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clustcurv: An R Package for Determining
Groups in Multiple Curves
by Nora M. Villanueva, Marta Sestelo, Luis Meira-Machado and Javier Roca-Pardiñas

Abstract In many situations, it could be interesting to ascertain whether groups of curves can be
performed, especially when confronted with a considerable number of curves. This paper introduces
an R package, known as clustcurv, for determining clusters of curves with an automatic selection of
their number. The package can be used for determining groups in multiple survival curves as well as
for multiple regression curves. Moreover, it can be used with large numbers of curves. An illustration
of the use of clustcurv is provided, using both real data examples and artificial data.
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Introduction

A problem often encountered in many fields is the comparison of several populations through specific
curves. Typical examples, considered by a number of authors, are given by the comparison of survival
curves in survival analysis, children growth curves in pediatrics, or the comparison of regression
curves in regression analysis. In many of these studies, it is very common to compare a large number
of curves between groups, and methods of summarizing and extracting relevant information are
necessary. A common approach is to look for a partition of the sample into a number of groups in
such a way that curves in the same group are as alike as possible but as distinct as possible from
those in other groups. This process is also known as curve clustering. A hypothesis test can be used
to ascertain that the curves in the same group are equal. A fundamental and difficult problem in
clustering curves is the estimation of the number of clusters in a dataset.

Traditionally, the comparison of these functions is performed using parametric models through
the comparison of the resulting model parameters. This approach, however, requires the specification
of the parametric model, which is often difficult and may be considered a disadvantage. Several
nonparametric methods have been proposed in the literature to compare multiple curves. In the
area of survival analysis, for example, several nonparametric methods have been proposed to test
for the equality of survival curves for censored data. The most well-known and widely used to
test the null hypothesis of no difference in survival between two or more independent groups was
proposed by Mantel (1966). An alternative test that is often used is the Peto & Peto (Peto and Peto,
1972) modification of the Gehan-Wilcoxon test (Gehan, 1965). Several other variations of the log-rank
test statistic using weights on each event time have been proposed in the literature (Tarone and Ware,
1977; Harrington and Fleming, 1982; Fleming et al., 1987) as well as other procedures to compare these
survival curves based on different measures, as can be the medians (Chen and Zhang, 2016). There
exists an extensive literature on curve comparison in the framework of regression analysis. In this
context, several nonparametric tests have been proposed to test the equality of the mean functions,
H0 : m1 = · · · = mj. Hall and Hart (1990) proposed a bootstrap test, while Härdle and Mammen (1993)
Hardle and Marron (1990) suggested a semiparametric approach based on kernel smoothing. Other
relevant papers on this topic are King et al. (1991) , Delgado (1993) , Kulasekera (1995) , Young and
Bowman (1995), Dette and Neumeyer (2001), Pardo-Fernández et al. (2007) , Srihera and Stute (2010) ,
among others. A good review on this topic can be seen in the paper by Neumeyer and Dette (2003).

When the null hypothesis of equality of curves is rejected, leading to the clear conclusion that
at least one curve is different, it can be interesting to ascertain whether curves can be grouped or
if all these curves are different from each other. In this setting, one naïve approach would be to
perform pairwise comparisons. In this line are the papers by Rosenblatt (1975), González-Manteiga
and Cao (1993), Härdle and Mammen (1993), Dette and Neumeyer (2001) who proposed alternative
tests of the null hypothesis of equality of curves obtained from pairwise comparisons of the estimators
of the regression functions. A similar statistic was also considered by King et al. (1991). Pairwise
comparisons between group levels with corrections for multiple testing are also possible in the
framework of survival analysis. Among others, this can be achieved with the pairwise_survdiff of
the package survminer (Kassambara et al., 2019). However, in any case, this approach would lead
to a large number of comparisons without the possibility of determining groups with similar curves.
Results for such a test can tell us that all combinations are different, or just one pair. When the number
of curves to be compared increase, so does the difficulty of interpretation.

For partitioning a given set of curves into a set of K groups of curves (i.e., K clusters), Villanueva
et al. (2019) propose an adaptation of the K-means methodology. K-means is probably the most
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commonly used clustering method for splitting a dataset into a set of K groups with a very simple
and fast algorithm. Furthermore, it can efficiently deal with very large data sets. One potential
disadvantage of K-means clustering is that it requires the number of clusters to be pre-specified. A
method is proposed by Villanueva et al. (2019) to determine the number of clusters.

The development of clustcurv R package has been motivated by recent contributions that account
for these problems, in particular, the methods proposed by Villanueva et al. (2019) to determine
groups in multiple survival curves and those introduced by Villanueva et al. (Manuscript submitted
for publication, 2019) in the framework of regression curves. The clustcurv R package attempts to
answer the following two questions: (i) given a potential large sample of curves, what is the best
value for the number of clusters? (ii) What is the best subdivision of the sample curves into a given
number of K clusters? To facilitate the task of selecting the optimal number of clusters as well as the
composition of the clusters, it is essential to have software for implementing the proposed methods
in an environment that researchers will find user-friendly and easily understandable. We believe
that our package can answer this aim by providing several user-friendly functions. The package
clustcurv is freely available from the Comprehensive R Archive Network (CRAN) at https://cran.r-
project.org/web/packages/clustcurv

Three data sets were chosen for illustration of the software usage with real data. The first two
datasets show the applicability of the proposed methods for obtaining clusters of survival curves.
These applications were chosen to solve two real problems in the study of recurrence of breast cancer
patients and survival of myeloma cancer. To illustrate the package usage in the regression context we
used real data from a Barnacle’s Growth study conducted in Galicia, Spain. Simulated data were also
used to illustrate the package capabilities in a more complicated scenario.

