f = ( f (X1) , . . . , f (Xn))
T represent the value of the function f (x) at time

locations (Xi)i=1,...,n, being f (x) the true trajectory/profile of the gene. Assuming f (x) = Φ(x)Tw,
where Φ(x) are projection basis functions, with prior w ∼ N(0, σ2

wI), we have

m (x) = Φ (x)T E [w] = 0, k
(

x, x′
)
= σ2

wΦ (x)T Φ (x) (4)

f (x) ∼ GP
(

0, σ2
wΦ (x)T Φ (x)

)
. (5)
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Since observations are noisy, i.e., y = Φw + εεε, with Φ = (Φ(X1)
T , . . . , Φ(Xn)T), assuming that the

noise εεε ∼ N(0, σ2
nI) and using Eq. (4), the marginal likelihood becomes:

p(y|x) = 1

(2π)n/2 ∣∣Ky
∣∣1/2 exp

(
−1

2
ytKy

−1y
)

, (6)

with Ky = σ2
wΦΦT + σ2

nI.

In this framework, the hypothesis testing problem over the perturbation interval [0, pmax] can be
reformulated as:

H0 : log2
M1 (x)
M2 (x)

∼ GP
(
0, k

(
x, x′

))
against H1 : log2

M1 (x)
M2 (x)

∼ GP
(
m (x) , k

(
x, x′

))
, (7)

where x represents the perturbation level. To compare the two curves, robin uses the Bayes Factor
(BF), which is approximated with a log-ratio of marginal likelihoods of two GPs, each one representing
the hypothesis of differential (the profile has a significant underlying signal) and non-differential
expression (there is no underlying signal in the profile, just random noise).

The second test implemented is based on the Interval Testing Procedure (ITP) described in Pini
and Vantini (2016). The ITP provides an interval-wise nonparametric functional testing and is not only
able to assess the equality in distribution between functions, but also to underline specific differences.
Indeed, users can see where are localized the differences between the two curves. The Interval Testing
Procedure is based on:

1. Basis Expansion: functional data are projected on a functional basis (i.e. Fourier or B-splines
expansion);

2. Interval-Wise Testing: statistical tests are performed on each interval of basis coefficients;

3. Multiple Correction: for each component of the basis expansion, an adjusted p-value is computed
from the p-values of the tests performed in the previous step.

In summary, GP provides a global answer on the dissimilarity of the two M curves, while ITP points
out local changes between such curves. As a rule of thumb, we suggest initially using GP to flag
a difference and then ITP to understand at which level of perturbation such a difference is locally
significant.

We also provide a global method to quantify the differences between the curves when they are
very close. This is based on the calculation of the area under the curves with a spline approach.

Package structure

Installation

Once in the R environment, it is possible to install and load the robin package with its dependencies,
as follows:

install.packages("robin")

The robin package includes as dependencies igraph (Csardi and Nepusz, 2019), networkD3
(Gandrud et al., 2017), ggplot2 (Wickham, 2019), gridExtra (Auguie, 2017), fdatest (Pini and Vantini,
2015) , gprege (Kalaitzis and Lawrence, 2011a), and DescTools (Signorell and mult. al., 2019) packages.
All, except gprege which is a Bioconductor package, are automatically loaded with the command:

library(robin).

To install the gprege package, start R and enter:

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install("gprege")

Data import and visualization

robin is a user-friendly software providing some additional functions for data import and visualization,
such as prepGraph, plotGraph, and plotComm. The function prepGraph, required by the procedure,
reads, and simplifies undirected graphs removing loops and multiple edges. The available input
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graphs formats are: “edgelist”, “pajek”, “ncol”, “lgl”, “graphml”, “dimacs”, “graphdb”, “gml”, “dl”,
and an igraph object. The function plotGraph, with the aid of the network3D package, starting from
an igraph object loaded with prepGraph, shows an interactive 3D graphical representation of the
network, useful to visualize the network of interest before the analysis. Furthermore, the function
plotComm helps to plot a graph with colorful nodes that simplifies the visualization of the detected
communities, given the membership of the communities.

