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exPrior: An R Package for the Formulation
of Ex-Situ Priors
by Falk Heße, Karina Cucchi, Nura Kawa, and Yoram Rubin

Abstract The exPrior package implements a procedure for formulating informative priors of geo-
statistical properties for a target field site, called ex-situ priors and introduced in Cucchi et al. (2019).
The procedure uses a Bayesian hierarchical model to assimilate multiple types of data coming from
multiple sites considered as similar to the target site. This prior summarizes the information contained
in the data in the form of a probability density function that can be used to better inform further
geostatistical investigations at the site. The formulation of the prior uses ex-situ data, where the data
set can either be gathered by the user or come in the form of a structured database. The package is
designed to be flexible in that regard. For illustration purposes and for easiness of use, the package is
ready to be used with the worldwide hydrogeological parameter database (WWHYPDA) Comunian
and Renard (2009).

Introduction

Characterizing the subsurface of our planet is an important task in fields such as geology, hydrogeology,
and soil sciences. Yet compared to many other fields, the characterization of the subsurface is always
burdened by large uncertainties. These uncertainties are caused by the general lack of data and the
large spatial variability of many subsurface properties. The need to represent this uncertainty has led to
the development of the field of geostatistics, wherein parameter values are treated as random variables
defined by their probability distribution function (PDF). Today, the field of geostatistics has reached a
mature state with many textbooks on the topic (Pyrcz and Deutsch, 2002; Rubin, 2003; Kitanidis, 2008)
and a solid number of software tools being available for practitioners (for an overview, see, e.g. Rubin
et al. (2018)). For the R language (R Core Team, 2014), a solid ecosystem for geostatistical analysis
has evolved in the last years (Slater et al., 2019). Packages like geoR (Ribeiro and Diggle, 2001), gstat
(Pebesma, 2004), georob (Papritz et al., 2014), and RGeostats (MINES ParisTech / ARMINES, 2019)
provide a large collection of tools for geostatistical analysis. Moreover, geostatistical databases can be
conveniently accessed with packages like aqp (Beaudette et al., 2013) and textbooks on geostatistics
are starting to provide all their examples in R code (Diggle and Ribeiro, 2007; Banerjee et al., 2014).

Bayesian statistics provides the most appropriate framework to characterize uncertainty in general
(Heße et al., 2019a). Bayesian methods are able to combine and assimilate data from disparate sources
and jointly represent the different forms of uncertainty. As a result, Bayesian methods are nowadays
increasingly employed in geostatistics and software implementations come as either standalone
versions (Vrugt et al., 2009; Rubin et al., 2010) or R packages like spBayes (Finley et al., 2015), R-INLA
(Lindgren and Rue, 2015), spTimer (Bakar and Sahu, 2015), BayesNSGP (Risser and Turek, 2020), and
anchoredDistr (Savoy et al., 2017).

Yet, there is no package to date, which would provide such tools with the necessary foundation,
i.e. prior distributions for the modeled quantities. Since the prior is the first step of any Bayesian
analysis, its overall importance can hardly be overstated. Moreover, the ability of prior distributions
to represent available background information in a given field makes them an important source
of information that should not be neglected. Integrating them into a Bayesian workflow should
be straightforward since most packages for Bayesian inference allow users to specify their prior
distributions. In addition, the use of informative prior distributions in this field is easy to motivate.
First, the parameters of geostatistical models are typically not simple convenience parameters but
are part of physically-based partial differential equations. As a result, they correspond to real-world,
physical measurements, making it possible to calibrate their prior distributions against empirical
frequencies. Second, geostatistical models are usually site specific, making it conceptually easy to
discriminate between the case-specific data, which should be used to compute the likelihood, and
background data, which could be used to compute the prior distribution. In geostatistics, they are
often called in-situ and ex-situ data, respectively. Calibrating the prior against ex-situ data only,
therefore guarantees a clear separation between likelihood and prior.