The remainder of the paper is structured as follows: Section 2 briefly reviews methods for selecting
the number of clusters and the nonparametric test used; Section 3 explains the use of the main functions
and methods of clustcurv; Section 4 gives an illustration of the practical application of the package
using real and simulated data; and finally, the last section concludes with a discussion and possible
future extensions of the package.

An overview of the methodology

In this section, we briefly review the methodological background of the clustcurv package. As it
solves problems addressed in the field of survival analysis and regression analysis, firstly, the notation
and the nonparametric estimation procedures for both contexts are exposed. Then, the procedure for
determining groups of curves is explained in detail, considering a general framework which includes
the aforementioned contexts. Briefly, our procedure is described as follows. First, the J curves are
estimated by nonparametric estimators. Second, given a number of K groups, the optimal possible
assignment of J curves into K groups is chosen by means of a heuristic algorithm. Third, the optimal
number of groups is determined using an automatic bootstrap-based testing procedure.

Notation and estimation procedure in the survival context

We will assume the J-sample general random censorship model where observations are made on nj

individuals from population j(j = 1, . . . , J). Denote n = ∑J
j=1 nj and suppose that the observations

from the n individuals are mutually independent. Let Tij be an event time corresponding to an
event measured from the start of the follow-up of the i-th subject (i = 1, . . . , nj) in the sample j, and
assume that Tij is observed subject to a (univariate) random right-censoring variable Cij assumed to be
independent of Tij. Due to the censoring, rather than Tij, we observe (T̃ij, ∆ij), where T̃ij = min(Tij, Cij),
∆ij = I(Tij ≤ Cij), where I(·) is the indicator function.

Since the censoring time is assumed to be independent of the process, the survival functions,
Sj(t) = P(Tj > t), may be consistently estimated by the Kaplan-Meier estimator (Kaplan and Meier,
1958) based on the (T̃j, ∆j). The Kaplan-Meier estimator or the Product-Limit estimator is a nonpara-
metric method frequently used to estimate survival for censored data. Let t1 < t2 < . . . < tmj , mj ≤ nj
denote the distinct ordered failure times from population j (j = 1, . . . , J), and let du be the number of
events from population j at time tu. Then, the Kaplan-Meier estimator of survival (for population j) is

Ŝj(t) = ∏
u:tu≤t

(
1 − du

Rj(tu)

)
,

where Rj(t) = ∑
nj

i=1 I(T̃ij ≥ t) denote the number of individuals at risk just before time t, among
individuals from population j. The Kaplan-Meier estimate is a step function with jumps at event times.
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The size of the steps depends on the number of events and the number of individuals at risk at the
corresponding time. Under this setup, we will be interested to determine clusters in multiple survival
curves.

Notation and estimation procedure in the regression context

Let (Xj, Yj) be J independent random vectors, and assume that they satisfy the following nonparamet-
ric regression models, for j = 1, . . . , J,

Yj = mj(Xj) + ε j, (1)

where the error variable ε j has mean zero, and mj(Xj) = E(Yj|Xj) is the unknown regression function.
We do not make any assumptions about the error distribution.

The regression models in (1) can be estimated using several approaches, such as methods based on
regression splines (de Boor, 2001), Bayesian approaches (Lang and Brezger, 2004), or local polynomial
kernel smoothers (Wand and Jones, 1995; Fan and Gijbels, 1996). In this package, local linear kernel
smoothers, as implemented in the npregfast package, are used.

Determining groups of nonparametric curves

As noted earlier, several authors have proposed different methods that can be used to compare
estimates of nonparametric functions of multiple samples. The null hypothesis is that all the curves
have identical functions, H0 : F1 = . . . = FJ . However, if this hypothesis is rejected, there are no
available procedures that let determine groups among these curves, that is, to assess if the levels
{1, . . . , J} can be grouped in K groups (G1, . . . ,GK) with K < J, so that Fi = Fj for all i, j ∈ Gk, for
each k = 1, . . . , K. Note that (G1, . . . ,GK) must be a partition of {1, . . . , J}, and therefore must satisfy
the following conditions:

G1 ∪ . . . ∪ GK = {1, . . . , J} and Gi ∩ Gj = ∅, ∀i ̸= j ∈ {1, . . . , K}. (2)

We propose a procedure to test, for a given number K, the null hypothesis H0(K) that at least one
partition exists (G1, . . . ,GK) so that all the conditions above are verified. The alternative hypothesis
H1(K) is that for any (G1, . . . ,GK), exists at least a group Gk in which Fi ̸= Gj for some i, j ∈ Gk.

The cited testing procedure is based on the J-dimensional process

Û(z) = (Û1(z), Û2(z), . . . , ÛJ(z))t,

where, for j = 1, . . . , J,

Ûj(z) =
K

∑
k=1

[F̂j(z)− Ĉk(z)] I{j∈Gk},

and Ĉk is the pooled nonparametric estimate based on the combined Gk-partition sample.

The following test statistics were considered in order to test H0(K): a Cramér-von Mises type
statistic

DCM = min
G1,...,GK

J

∑
j=1

∫
R

Û2
j (z)dz,

and a modification of it based on the L1 norm proposed in the Kolmogorov-Smirnov test statistic

DKS = min
G1,...,GK

J

∑
j=1

∫
R
|Ûj(z)|dz,

where R is the support of the lifetime distribution or the support of the independent variable in case
of survival or regression, respectively.