Procedures

robin embeds all the community detection algorithms present in igraph. They can be classified as in
(Fortunato, 2009)

modularity based methods:

• cluster_fast_greedy (Clauset et al., 2005)

• cluster_leading_eigen (Newman, 2006)

• cluster_louvain (Blondel et al., 2008)

divisive algorithms:

• cluster_edge_betweenness (Newman and Girvan, 2004)

methods based on statistical inference:

• cluster_infomap (Rosvall and Bergstrom, 2008)

dynamic algorithms:

• cluster_spinglass (Reichardt and Bornholdt, 2006)

• cluster_walktrap (Pons and Latapy, 2005)

alternative methods:

• cluster_label_prop (Raghavan et al., 2007).

robin gives the possibility to input a custom external function to detect the communities. The
user can provide his own function as a value of the parameter FUN in both analyses, implemented
into the functions robinRobust and robinCompare. These two functions create the internal process for
perturbation and measurement of communities stability. In particular robinRobust tests the robustness
of a chosen detection algorithm and robinCompare compares two different detection algorithms. The
option measure in the robinRobust and robinCompare functions provides the flexibility to choose
between the four different measures listed in the subsection Stability measure.

robin offers two choices for the null model to set up for robinRobust:

• external building according to users’ preferences, then the null graph is passed as a variable,

• generation by using the function random.

The function random creates a random graph with the same degree distribution as the original graph,
but with completely random edges, by using the rewire function of the igraph package with the
keeping_degseq option that preserves the degree distribution of the original network. The function
rewire randomly assigns a number of edges between vertices with the given degree distribution. Note
that robin assumes undirected graphs without loops and multiple edges which are directly created,
from any input graph, by the function prepGraph.

Construction of curves

The plotRobin function allows the user to generate two curves based on the computation of the chosen
stability measures.

When plotRobin is used on the output of robinRobust, i.e., the first step of the overall procedure,
the first curve represents the measure between the partition of the original unperturbed graph and
the partition of each perturbed graph (blue curve in Figure 4-Left panel), and the second curve is
obtained in the same way but considering as the original graph the random graph (red curve in Figure
4-Left panel). The comparison between the two curves turns the question about the significance of
the retrieved community structure into the study of the robustness of the recovered partition against
perturbation.
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When plotRobin is used on the output of robinCompare, i.e. the second step of the overall
procedure, it generates a plot that depicts two curves, one for each clustering algorithm. In the right
panel of Figure 4, each curve is obtained by computing the measure between the partition of the
original unperturbed graph with the partition of each perturbed graph, where the partition method is
either Louvain (blue curve) or Fast Greedy (red curve).

Figure 4: Curves of the null model and the real data generated by the VI stability measure and the
Louvain detection algorithm on the American College Football network (Left panel). Curves of the
Louvain and Fast greedy algorithm generated by the VI stability measure on the American College
Football network (Right panel) (Girvan and Newman, 2002).

Testing

The GP test is implemented in robinGPTest and uses the R package gprege (Kalaitzis and Lawrence,
2011a). The ITP test is implemented in robinFDATest and uses the R package fdatest (Pini and
Vantini, 2015). The area under the curves is calculated by the function robinAUC and relies on the
DescTools package. Figure 5 shows the curves for the comparison of Louvain and Fast greedy
algorithms’ performance generated by the VI stability measure using the Interval Testing Procedure
on the American College Football network (left panel) (Girvan and Newman, 2002) and corresponding
adjusted p-values (right panel).

Figure 5: Curves of the Louvain and Fast greedy algorithm generated by the VI stability measure using
the Interval Testing Procedure on the American College Football network (Left panel). Corresponding
p-values and adjusted p-values for all the intervals with the horizontal red line on to the critical value
0.05 (Right panel).

All the functions implemented in robin are summarized in Table 1.

Computational time

The time complexity of the proposed strategy, more precisely of the robinRobust function, is evaluated
as follows. Generating a rewired network with N nodes and M edges consumes O(N + M) time, for
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Table 1: Summary of the functions implemented in robin.

FUNCTION DESCRIPTION

Import/Manipulation

prepGraph Management and preprocessing
of input graph

random Building of null model

Analysis

robinRobust Comparison of a community detection method
versus random perturbations of the original graph

robinCompare Comparison of two different
community detection methods

Visualization

methodCommunity Detection of the community structure

membershipCommunities Detection of the membership vector
of the community structure

plotGraph Graphical interactive representation
of the network

plotComm Graphical interactive representation
of the network and its communities

plotRobin Plots of the two curves

Test

robinGPTest GP test and evaluation of the Bayes factor

robinFDATest ITP test and evaluation of the adjusted p-values

robinAUC Evaluation of the area under the curve

both the real and the null model. For each network, we detect the communities, using any community
detection algorithm present in igraph or any custom external algorithm inserted by the user, and
calculate a stability measure. Let D be the time complexity associated with the community detection
algorithm chosen. The overall procedure is iterated k = 100 times for each percentage p of the
np = 12 perturbation levels (p ∈ [0, pmax], pmax = 0.6). In total, the proposed procedure requires
O(D + (((N + M + D) ∗ k) ∗ np)) time both for the real and the null model.