To provide practitioners therefore with a tool for prior derivation, this paper introduces the R
package exPrior (Heße et al., 2019b). It implements the derivation of ex-situ priors, i.e., statistical
distributions of subsurface properties at a given site from ex-situ data collected at similar sites,
following the Bayesian hierarchical model developed by Cucchi et al. (2019). The implementation
is based on the nimble package (de Valpine et al., 2017) itself based on the BUGS language (Lunn
et al., 2009). The objective of the exPrior package is to provide a ready-to-use software tool for
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assimilating ex-situ data into ex-situ priors. This will encourage the use of informative distributions
for practitioners in geosciences that might not be experts in Bayesian hierarchical models and may find
it therefore difficult to work with them otherwise. The focus of this package is on the Gaussian process
(GP) modelling paradigm. Although criticism exists, it is by far the most widely used paradigm, and a
wide range range of software tools exist for the modeling of GPs (Pebesma, 2004). Functions in exPrior
provide wrappers around nimble functions implementing the Bayesian data assimilation framework.
Non-expert practitioners can therefore apply this method without needing to implement the model
itself. Moreover, the package is tightly integrated with two other R packages that help to expand
its functionality. First, the geostatDB package (Heße et al., 2019c) provides access to a large data
set from the worldwide hydrogeological parameter database (WWHYPDA) Comunian and Renard
(2009). Second, the siteSimilarity package (Kawa et al., 2020) allows for clustering of similar sites and
therefore facilitates a further reduction of uncertainty.

Due to the background of the authors, the examples and data are drawn from stochastic hydro-
geology, i.e., the field of geostatistics concerned with the statistical characterization of groundwater
systems. Yet, the presented package is not confined to this field, and simply using other data or making
slight revisions to the hierarchical model will quickly make the workflow amendable to other fields of
geostatistics as well.

To familiarize the reader with the package, we start in the following by explaining the workflow
for formulating informative prior distributions, where the prior distribution at an unexplored site is
based on data collected from other sites. After that, we explain the package by detailing its structure
and functionalities. Finally, we present several examples of prior derivation based on synthetic data
and on an established database for hydrogeological parameters (Comunian and Renard, 2009).

Ex-Situ Priors

Let us assume that we want to model a specific geostatistical variable x at a target site S0. Examples
would be hydraulic conductivity, porosity, or permeability. To account for the unavoidable uncertainty,
this variable should be modeled as a random variable X (Pyrcz and Deutsch, 2002; Rubin, 2003;
Kitanidis, 2008). The simplest way to characterize this variable statistically is through its distribution
p(x). Yet, this would leave out any spatial correlations, so most geostatistical analyses try to account
for them by using spatial random field models, typically a GP (Rasmussen and Williams, 2006; Gelfand
and Schliep, 2016). Since such models are fully defined by their parameter vector θ, the aim of
Bayesian inference is to use available, in-situ data yin and derive the posterior distribution over these
parameters p(θ|yin). This posterior represents a compromise between likelihood p(yin|θ) and the prior
distribution p(θ), with the likelihood representing the impact of the in-situ data. This, however, leaves
open the specification of the prior distribution.

By definition, the prior distribution characterizes the knowledge about target parameters before
observing in-situ data yin. Therefore, yin cannot be used for the definition of the prior (Berger, 2006).
On the other hand, using no data and making the prior distribution as vague as possible seems far
too prudent since this would ignore the wealth of background knowledge which exists for virtually
any geostatistical variable. Such background knowledge can come from data collected at other sites
Si, i ∈ 1 . . . I (see schematic in Figure 1). To distinguish them from the site-specific, in-situ data yin,
we use the term ex-situ data yex. Our prior pdf for the parameters at a new site S0 could therefore be
based on these ex-situ data p(θ|yex). To determine this p(θ|yex), we propose the use of a dedicated
statistical model (more on this below). By virtue of this model, the transfer of information from known
donor sites Si to a new site S0 is a case of Bayesian prediction

p(θ|yex) =
∫

ϑ
p(θ|ϑ)p(ϑ|yex)dϑ. (1)

According to Eq. 1, the prior distribution p(θ|yex) for a new site S0 is the posterior predictive
distribution of all Si w.r.t. S0 (see schematic in Figure 1). Mathematically, this means p(θ|yex) is derived
by weighing each single predictive distribution p(θ|ϑ) with its corresponding posterior distribution
p(ϑ|yex) and marginalizing over the parameters ϑ. Please note the difference between the model for X
at site S0, say a GP defined by θ, and the model used for the transfer of data between sites defined by
ϑ. Since geostatistical data are hierarchical in nature, this model should be hierarchical too (Kruschke,
2010; Gelfand, 2012; Gelman et al., 2013).