In order to approximate the minimizers involved in the test statistics, we propose the use of
clustering algorithms. Particularly, in the case of DCM, defined in terms of the L2-distance, we propose
the use of the K-means (Macqueen, 1967). However, for obtaining the values of DKS, defined in this
case in terms of the L1-norm, a variation of the K-means where instead of calculating the mean for each
group to determine its centroid, it calculates the median, the k-medians —suggested by Macqueen
(1967) and developed by Kaufman and Rousseeuw (1990)— would be more appropriate. In both
cases, the carried-out procedure is equivalent: the functions Fj (j = 1, . . . , J) have to be estimated
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in a common grid of size Q leading to a matrix of (J x Q) dimension, where each row corresponds
with the estimates of the j curve in the Q positions of the grid. Then, this matrix will be the input of
both heuristic methods, K-means and K-medians, and from these, the “best” partition (G1, . . . ,GK) is
obtained.

Finally, the decision rule based on D consists of rejecting the null hypothesis if D is larger than the
(1 − α)-percentile obtained under the null hypothesis. To approximate the distributions of the test
statistic under the null hypothesis, resampling methods such as the bootstrap introduced by Efron
(1979) can be applied.

The testing procedure used here involves the following steps:

1. Using the original sample, for j = 1, . . . , J and i = 1, . . . , nj, estimate the functions Fj in a
nonparametric way and in a common grid using each sample separately. Then, using the
proposed algorithms, obtain the “best" partition (G1, . . . ,GK). With it, obtain the estimated
curves Ĉk using a pooled nonparametric estimator based on the combined partition samples
(i.e., the estimator obtained by applying the nonparametric estimator to the combined partition
samples).

2. Obtain the D value as explained before.

3. Draw bootstrap samples using a bootstrap procedure. In the survival context, follow step 3.(a),
and in the regression context, follow step 3.(b):

(a) For b = 1, . . . , B (e.g., B = 1000), and for each j ∈ Gk, draw (T̃∗b
1j , ∆∗b

1j ), (T̃
∗b
2j , ∆∗b

2j ), . . . , (T̃∗b
nj j

, ∆∗b
nj j
)

by independent sampling nj times with replacement from the empirical distribution func-

tion, F̂k, putting mass n−1
k (nk = ∑J

j=1 nj I{j∈Gk}) at each point (T̃ij, ∆ij), with j ∈ Gk.
Note that this procedure is a pooled bootstrap, i.e., bootstrap from the pooled-combined
partition sample given by the null hypothesis H0(K).

(b) For b = 1, . . . , B, and for each j ∈ Gk, draw
{(

Xi1, Y∗b
i1

)}n1

i=1
, . . . ,

{(
Xi J , Y∗b

iJ

)}nJ

i=1
, where

Y∗b
ij =

K

∑
k=1

Ĉk(Xij)I{j∈Gk} + ε̂ijW∗b
i

being ε̂ij the null errors under the H0(K) obtained as

ε̂ij =
K

∑
k=1

(
Yij − Ĉk(Xij)

)
I{j∈Gk},

and the variables W∗b
1 , . . . , W∗b

n are independent for the observed sample and i.i.d. with
E(W∗b

i ) = 0, Var(W∗b
i ) = 1, and third moment equals to 1. A common choice is to

consider a binary variable with probabilities P{W∗b
i = (1 −

√
5)/2} = (5 +

√
5)/10 and

P{W∗b
i = (1 +

√
5)/2} = (5 −

√
5)/10, which corresponds to the golden section. Note that

we have used the wild bootstrap here (Wu, 1986; Liu, 1988; Mammen, 1993) because this
method is valid both for homoscedastic and for heteroscedastic models where the variance
of the error is a function of the covariate.

4. Let D∗b be the test statistic obtained from the bootstrap samples after applying step 1 and 2 to
the cited bootstrap samples.

Since in step 3 the bootstrap resamples are constructed under the null hypothesis of K groups,
this mechanism approximates the distribution of the test statistic under the null hypothesis. If we
denote D∗(b) for the order statistics of the values D∗1, . . . , D∗B obtained in step 4, then D∗([(1−α)B])

approximates the (1 − α)-quantile of the distribution of D under the null hypothesis.

It is important to highlight that repeating this procedure, testing H0(K), from K = 1 onwards until
a certain null hypothesis is not rejected allows us to determine the number of K groups automatically.
Note that however, that unlike the previous test decision, this latter one is not statistically significant
(strong evidences for rejecting the null hypothesis are not given). The whole procedure is briefly
described step by step in Algorithm 1.

Finally, note that, under survival and regression scenarios, the proposed procedure for the determi-
nation of groups in multiple curves may be translated as a test of multiple hypotheses where a set of
K p-values corresponding to the K null hypotheses, H0(1), H0(2), . . . , H0(K) are given. Even though
several methods have been proposed to deal with this problem (see, e.g., Dudoit and van der Laan
(2008) for an introduction to this area), there are still open challenges because there is no information
about the minimum number of tests needed to apply these techniques. In any case, we have decided
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Algorithm 1: k-nonparametric curves algorithm

1. With the original sample, for j = 1, . . . , J and i = 1, . . . , nj, and using the
nonparametric estimator obtain F̂j.