In Table 2, we show the computational time evaluated on a computer with an Intel 4 GHz i7-4790K
processor and 24GB of memory. In this example, we used Louvain as a detection algorithm on the LFR
benchmark graphs (Lancichinetti et al., 2008). The time complexity could be mitigated using parallel
computing, but this is not yet implemented.

Example test: the American College football network

robin includes the American College football benchmark dataset as an analysis example that is freely
available at http://www-personal.umich.edu/~mejn/netdata/. The dataset contains the network of
United States football games between Division I colleges during the 2000 season (Girvan and Newman,
2002). It is a network of 115 vertices that represent teams (identified by their college names) and 613
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Table 2: Computational time

NODES EDGES TIME(SECS)
100 500 2.1
1000 9267 36.1
10000 100024 361.8
100000 994053 9411.6
1000000 8105913 110981.5

edges that represent regular-season games between the two teams they connect. The graph has the
ground truth, where each node has a value that indicates to which of the 12 conferences it belongs,
and this offers a good opportunity to test the ability of robin to validate the community robustness. It
is known that each conference contains around 8-12 teams. The games are more frequent between
members of the same conference than between members of different conferences. They are on average
seven between teams of the same conference and four between different ones. We applied all the
methods listed in subsection Procedures to this network, choosing as measure the VI metric.

library(robin)

my_network <- system.file("example/football.gml", package="robin")
graph <- prepGraph(file=my_network, file.format="gml")

attributes <- vertex_attr(graph, index = V(graph))
real <- attributes$value
real <- as_membership(real)

set.seed(10)
members_In <- membershipCommunities(graph=graph, method=DA)
VI_In <- compare(real, members_In, method="vi")

Note that the variable DA refers to the detection algorithms present in igraph and can assume
the following values: fastGreedy, infomap, walktrap, edgeBetweenness, spinglass, leadingEigen, labelProp,
louvain. The function compare is contained in the package igraph and permits the assessment of the
distance between two community structures according to the chosen method.

Table 3 summarizes the VI results calculated between the real communities and the ones that the
detection algorithms created.

Table 3: VI measure between different methods and ground-truth.

METHODS NORMALIZED VI
cluster_infomap 0.054
cluster_spinglass 0.063
cluster_louvain 0.076
cluster_label_prop 0.076
cluster_walktrap 0.078
cluster_edge_betweenness 0.083
cluster_fast_greedy 0.185
cluster_leading_eigen 0.196

It is possible to observe that the best performance is offered by Infomap, having the lowest VI
value, followed by Spinglass. Louvain, Propagating Labels, Walktrap, and Edge betweenness have
a similar intermediate VI value, while the worst performance is given by Fast greedy and Leading
eigenvector. Then, we used robin to check if the results are confirmed by looking at the VI curves and
the results of the testing procedure for the second workflow, i.e., the one comparing two detection
algorithms, considering Infomap versus all the others.

comp <- robinCompare(graph=graph, method1=DA1,
method2=DA2, measure="vi", type="independent")

plotRobin(graph=graph, model1=comp$Mean1, model2=comp$Mean2,
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measure="vi")

Figure 6 shows the results we obtained. If we focus on the perturbation interval [0, 0.3], it is possible
to note the similar behavior between the curves representing Infomap/Spinglass, Infomap/Louvain,
Infomap/Propagating Labels, Infomap/Walktrap, and Infomap/Edge betweenness, with a closer
distance between Infomap/Spinglass. On the contrary, the curves Infomap/Fast greedy and In-
fomap/Leading eigenvector have an opposite behavior, building almost an ellipse. This confirms
what is displayed in Table 3.

Figure 6: Plot of the VI curves of Infomap against all other methods.

In our overall procedure, we explored two different ways of generating a null model, namely the
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Configuration Model (CM) and the dk-series model.

graphRandomCM <- random(graph=graph)
graphRandomDK <- prepGraph(file="dk2.1_footballEdgelist.txt",

file.format = "edgelist")

plotGraph(graph)
plotGraph(graphRandomCM)
plotGraph(graphRandomDK)

The different structures provided by the real data network, CM, and dk-series with d = 2.1 are
shown in Figure 7.

Figure 7: Graph of the real data (Upper panel); graph of the CM null model (Left - lower panel); graph
of the dk-series null model with d = 2.1 (Right - lower panel).