Formulation of the hierarchical model

In geostatistics, a common way to conceptualize a hierarchical ordering of the data is by using two
levels (see schematic in Figure 1). The first level represents the population of the (spatially distributed)
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Figure 1: Schematic of the transfer of data from a number of donor sites Si to a new site S0. Measure-
ment locations are denoted by circles. The statistical model used for the transfer is denoted by its
parameter vector ϑ.

local data yi,j available on every given site Si whereas the second level represents the global population
of all available sites. In such a two-level hierarchical model, this relationship is represented such
that the set of parameters ϑ is split up into two subsets ϑ = (ϕ, η) for level 1 and 2 respectively. The
hierarchical relationship between these two levels is represented by factorizing their joint probability
through the definition of conditional probability p(ϕ, η) = p(ϕ|η)p(η). The general formulation of the
two-level model would then look like the following:

yi,j ∼ p(y|ϕi), (2a)

ϕi ∼ p(ϕ|η), (2b)

η ∼ p(η). (2c)

This means that each datum yi,j is drawn from a distribution with parameters ϕi, which are specific
to site Si only. This distribution, therefore, represents the local variability of the data found within
a given site or intra-site variability (Eq. 2a). These local parameters ϕi are, in turn, drawn from a
distribution specified by the global parameters called hyperparameters η. These hyperparameters,
therefore, represent the global variability between sites or inter-site variability (Eq. 2b).

This general formulation allows to flexibly choose parametric models used for all distributions.
Since p(y|ϕi) represents the data, this distribution should fit the empirically observed frequencies of
y. Depending on the geostatistical parameter of interest, a user can use, e.g., the normal, log-normal,
multivariate normal, or truncated normal distributions to model parameter behavior. Choosing the
distributions of the hierarchical model itself, i.e., p(ϕ|η) and p(η) is less straightforward and should
reflect of mixture of the domain knowledge and statistical expertise. To exemplify this procedure, let
us look at measurements of hydraulic conductivity. These data are often modeled with a log-normal
distribution (Hoeksema and Kitanidis, 1985), while p(ϕ|η) can be modeled as a normal distribution
(Gelman et al., 2013). The parametric form of p(η) should be specified as vague priors initially, with
the posteriors being determined by the data yex. Transforming our data into their log-normal form, as
often done, the resulting hierarchical model would then be

yi,j ∼ N (µi, σ2), (3a)
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µi ∼ N (α, τ), (3b)

(σ2, α, τ) ∼ p(σ2)p(α)p(τ). (3c)

In this example, we assumed that the variance σ2 at each site is the same, making the local and
global parameters identical. This assumption is, of course, a simplification but allows to reduce the
number of parameters to be inferred.

Generation of the ex-situ prior distribution

Once the target variable is specified, and the ex-situ data yex collected, three steps are necessary to
actually calculate the prior distribution. First, the user has to decide on the parametric model for the
distributions and therefore fully specify the hierarchical model according to Eq. 2. Next, the posterior
distributions of the parameters p(ϕ, η|yex) are inferred. In exPrior, this is done using the Markov chain
Monte Carlo (MCMC) implementation of NIMBLE. Finally, the ex-situ prior can be determined as the
posterior predictive distribution (see Equation 1).

To familiarize ourselves with this procedure, let us look at these three steps in more detail.

Specifying a hierarchical model The specification of the hierarchical model in exPrior is done in
BUGS code wrapped within the NIMBLE function nimbleCode(). The results are R objects from the
BUGS models. In NIMBLE, every model is represented as a Directed Acyclic Graph (DAG), where
each declaration in the model is a node which can be either deterministic or stochastic. Nodes are
represented as vertices of a DAG, with edges connecting nodes implying dependence relationships.

normal

yi,j ∼ N (µi,σ
2)

normal

µi ∼ N (α, τ)

α ∼ p(α)τ ∼ p(τ) σ
2 ∼ p(σ2) tau alpha sigma

mu[i]

y[i,j]

Figure 2: Schematic of the example model showing the statistical model on the left as defined in
see Eq. 3 and the corresponding DAG on the right. The arrows show the hierarchical relationships
between the variables. Both the ex-situ data yi,j, and the site-specific mean µi are drawn from normal
distributions. The hyperparameters η = (τ, α, σ2) are given initially vague hyperpriors to be updated
later by the ex-situ data.