2. Initialize with K = 1 and test H0(K):

2.1 Obtain the “best” partition G1, . . . ,GK by means of the k-means or k-medians
algorithm.

2.2 For k = 1, . . . , K, estimate Ĉk and retrieve the test statistic D.

2.3 Generate B bootstrap samples and calculate D∗b, for b = 1, . . . , B.

2.4 if D > D∗(1−α) then
reject H0(K)
K = K + 1
go back to 2.1

else
accept H0(K)

end

3. The number K of groups of equal nonparametric curves is determined.

to propose a possible approach to apply some of these well-known techniques as Bonferroni, Holm
(Holm, 1979), etc. As the problem is still open, we feel that the final user must be able to decide to
apply them by means of an argument included in the functions of the package. The challenge in the
present context is that the number of hypotheses that are going to be tested is unknown in advance. In
order to solve this we propose that, after having increased K in the algorithm, the null hypothesis for
“smaller K’s” has to be re-tested simultaneously with H0(K).

Package structure and functionality

The clustcurv package is a shortcut for “clustering curves” for being this its major functionality: to
provide a procedure that allows users to determine groups of multiple curves with an automatic
selection of their number. The package enables both survival and regression curves to be grouped, and
it is designed along lines similarly into both contexts. In addition, in view of the high computational
cost entailed in these methods, parallelization techniques are included to become feasible and efficient
in real situations.

The functions within the clustcurv package are described in Table 1. Briefly, there are two main
types of functionalities: (i) to determine groups of multiple curves with the automatic selection of their
number with regclustcurves or survclustcurves functions and (ii) to determine groups of curves,
given a number K, with kregcurves or ksurvcurves functions. The S3 object obtained from whatever
previous functions is the argument required as input for autoplot, which returns a graphical output
based on ggplot2 package. Numerical summaries of the fitted objects can be obtained by using print
or summary.

Since the two most important functions in this package are survclustcurv and regclustcurv, the
arguments of these functions are shown in Table 2. Note that the ksurvcurves kregcurves functions
are just a simplified version of the previous two. Users can automatically obtain the optimal number
of groups of multiple curves by means of survclustcurves and regclustcurves. Nevertheless, in
those situations where the user knows in advance the number of groups, it is possible to obtain
the assignment of the curves into the corresponding group, by means of the function ksurvcurves
or kregcurves. In both functions, a common argument is the algorithm, which returns the best
assignments of the curves into the groups to which they belong. At the moment, the algorithms to
solve this optimization problem can be K-means or K-medians, through the argument algorithm =
'kmeans' or algorithm = 'kmedians'.

Furthermore, in order to address the high computational burden, the functions survclustcurves,
regclustcurves, ksurvcurves and kregcurves have been programmed in parallel to compute the
bootstrap-based testing procedure. The input command required for the use of parallelization is
cluster = TRUE. The number of cores for parallel execution is fixed using the number of CPU
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cores on the current host minus one unless it is specified by the user (ncores = NULL). Then,
registerDoParallel of the doParallel package is used to register the parallel backend. The par-
allel computation is performed by the foreach function of foreach package.

Function Description

survclustcurves Main function for determining groups of multiple survival curves and
selecting automatically the optimal number of them.

regclustcurves Main function for determining groups of multiple regression curves
ecting automatically the optimal number of them.

ksurvcurves Main function for determining groups of survival curves, given a
number of groups K.

kregcurves Main function for determining groups of regression curves, given a
number of groups K.

summary Method of the generic summary function for kcurves and
clustcurves objects (both survival and regression context), which
returns a short summary.

print Method of the generic print function for kcurves and clustcurves
objects, which prints out some key components.

autoplot Visualisation of clustcurves and kcurves objects with ggplot2 (Wick-
ham et al., 2019) graphics. Provides the plots for the estimated non-
parametric curves grouped by color (optional) and their centroids
(mean curve of the curves pertaining to the same group).

Table 1: Summary of functions in the clustcurv package.

Illustrative examples

In this section, we illustrate the use of clustcurv package using some real and simulated data. In the
case of the survival context, the proposed methods were applied to the German breast cancer data
included in the condSURV package and to the multiple myeloma data freely available as part of
the survminer package. For the regression analysis, the clustcurv package includes a data set called
barnacle5 with measurements of rostro-carinal length and dry weight of barnacles collected from five
sites of Galicia (northwest of Spain). Additionally, in order to show the behaviour of the method in a
more complicated scenario, an example with simulated data is also provided.

Application to German Breast Cancer Study Data

In this study, a total of 686 patients with primary node-positive breast cancer were recruited between
July 1984 and December 1989, and 16 variables were measured such as the age of the patient (age),
menopausal status (menopause), hormonal therapy (hormone), tumour size (size, in mm), tumor
grade (grade), and the number of positive nodes (nodes). In addition to these and other variables,
the recurrence-free survival time (rectime, in days) and the corresponding censoring indicator (0 –
censored, 1 – event) were also recorded.

We will use these data to illustrate the package capabilities to build clusters of survival curves
based on the covariate nodes (grouped from 1 to > 13). An excerpt of the data.frame with one row
per patient is shown below:

> library(condSURV)
> library(clustcurv)
> data(gbcsCS)
> head(gbcsCS[, c(5:10, 13, 14)])
age menopause hormone size grade nodes rectime censrec

1 38 1 1 18 3 5 1337 1
2 52 1 1 20 1 1 1420 1
3 47 1 1 30 2 1 1279 1
4 40 1 1 24 1 3 148 0
5 64 2 2 19 2 1 1863 0
6 49 2 2 56 1 3 1933 0

The first three patients have developed a recurrence shown by censrec variable equals to 1, unlike
the following three, which take the value of 0. This variable, along with the other two, rectime and
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survclustcurves() arguments

time A vector with variable of interest, i.e. survival time.
status A vector with censoring indicator of the survival time of the process; 0 if the total time

is censored and 1 otherwise.
x A vector with categorical variable indicating the population to which the observations

belongs.
kvector A vector specifying the number of groups of curves to be checking. By default it is