The CM generates a random graph with the same degree sequence as the original one but with
a randomized group structure. Our experiments show that CM is not a good null model when
using Propagating Labels and Infomap as community extraction methods (Figure 8). In fact, when
the modularity is low, these two algorithms tend to assign all the nodes to the same community,
hence resulting in a flat stability measure curve. We launched the function robinRobust to assess the
robustness of each detection algorithm.

proc_CM <- robinRobust(graph=graph, graphRandom=graphRandomCM,
measure="vi", method=DA, type="independent")

plotRobin(graph=graph, model1=proc_CM$Mean,model2=proc_CM$MeanRandom,
measure="vi")

The dk-series model generates a random graph preserving the global organization of the original
network at various increasing levels of details chosen by the user via the setting of the parameter d. In
particular, we chose the dk random graph with d=2.1.

proc_DK <- robinRobust(graph=graph, graphRandom=graphRandomDK,
measure="vi", method="fastGreedy", type="independent")

plotRobin(graph=graph, model1=proc_DK$Mean, model2=proc_DK$MeanRandom,
measure="vi")

Figure 9 shows the stability measure curves of each detection algorithm compared to dk 2.1 null
model. For all the methods, the two curves are very close due to the capability of the null model to
preserve a structure similar to the real network and visually confirm the results in Table 3.
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Moreover, for the dk-series model, we tested the differences between the two curves using the GP
methodology implemented in the function in robinGPTest.

BFdk <- robinGPTest(model1=proc_DK$Mean, model2=proc_DK$MeanRandom)

The results are shown in Table 4 and agree with those shown in Table 3.

Table 4: Bayes Factor and AUC ratio for dk -series with d = 2.1

METHODS BAYES FACTOR AUC
cluster_infomap 53.67 1.133
cluster_spinglass 40.55 1.249
cluster_louvain 31.52 1.208
cluster_label_prop 102.2 0.852
cluster_walktrap 30.74 1.204
cluster_edge_betweenness 31.10 1.194
cluster_fast_greedy 0.001 1.017
cluster_leading_eigen 8.474 1.042

Fastgreedy clearly fails in recovering the communities. LeadingEigen has stronger evidence but
too weak when compared to the other methods. Louvain, Walktrap, and EdgeBetweenness have the
same strong evidence followed by Spinglass and Infomap. LabelProp shows the strongest evidence,
but the result is obviously influenced by the swap between the two curves when the perturbation is
greater than 20%, underlying a worse performance of the algorithm. The same swap can be noted for
Infomap at 35% perturbation level, but with less difference between the two curves. This is confirmed
by the fact that the ratios between the AUC of the real null model curve and the AUC of the real
network are close to 1.

AUC <- robinAUC(graph=graph, model1=proc_DK$Mean,
model2=proc_DK$MeanRandom, measure="vi")

AUCdkratio <- AUC$area2/AUC$area1

Also, note that LabelProp originates the paradox that the AUC of the real model curve exceeds the
AUC of the null network, despite the hypothesis testing result is positive. Hence, it is always the case
to look at the plots and AUC ratios.

Conclusion

In this paper, we presented robin, an R/CRAN package, to assess the robustness of the community
structure of a network found by one or more detection methods, providing an indication of their relia-
bility. The procedure implemented is useful for comparing different community detection algorithms
and choosing the one that best fits the network of interest. More precisely, robin initially detects
if the community structure found by some algorithms is statistically significant, then it compares
the different selected detection algorithms on the same network. robin uses analysis tools set up
for functional data analysis, such as GP regression and ITP. The core functions of the package are
robinRobust and robinCompare, which build the stability measure curves for the null model and
the network understudy for a fixed detection algorithm and the stability measure for the network
understudy for two detection algorithms, respectively. Moreover, robinGPTest and robinFDATest
implement the GP test and the ITP test. We illustrated the usage of the package on a benchmark
dataset. The package is available on CRAN at https://CRAN.R-project.org/package=robin.

Computational details

The results in this paper were obtained using R 3.6.1 with the packages igraph version 1.2.4.2, net-
workD3 version 0.4, ggplot2 version 3.2.1, gridExtra version 2.3, fdatest version 2.1, gprege version
1.30.0, and DescTools version 0.99.31. R itself and all packages used are available from the Compre-
hensive R Archive Network (CRAN) at https://CRAN.R-project.org/.
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Figure 8: Plot of the VI curves of the CM null model and all the algorithms implemented.
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Figure 9: Plot of the VI curves of the dk-series null model with d = 2.1 and all the algorithms
implemented.
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