To exemplify this, let us consider the aforementioned model for the log-hydraulic conductivity.
As mentioned, the data at each site are modeled as being drawn from a normal distribution with
every site having the same variance σ2 but site-specific means. This mean value is again drawn from
a normal distribution. Accordingly, α is the global mean of the local means, and τ2 represents the
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global variability of the local means. Since no data are used at this point, the hyperpriors of the
hyperparameters η = (α, τ, σ) should be non-informative.

The model is therefore declared with five variables: alpha, tau, sigma, mu, and y. Once compiled,
the model contains multiple nodes: one node for each hyperparameter alpha, tau, and sigma, I nodes
for the site-specific means mu[i], and ∑i Ji nodes for the site measurements y[i,j]. In this model,
the dependent nodes are the ex-situ data yi,j, the µi values are estimated from these deterministic yi,j.
Similarly, the α and τ are estimated from the µi. In cases where the data are provided to genExPrior()
in the form of moments (more on this later), mu[i] is deterministic, as the site-specific means are
already provided in numeric form and not considered to be realizations from any distribution. The
following pseudocode illustrates how the model is declared:

## declaration of a hierarchical model in nimbleCode

# 1. declare prior distributions for hyperparameters
hyperparameters ~ disn(...)

# 2. declare distributions for site-specific means
for i in 1:I {
mu[i] ~ disn(hyperparam1, hyperparam2, ...) # distribution of mean mu at site i

# 3. declare distributions for measurements
for j in 1:J {
y[i,j] ~ disn(mu[i], hyperparam3, ...)
}

}

This pseudocode model denotes the mathematical formulation of the hierarchical model in
BUGS code, where the parameter for site-specific means µi is mu[i], and site-specific variances
σ2

i is sigma2[i]. First, hyperparameters alpha and tau are assigned non-informative hyperpriors.
Next, the code loops through each site and assigns the mean mu[i] a distribution whose parameters are
hyperparameters. Finally, each of the J measurements y[i,j] at each site i is assigned a distribution
with parameters mu[i] and hyperparameters.

The flexibility of this formulation allows the data yex to be assimilated in a full MCMC hierarchical
model, as explained in the next section.

Estimating posterior values of parameters in the hierarchical model Parameters in the hierarchical
model are estimated from the data provided by the user, using MCMC. Once the model and the vari-
ables are declared, the hierarchical model is compiled using nimble::compileNimble(). The MCMC
object is configured, built, and compiled using nimble::configureMCMC(), nimble::buildMCMC(), and
nimble::compileNimble(), respectively and run using the run method of the compiled object. This
method calculates an MCMC chain, the result of the estimation step. To improve numerical efficiency,
NIMBLE includes a library of algorithms and a compiler that generates C++ for declared models and
functions. Once a model is declared, nimbleCode is generated as C++ code, compiled, and reloaded
into R.

The values in the compiled model are declared with data that are supplied by the user when
running the function. For example, if a user inputs a data frame of measurements, each of the y[i,j]
is defined with its corresponding data point. If a user provides moments, then each of the mu[i]
is defined with its provided value. Once a model is compiled, genExPrior() envokes the MCMC
sampler, which estimates the posterior distributions of the parameters.

Predicting the prior Now that the ex-situ data are assimilated, our hierarchical model is fully
conditioned on all available data. Normally, this would conclude a Bayesian inference. Yet as explained
above, the posterior distribution has to be used to compute the predictive posterior distribution of the
target variable at a new site (see Eq 1). In exPrior, this is simply done by drawing realizations of the
target variable from distributions specified by the hierarchical model and parameterized by values
sampled from the MCMC chains from the previous step. The final predictive posterior distribution is
then estimated using kernel density estimation.