NULL.
kbin Size of the grid over which the survival functions are to be estimated.
nboot Number of bootstrap repeats.
algorithm A character string specifying which clustering algorithm is used, i.e., K-means

('kmeans') or K-medians ('kmedians').
alpha A numeric value, particularly, the signification level of the hypothesis test.
cluster A logical value. If TRUE (default) the code is parallelized. Note that there are cases

without enough repetitions (e.g., a low number of initial variables) that R will gain in
performance through serial computation. R takes time to distribute tasks across the
processors also it will need time for binding them all together later on. Therefore, if
the time for distributing and gathering pieces together is greater than the time needed
for single-thread computing, it could be better not to parallelize.

ncores An integer value specifying the number of cores to be used in the parallelized proce-
dure. If NULL, the number of cores to be used is equal to the number of cores of the
machine − 1.

seed Seed to be used in the procedure.
multiple A logical value. If TRUE (not default), the resulted pvalues are adjusted by using one

of several methods for multiple comparisons.
multiple.method Correction method: 'bonferroni', 'holm', 'hochberg', 'hommel', 'BH', 'BY'

regclustcurves() arguments

y A vector with variable of interest, i.e. response variable.
x A vector with independent variable.
z A vector with categorical variable indicating the population to which the observations

belongs.
kvector A vector specifying the number of groups of curves to be checking. By default it is

NULL.
kbin Size of the grid over which the survival functions are to be estimated.
h The kernel bandwidth smoothing parameter.
nboot Number of bootstrap repeats.
algorithm A character string specifying which clustering algorithm is used, i.e., K-means

('kmeans') or K-medians ('kmedians').
alpha A numeric value, particularly, the signification level of the hypothesis test.
cluster A logical value. If TRUE (default) the code is parallelized. Note that there are cases

without enough repetitions (e.g., a low number of initial variables) that R will gain in
performance through serial computation. R takes time to distribute tasks across the
processors also it will need time for binding them all together later on. Therefore, if
the time for distributing and gathering pieces together is greater than the time needed
for single-thread computing, it could be better not to parallelize.

ncores An integer value specifying the number of cores to be used in the parallelized proce-
dure. If NULL, the number of cores to be used is equal to the number of cores of the
machine − 1.

seed Seed to be used in the procedure.
multiple A logical value. If TRUE (not default), the resulted pvalues are adjusted by using one

of several methods for multiple comparisons.
multiple.method Correction method: 'bonferroni', 'holm', 'hochberg', 'hommel', 'BH', 'BY'

Table 2: Arguments of survclustcurves and regclustcurves
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nodes, will be taken into account for applying the methods described in Section 2.2. The number of
positive nodes has been grouped from 1 to > 13 because of its low numbers onwards. Below, the steps
for this preprocessed are shown:

> table(gbcsCS$nodes)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
187 110 79 57 41 33 36 20 20 19 15 13 11 3 5 8 5 5 5 3 1
23 24 26 30 33 35 36 38 51
1 2 1 1 1 1 1 1 1

> gbcsCS[gbcsCS$nodes > 13,'nodes'] <- 14
> gbcsCS$nodes <- factor(gbcsCS$nodes)
> levels(gbcsCS$nodes)[14]<- '>13'
> table(gbcsCS$nodes)

1 2 3 4 5 6 7 8 9 10 11 12 13 >13
187 110 79 57 41 33 36 20 20 19 15 13 11 45

Estimates of the survival curves are obtained using the survclustcurves function. This function
allows determining groups using the optimization algorithm K-means or K-medians. The function
will verify if data has been introduced correctly and will create a 'clustcurves' object. The first three
arguments must be introduced, where time is a vector with event-times, status for their corresponding
indicator statuses, and x is the categorical covariate.

As we mentioned, note that the proposed procedure may deal with the problem of testing multiple
hypotheses, particularly relevant when the categorical variable has many levels. Thus, if the user
wants to apply some correction, it is possible to specify multiple = TRUE and select some of the
well-known techniques such as Bonferroni, Holm, etc., by means of the argument multiple.method.

The output of this function is the assignment of the survival curves to the group to which they
belong and an automatic selection of their number. The following input commands provide an
example of this output using the K-medians algorithm:

> fit.gbcs <- survclustcurves(time = gbcsCS$rectime, status = gbcsCS$censrec,
x = gbcsCS$nodes, nboot = 500, seed = 300716, algorithm = 'kmedians',
cluster = TRUE)

Checking 1 cluster...
Checking 2 clusters...
Checking 3 clusters...

Finally, there are 3 clusters.
> summary(fit.gbcs)

Call:
survclustcurves(time = gbcsCS$rectime, status = gbcsCS$censrec,

x = gbcsCS$nodes, nboot = 500, algorithm = "kmedians", cluster = TRUE,
seed = 300716)

Clustering curves in 3 groups

Number of observations: 640
Cluster method: kmedians

Factor's levels:
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13"
[14] ">13"

Clustering factor's levels:
[1] 1 1 1 3 3 3 3 2 3 2 2 2 2 2

Testing procedure:
H0 Tvalue pvalue

1 1 95.68626 0.000
2 2 56.03966 0.018
3 3 33.63386 0.830
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Available components:
[1] "num_groups" "table" "levels" "cluster" "centers" "curves"
[7] "method" "data" "algorithm" "call"

The graphical representation of the fit can be easily obtained with the function autoplot. Specifying
the argument groups_by_color = FALSE, the estimated survival curves for each level of the factor
nodes by means of the Kaplan-Meier estimator can be drawn. The assignment of the curves to the
three groups can be observed in Figure 1 simply typing groups_by_color = TRUE. As expected, the
survival of patients can be influenced by the number of lymph nodes. The patients’ recurrence time
rises with the decrease of lymph nodes. Note that having 3 or fewer positive nodes seems to be related
to higher recurrence-free probabilities. Patients with 9 or more positive nodes are more likely to
develop a recurrence. The group of patients with 8 positive nodes was assigned to the group with
highest recurrence probabilities. Though this was unexpected, further analysis confirm the poor and
unexpected behavior.
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Figure 1: Estimated survival curves for each of the levels of the variable nodes. A specific color is
assigned for each curve according to the group to which it belongs using the K-medians algorithm (in
this case, three groups, K = 3).

Equivalently, the following piece of code shows the input commands and the results obtained
with the algorithm = 'kmeans'. However, the number of groups and the assignments are different
from those obtained with the 'kmedians'. Although this situation is not so common, in some real
applications, it can happen.

> fit.gbcs2 <- survclustcurves(time = gbcsCS$rectime, status = gbcsCS$censrec,
x = gbcsCS$nodes, nboot = 500, seed = 300716, algorithm = 'kmeans',
cluster = TRUE)

Checking 1 cluster...
Checking 2 clusters...

Finally, there are 2 clusters.

> fit.gbcs2

Call:
survclustcurves(time = gbcsCS$rectime, status = gbcsCS$censrec,

x = gbcsCS$nodes, nboot = 500, algorithm = "kmeans", cluster = TRUE,
seed = 300716)
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Clustering curves in 2 groups

Number of observations: 607
Cluster method: kmeans

The corresponding plot is shown in Figure 2. Note that having 9 or more positive nodes seems
to be related to a lower recurrence-free survival than having 9 or less, with the exception of the
survival curve for those patients with 8 positive nodes, which was assigned to the group with highest
recurrence probabilities.
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Figure 2: Estimated survival curves for each of the levels of the variable nodes. A specific color is
assigned for each curve according to the group to which it belongs using the K-means algorithm (in
this case, two groups, K = 2).

It is important to highlight that given a fixed value of K, one may also be interested in determining
the group to which each survival function belongs. This is possible by means of the ksurvcurves
function by considering, for example, the argument k = 3.

> ksurvcurves(time = gbcsCS$rectime, status = gbcsCS$censrec, x = gbcsCS$nodes,
seed = 300716, algorithm = 'kmedians', k = 3)

Call:
ksurvcurves(time = gbcsCS$rectime, status = gbcsCS$censrec, x = gbcsCS$nodes,

k = 3, algorithm = "kmedians", seed = 300716)

Clustering curves in 3 groups

Number of observations: 640
Cluster method: kmedians

More information related to the output above can be obtained running the summary function.

Application to Multiple Myeloma Study Data

In this case, a study of the survival in patients with multiple myeloma (MM) cancer was conducted.
256 individuals were included from the start of the follow-up to whom were analyzed and collected 16
variables. This data set is freely available in the survminer package. Below, it is shown the first rows
of the data.frame with columns such as treatment (treatment), life state indicator (event; censored –
0; 1 – dead), survival time (time, in months), among others.
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> library(survminer)
> data(myeloma)
> head(myeloma[,1:5])

molecular_group chr1q21_status treatment event time
GSM50986 Cyclin D-1 3 copies TT2 0 69.24
GSM50988 Cyclin D-2 2 copies TT2 0 66.43
GSM50989 MMSET 2 copies TT2 0 66.50
GSM50990 MMSET 3 copies TT2 1 42.67
GSM50991 MAF <NA> TT2 0 65.00
GSM50992 Hyperdiploid 2 copies TT2 0 65.20

In this example, it is interesting to analyze if the survival in patients with MM disease is the same
for the different molecular subgroups. If there is an effect of the molecular subgroups on the survival,
future therapies that might exploit molecular insights should lead to an improvement in outcome for
patients with these types of disease (Zhan et al., 2006).

Below, a summary of the results of the survclustcurves function obtained with time, event, and
molecular_group as input variables and for both kmedians and kmeans algorithms are shown.

> fit.mye <- survclustcurves(time = myeloma$time, status = myeloma$event,
x = myeloma$molecular_group, nboot = 500, seed = 300716,
algorithm = 'kmedians', cluster = TRUE)

Checking 1 cluster...
Checking 2 clusters...

Finally, there are 2 clusters.
> summary(fit.mye)

Call:
survclustcurves(time = myeloma$time, status = myeloma$event,

x = myeloma$molecular_group, nboot = 500, algorithm = "kmedians",
cluster = TRUE, seed = 300716)

Clustering curves in 2 groups

Number of observations: 248
Cluster method: kmedians

Factor's levels:
[1] "Cyclin D-1" "Cyclin D-2" "Hyperdiploid" "Low bone disease"
[5] "MAF" "MMSET" "Proliferation"

Clustering factor's levels:
[1] 1 1 1 1 1 2 2

Testing procedure:
H0 Tvalue pvalue

1 1 31.31603 0.026
2 2 14.94269 0.682

Available components:
[1] "num_groups" "table" "levels" "cluster" "centers" "curves"
[7] "method" "data" "algorithm" "call"

> fit.mye2 <- survclustcurves(time = myeloma$time, status = myeloma$event,
x = myeloma$molecular_group, nboot = 500, seed = 300716,
algorithm = 'kmeans', cluster = TRUE)

Checking 1 cluster...
Checking 2 clusters...