Associated packages

To support the functionality of exPrior, we provide two additional R packages on the GitHub account.
First, the geostatDB package provides real-world data on subsurface measurements, which can
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therefore be used directly for the derivation of informed prior distributions. Second, the siteSimilarity
package allows users to determine a cluster of similar sites to focus on the most relevant data only and
therefore reducing the overall uncertainty. Since both these packages provide benefits independently
of exPrior, they will remain independent for the foreseeable future.

Real-world data: The geostatDB package

In this package, we provide real-world, geostatistical data from the WorldWide HYdrogeological
Parameters DAtabase WWHYPDA (Comunian and Renard, 2009). This database has been designed
to store values of the most important properties of earth materials and has been developed with the
purpose of offering a complement of information in hydrogeological studies where there is a lack of
data. To the best of the authors’ knowledge, the WWHYPDA is the largest open-source database of
hydrogeological parameters. Currently it contains a total of 20,523 subsurface measurements of 6
geostatistical parameters spanning 128 sites. A complete description and schematic of the database in
its original form can be found in Comunian and Renard (2009).

Due to its size, as well as to facilitate further additions to the database, we use a dedicated
R package geostatDB to host the data from WWHYPDA. This package is not yet on CRAN, but
the latest release version can be found on https://github.com/GeoStat-Bayesian/geostatDB (Heße
et al., 2019c). To exemplify the usage and impact of real-world data, we furnished exPrior with an
example data set on porosity values from sandy aquifers. Its usage is described in Section 2.4.2 below.

geostatDB itself includes the WWHYPDA as an SQLite database, converted from the online
MySQL database. The reasons for using SQLite are efficiency and accessibility. First, both SQL
and SQLite databases can be easily read into R, while maintaining their original structure. SQLite
specifically can be included in R packages without the need for a server, making it accessible to the
user. A downside of this decision is that a user who updates the SQLite database in geostatDB does
so without making changes to the original database, hosted on https://www.wwwhypda.org. Thus,
those who wish to contribute to the WWHYPDA are currently encouraged to do so by submitting data
online.

It is important to note that data quality steps need to be implemented before applying the statistical
algorithm to this database. Figure 3 contains two visualizations that describe the data present in
the WWHYPDA, created in R. This visualization was done using the function getData() from the
geostatDB package. The code can be found in the associated vignette of the package at https:
//github.com/GeoStat-Bayesian/geostatDB/blob/master/vignettes/explore_data.Rmd.

The notion of site similarity: The siteSimilarity package

In order to reduce the uncertainty in the prior distribution as much as possible, it is beneficial to focus
only on data coming from sites which are similar to the one under investigation. It is therefore crucial
to have a sound notion of site similarity. The siteSimilarity package uses hierarchical agglomerative
clustering to categorize sites into clusters based on observable characteristics, such as environment
type or rock type. Using the schematic in Figure 1, only those sites similar to site S0 would be used as
donor sites. Currently, the clustering achieves only a modest reduction in uncertainty when using a
leave-one-out validation. This is caused by the overall limited number of sites, which, after clustering,
get even more reduced. Yet the algorithm already provides the user with a tangible benefit, which is
projected to increase as more and larger data sets with more sites become available.

Examples

Having now formally explained the workflow and associated packages of exPrior, we will illustrate
said workflow with a series of examples. Starting with an easy inference problem, we will then explain
how to use the included data, how to account for autocorrelation, and finally how to use soft data, in
particular bounds, for the inference.

Please note that all examples given in the following only refer to the distribution of the expected
quantity itself, e.g., porosity. This does, however, not mean that the parameters of a GP cannot be
inferred since µ and σ are nodes in the hierarchical model and can be derived from it. On the other
hand, higher-order statistics, like correlation length or anisotropy, are usually considered homogeneous
across a given site and are consequentially not hierarchical. They can, therefore, be inferred using the
classical estimation procedure.

The following four examples correspond to four vignettes, which can be found on the GitHub
account of the exPrior package at https://github.com/GeoStat-Bayesian/exPrior/blob/master/
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Figure 3: The two visualizations are made using the data from the WWHYPDA, obtained using the
function getData() from the geostatDB package. The first figure shows the distribution of porosity
values at several sites, derived using kernel density estimation. The second figure shows a set of
histograms describing the distribution of hydraulic conductivity values for different material types.
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vignettes.