Finally, there are 2 clusters.
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> summary(fit.mye2)

Call:
survclustcurves(time = myeloma$time, status = myeloma$event,

x = myeloma$molecular_group, nboot = 500, algorithm = "kmeans",
cluster = TRUE, seed = 300716)

Clustering curves in 2 groups

Number of observations: 248
Cluster method: kmeans

Factor's levels:
[1] "Cyclin D-1" "Cyclin D-2" "Hyperdiploid" "Low bone disease"
[5] "MAF" "MMSET" "Proliferation"

Clustering factor's levels:
[1] 1 1 1 1 1 2 2

Testing procedure:
H0 Tvalue pvalue

1 1 4.500272 0.032
2 2 1.108812 0.730

Available components:
[1] "num_groups" "table" "levels" "cluster" "centers" "curves"
[7] "method" "data" "algorithm" "call"

When comparing the results obtained through the two methods (kmeans, kmedians), it is seen
that the obtained number of clusters is the same (2 groups), even the assignment of the curves to the
groups.

In particular, results obtained reveal that MMSET level and Proliferation level are associated with
a high-risk or damage on the lifetime, while MAF, Low bone disease, Hyperdiploid, Cycline D-1, and
Cycline D-2 have higher survival probabilities. This is observed in the plot shown in Figure 3, which
can be obtained using the following input command:

> autoplot(fit.mye, groups_by_color = TRUE)

Application to Barnacle’s Growth Study Data

This study was conducted on the Atlantic coast of Galicia (Northwest Spain), which consists of an
approximately 1000km long shoreline with extensive rocky stretches exposed to tidal surges and wave
action that are settled by the Pollicipes pollicipes (Gmelin, 1789) populations targeted for study. A total
of 5000 specimens were collected from five sites of the region’s Atlantic coastline and corresponded to
the stretches of coast where this species is harvested: Punta do Mouro, Punta Lens, Punta de la Barca,
Punta del Boy and Punta del Alba. Two biometric variables of each specimen were measured: RC
(Rostro-carinal length, maximum distance across the capitulum between the ends of the rostral and
carinal plates) and DW (Dry Weight). This data set (barnacle5) is available in the clustcurv package.
The idea of this study is to know the relation between RC and DW variables along the coast, i.e.,
to analyze if the barnacle’s growth is similar in all locations or by contrast, if it is possible to detect
geographical differentiation in growth. A sample of the dataset is shown as follow:

> data("barnacle5")
> head(barnacle5)

DW RC F
1 0.52 12.0 laxe
2 1.46 18.9 laxe
3 0.05 6.4 laxe
4 0.17 9.4 laxe
5 0.05 6.2 laxe
6 0.41 12.2 laxe
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Figure 3: Estimated survival curves for each of the levels of the variable molecular group. A specific
color is assigned for each curve according to the group to which it belongs using the K-medians
algorithm, two groups, K = 2.

For each location (F), nonparametric regression curves were estimated to modeling the dependence
between RC and DW. In order to determine groups, we used the proposed methodology in Subsection
2.2.2. Through executing the next piece of code, the following results can be obtained: one estimated
curve was attributed to the first group (Punta Lens), two estimated curves were assigned to group
2 (Punta de la Barca and Punta del Boy), and the other two belong to group 3 (Laxe do Mouro and
Punta del Alba) (Figure 4). In this example, the regclustcurves function was used with algorithm =
'kmeans' and the input variables y, x, z.

> fit.bar <- regclustcurves(y = barnacle5$DW, x = barnacle5$RC, z = barnacle5$F,
nboot = 500, seed = 300716, algorithm = 'kmeans', cluster = TRUE)

Checking 1 cluster...
Checking 2 clusters...
Checking 3 clusters...

Finally, there are 3 clusters.

> summary(fit.bar)

Call:
regclustcurves(y = barnacle5$DW, x = barnacle5$RC, z = barnacle5$F,

nboot = 500, algorithm = "kmeans", cluster = TRUE, seed = 300716)

Clustering curves in 3 groups

Number of observations: 5000
Cluster method: kmeans

Factor's levels:
[1] "laxe" "lens" "barca" "boy" "alba"

Clustering factor's levels:
[1] 2 1 3 3 2
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Testing procedure:
H0 Tvalue pvalue

1 1 0.94353014 0.000
2 2 0.15463483 0.034
3 3 0.02348982 0.422

Available components:
[1] "num_groups" "table" "levels" "cluster" "centers" "curves"
[7] "method" "data" "algorithm" "call"

As can be seen, Figure 4 obtained using the following input command. The specimens from
Punta de la Barca and Punta del Boy have similar morphology, wide and short. This is due to these
zones present similar oceanographic characteristic, such as exposed rocky shore to waves and highly
articulated. Unlike, the barnacles collected from Laxe do Moure and Punta del Alba are narrow and
long because they are less exposed locations. Finally, Punta Lens is an intermediate coast, alternating
sections of steep coast with large sand.

> autoplot(fit.bar, groups_by_color = TRUE)
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Figure 4: Estimated regression curves for each of the levels of the factor. A specific color is assigned
for each curve according to the group to which it belongs using the K-means algorithm (in this case,
three groups, K = 3).