Figure 4: A flowchart showing the workflow of the user of exPrior. A user first expresses ex-situ
data as an R dataframe. The user then determines the range of values at which to compute a prior
(usually the minimum and maximum values of a parameter). Finally, the user uses genExPrior() to
compute the ex-situ prior for a target site. The user has the options of using built-in plotting functions
to visualize results.

The general workflow, which is followed in all of these examples, is visualized in Figure 4. First, a
user has to represent the ex-situ data in the form of an R dataframe object. These data can be manually
entered, like explained in Section 2.4.1, taken from the included data, like explained in Section 2.4.2, or
being supplied though some additional database. Next, the user would enter as an R vector object
a range of values at which to estimate the prior distribution. This range is typically the minimum
and maximum values of the parameter of interest (for example, porosity takes values between 0 and
1). Finally, the user would input the ex-situ data and specified range into the function genExPrior(),
which outputs a prior and the distributions of hyperparameters of the model. The user has the options
of using built-in plotting functions to visualize results.

Example 1: Using exPrior with synthetic data

To familiarize the reader with this general workflow, let us start with a simple example using only a
few synthetic data (on a log 10 scale) from three arbitrarily labeled sites S1, S2, and S3. The source code
for the corresponding vignette can be found at https://github.com/GeoStat-Bayesian/exPrior/
blob/master/vignettes/using_genExPrior.Rmd. The goal is to derive the ex-situ prior for target site
S0 with the following code:

> exdata <- data.frame(val = c(c(-2,-3,-4), c(-2,-1), c(-6,-7,-2,-3)),
+ site_id = c(rep('S1',3), rep('S2',2), rep('S3',4)))
> ex_prior <- genExPrior(exdata = exdata, theta = seq(from=-10, to=10, by=0.1))

By following the above workflow, we started with generating an R dataframe exdata for the
ex-situ data. Then, we entered the range over which to estimate the variable θ as an R vector theta.
The actual computation of the ex-situ prior is finally performed by the function genExPrior(). To
investigate the output of this function, exPrior provides a number of plotting functions.

> plotHyperDist(ex_prior)
> plotExPrior(ex_prior)
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Figure 5: The left panel shows the distributions of the hyperparameters alpha, tau, and sigma. The
right panel shows ex-situ prior computed using the data assimilation framework (blue curve) against
the uninformative prior (black curve).

In this little example, the first command plotHyperDist plots the posterior distributions of the
hyperparameters α, τ, and σ (see Figure 5 left panel). This captures the impact of the data on the
Bayesian hierarchical model. The second command plotExPrior shows the ex-situ data from the three
sites jointly with the predicted prior distribution for the new site S0 (see Figure 5 right panel). As can
be seen, the essentially flat, uninformative prior got updated into a much sharper, informative prior
representing a much-reduced uncertainty.

Example 2: Using exPrior with real-world data

As introduced above, exPrior provides real-world, geostatistical data from the WWHYPDA. Let us
exemplify its use and impact on the inference by first importing the data on porosity. As above, the
associated vignette can be found at https://github.com/GeoStat-Bayesian/exPrior/blob/master/
vignettes/real_world_data.Rmd.

> load(file="data/df_porosity.rda")

These real-world data are now loaded into the workspace and can be used to compute the ex-situ
prior using the ‘exPrior‘ function as describe in above example

> resExPrior = genExPrior(exdata = df_porosity, theta = seq(from=0, to=1, by=0.01))

Here, the range of the theta vector reflects the common-sense intuition that porosity values can
only exist between 0 and 1. This change should also be reflected in the used model

yi,j ∼ Φ(µi, σ2, 0, 1), (4a)

µi ∼ N (α, τ), (4b)

(σ2, α, τ) ∼ p(σ2)p(α)p(τ). (4c)

Equation (4a) makes this change clear, such that the data are drawn from a truncated normal
distribution. Since the boundaries are fixed, the hierarchical model itself still has the same number of
parameters, and the other parts of the model remain the same.

After the completion of exPrior, we can visualize again the posteriors of the model as well as the
prior of θ using plotExPrior.

> plotHyperDist(resExPrior)
> plotExPrior(resExPrior)
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Figure 6: Informative (blue) and non-informative (black) priors computed with genExPrior() using
real-world, ex-situ data of porosity in sand stone.

Compared to Figure 5, the results in Figure 6 show some relevant differences. In particular, the
hyperpriors seen in the left panel of Figure 6 are much more peaked, resulting in near-certainty
about their value. This is due to the large amount of evidence provided by the data. Since the
parameter distributions on the higher levels in a hierarchical model represent the uncertainty about the
parameters on the lower ones, it can be said that the results of this inference capture the uncertainty of
porosity in sandstone with high certainty. This means that the prior distribution in the right panel of
Figure 6 is very close to the statistical uncertainty for the hypothetical population of all porosity values
in sandstone aquifers in general. As can be seen in this figure, this distribution is strongly peaked
between 0.2 and 0.3. Using this prior therefore provides a practitioner with a sound foundation for the
geostatistical inference of the in-situ porosity.

Example 3: Accounting for spatial autocorrelation in ex-situ data

In most cases, ex-situ data used in the analysis are spatially correlated since measurements are usually
collected in a clustered way (Rubin, 2003; Pyrcz and Deutsch, 2002). The data assimilation model
outlined in 2.2.1 can, in principle, account for patterns of spatial variability by using multivariate
distributions as site-specific distributions. As above, the associated vignette can be found at https:
//github.com/GeoStat-Bayesian/exPrior/blob/master/vignettes/spatial_correlation.Rmd. To
account for this spatial correlation, let us use a revised version of the hierarchical model from Equation
(3)

yi,j ∼ N (µi, Σ), (5a)

µi ∼ N (α, τ), (5b)

Σ = σ2 exp
(
− h

λ

)
, (5c)

(σ2, λ, α, τ) ∼ p(σ2)p(λ)p(α)p(τ). (5d)

The relevant adjustment can be seen in Equation (5a), where the data are no longer modeled to
be drawn from a univariate normal distribution but a multivariate distribution instead. The main
difference is the replacement of the variance σ2 by the covariance Σ. In our example, this covariance is
modeled as an isotropic exponentially decaying function, with a characteristic length scale λ. This
function means that measurements being taken at large distances h are essentially independent,
and no relevant difference to the simple univariate model from Equation (3) would exist. However,
measurements taken at distances h similar or smaller to λ exhibit substantial correlation and must be
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Figure 7: Informative (blue) and non-informative (black) priors computed with genExPrior(). The
left panel shows the prior without accounting for spatial correlation, whereas the right panel shows
the prior accounting for spatial correlation (right panel). The colored bars represent the ex-situ data
from the three different sites.

assimilated accordingly. Failing to do so would result in an underestimation of the actual uncertainty,
a phenomenon which is known in the literature as pseudoreplication (Hurlbert, 1984; Legendre, 1993).
Due to the additional parameter, the model has now 4 hyperparameters, which need to be inferred.

To exemplify the workflow with this revised hierarchical model, let us use synthetic data coming
again from three different sites only. To generate data with spatial correlation, we used the gstat
package. These synthetic data were then transformed to have different mean values for each site.

> set.seed(1)
> xy <- data.frame("x" = sample(seq(0.00,1.00,0.01),22),
+ "y" = sample(seq(0.00,1.00,0.01),22))
> model = vgm(psill=1, range=1, model='Exp')
> g.dummy <- gstat(formula=z~1, locations=~x+y, dummy=TRUE, beta=1, model=model, nmax=20)
> exdata_spatial <- predict(g.dummy, newdata=xy, nsim=1)

To adapt this data frame from gstat to the format needed for exPrior, we have to change one of the
column names and add the site’s id.

> colnames(exdata_spatial)[3] <- "val"
> exdata_spatial\$site_id = c(rep("S1", 10), rep("S2", 5), rep("S3", 7))
> exdata_spatial[ 1:10, 'val'] <- exdata_spatial[ 1:10, 'val'] - 3
> exdata_spatial[11:15, 'val'] <- exdata_spatial[11:15, 'val'] - 2.5
> exdata_spatial[16:22, 'val'] <- exdata_spatial[16:22, 'val'] - 3.5

With these data, we can now generate the ex-situ prior distribution. To tell exPrior to account for
the spatial correlation in the data, we have to toggle the spatialCoordinates flag in the genExPrior()
function to TRUE.