Application to simulated data

Finally, this subsection reports the capabilities of the clustcurv package in a more complicated simu-
lated scenario. We consider the regression models given in (1) for j = 1, . . . , 30, with

mj(Xj) =



Xj + 1 if j ≤ 5
X2

j + 1 if 5 < j ≤ 10
2 sin (2 Xj) if 10 < j ≤ 15
2 sin (Xj) if 15 < j ≤ 20
2 sin (Xj) + a eXj if 20 < j ≤ 25
1 if j > 25,

(3)

where a is a real constant, Xj is the explanatory covariate drawn from a uniform distribution [−2, 2],
and ε j is the error distributed in accordance to a N(0, σj(x)). We have considered the heteroscedastic
scenario where σj(x) = 0.5 + 0.05mj(x) · N(0, 1.5).
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We explore the methodology considering the null hypothesis H0(5) of assignment of the mj curves
into five groups (K = 5). To show the performance of our procedure, two values were considered
for a, 0 and 0.4. It should be noted that the value a = 0 corresponds to the null hypothesis, while
if a = 0.4 the number of groups is six. Particularly, we have defined an unbalanced scenario with
unequal sample sizes for each j curve, particularly, (n1, n2, . . . , nJ) ∼ Multinomial(n; p1, p2, . . . , pJ)

being pj = p∗j / ∑J
j=1 p∗j , with p∗j randomly drawn from {1, 1.5, 2, 2.5, 3} and n = 5000. Note that we

propose this procedure for generating the nj in order to obtain a completely unbalanced study.

The code for the generation of this dataset with a = 0 can be found below:

> m <- function(x, j) {
y <- numeric(length(x))
y[j <= 5] <- x[j <= 5] + 1
y[j > 5 & j <= 10] <- x[j > 5 & j <= 10] ^ 2 + 1
y[j > 10 & j <= 15] <- 2 * sin(2 * x[j > 10 & j <= 15]) #- 4
y[j > 15 & j <= 20] <- 2 * sin(x[j > 15 & j <= 20])
y[j > 20 & j <= 25] <- 2 * sin(x[j > 20 & j <= 25]) + a * exp(x[j > 20 & j <= 25])
y[j > 25] <- 1
return(y)

}

> seed <- 300716
> set.seed(seed)
> n <- 5000
> a <- 0.0
> x <- runif(n, -2, 2)
> prob <- sample(c(1, 1.5, 2, 2.5, 3), 30, replace = TRUE)
> prob <- prob/sum(prob)
> f <- sample(1:30, n, replace = TRUE, prob = prob)
> N <- length(unique(f))
> error <- rnorm(n,0,1.5)
> y <- m(x, f) + (0.5 + 0.05 * m(x, f)) * error
> data <- data.frame(x, y, f)

In order to determine groups of the generated curves, the user has to execute the next piece of
code. As expected, when a = 0, the number of groups selected is five.

> fit.sim <- regclustcurves(x = data$x, y = data$y, z = data$f, nboot = 500,
algorithm = 'kmedians', cluster = TRUE, seed = 300716)

Checking 1 cluster...
Checking 2 clusters...
Checking 3 clusters...
Checking 4 clusters...
Checking 5 clusters...

Finally, there are 5 clusters.
> fit.sim

Call:
regclustcurves(y = data$y, x = data$x, z = data$f, nboot = 500,

algorithm = "kmedians", cluster = TRUE, seed = 300716)

Clustering curves in 5 groups

Number of observations: 5000
Cluster method: kmedians
> autoplot(fit.sim, groups_by_colour = TRUE, centers = TRUE)

Additionally, for different values of a (a > 0), our procedure should determine 6 groups. For
instance, for a = 0.4, it selects the true number of groups (K = 6) typing the commands below:

> seed <- 300716
> set.seed(seed)
> n <- 5000
> a <- 0.4
> x <- runif(n, -2, 2)
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> prob <- sample(c(1, 1.5, 2, 2.5, 3), 30, replace = TRUE)
> prob <- prob/sum(prob)
> f <- sample(1:30, n, replace = TRUE, prob = prob)
> N <- length(unique(f))
> error <- rnorm(n,0,1.5)
> y <- m(x, f) + (0.5 + 0.05 * m(x, f)) * error
> data2 <- data.frame(x, y, f)
> fit.sim2 <- regclustcurves(x = data2$x, y = data2$y, nboot = 500, seed = 300716,

z = data$f, algorithm = 'kmedians', cluster = TRUE)
Checking 1 cluster...
Checking 2 clusters...
Checking 3 clusters...
Checking 4 clusters...
Checking 5 clusters...
Checking 6 clusters...

Finally, there are 6 clusters.
> fit.sim2

Call:
regclustcurves(y = data2$y, x = data2$x, z = data$f, nboot = 500,

algorithm = "kmedians", cluster = TRUE, seed = 300716)

Clustering curves in 6 groups

Number of observations: 5000
Cluster method: kmedians
> autoplot(fit.sim2, groups_by_colour = TRUE, centers = TRUE)

Figures 5 and 6 show the results with the simulated data with a = 0 and a = 0.4, respectively.
In this situation, the true number of groups is equal to 5 and 6. As can be appreciated, our method
seems to perform reasonably well for both values of a. For a = 0, the null hypothesis H0(5) is
accepted, curves assigned to each group are plotted with the same color. In the case of a = 0.4, the null
hypothesis H0(6) is accepted. Therefore, there are 6 groups of regression curves. Note that in both
plots, the centroids are colored in black because in the autoplot function, the argument centers =
TRUE.

Conclusion and further extensions of the R package

This paper discussed the implementation of some methods developed for determining groups of
multiple nonparametric curves in the R package clustcurv. In particular, the methods proposed are
focused on the framework of regression analysis and in the framework of survival analysis. In the
context of survival analysis, we restrict ourselves to survival curves. Hopefully, future versions of the
package will extend the methodology to determine groups in risk functions, cumulative hazard curves,
or density functions. The current version of the package implements two optimization algorithms, the
well-known K-means and K-medians. It can be interesting to let the user choose far from those, such
as Means-Shift or K-medoids algorithms.
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