> resExPrior = genExPrior(exdata = exdata, theta = seq(from=-10, to=10, by=0.1),
+ spatialCoordinates = TRUE)
> plotExPrior(resExPrior, plotExData = TRUE)

To compare the effects of accounting for spatial correlation, we provide plots of the ex-situ prior
with spatialCoordinates being both set to FALSE and TRUE (see the left and right panel in Figure 7,
respectively). As can be seen, both priors look overall similar in shape. The main difference is that
the latter shows a somewhat increased uncertainty, i.e., a wider variance, which can be seen by the
increased mode of the distribution. The fact that the more realistic model produces more uncertain
results may seem counterintuitive at first. However, the aim of statistical inference is not to reduce the
uncertainty as much as possible but to correctly capture the uncertainty in the used data and the model.
As mentioned above, this problem of not accounting for possible correlations between measurements
is called pseudoreplication and can have serious consequences by leading to overconfident statistical
analyses.

Example 4: Assimilating Multiple Data Types

As mentioned above, exPrior is written in a flexible manner, such that it can assimilate data that come
in the form of measurements, bounds, or moments (see schematic in Figure 2). To exemplify this
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Figure 8: The left panel shows the distributions of the hyperparameters alpha, tau, and sigma. The
right panel shows ex-situ data from three synthetic sites S1, S2, and S3. The blue curve is the ex-situ
prior computed using the data assimilation framework, while the black curve is the uninformative
prior.

flexibility, let us use in this example synthetic data from three sites labeled S1, S2, and S3. From Site
S1, we have data in the form of bounds, where the minimum value of a hydrogeological property
of S1 is 2, and its maximum value is 4. Site S2 has data in the form of moments, where the first
moment, or site mean, is 2, while the second moment, or site variance, is 0.1. Finally, site S3 has
three measurements. Again, the associated vignette can be found at https://github.com/GeoStat-
Bayesian/exPrior/blob/master/vignettes/multi_type_data.Rmd. The code below shows how to
format the data in R such that it can be read into genExPrior().

> exdata_S1 <- data.frame(val=c(2,4), site_id=rep('S1',2),
+ type=c('bound.min','bound.max'))
> exdata_S2 <- data.frame(val=c(2,0.1), site_id=rep('S2',2),
+ type=c('moment.1','moment.2'))
> exdata_S3 <- data.frame(val=c(2,3,4), site_id=rep('S3',3),
+ type=c('meas','meas','meas'))
> exdata <- rbind(exdata_S1, exdata_S2, exdata_S3)

As in previous examples, the data frame exdata_multitype as well as the vector theta can be
input directly into genExPrior() as such

> resExPrior <- genExPrior(exdata = exdata, theta = seq(from=-10, to=10, by=0.1))

Finally, we can visualize the results resExPrior again using the plotHyperDist and plotExPrior
functions.

> plotHyperDist(resExPrior)
> plotExPrior(resExPrior)

The resulting hyperparameters and ex-situ prior distributions look very similar to the simple
example from Section 2.4.1 (compare Figure 5 to Figure 8). This comparison shows that data in the form
of bounds and moments can have a similar impact on the inference and how they can be assimilated
by exPrior.

Summary

In this paper, we have introduced the R package exPrior, which contains methods for assimilating
ex-situ data to generate prior probabilities for geostatistical parameters. We explain the formulation
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of a prior distribution as a Bayesian Hierarchical Model (Section 2.2.1) and its implementation using
NIMBLE, an R package created for efficient hierarchical modeling. We illustrate the model through a
number of examples where exPrior can be used, including univariate and multivariate models (Section
2.4.3), as well as the assimilation of multiple data types (2.4.4). The package also contains data from
the WWHYPDA, an open-source, hydrogeological database that provides valuable information for
hydrogeological modeling. The goal of this package is to provide methods to facilitate geostatistical
modeling, as well as to encourage the open-source and open-data movements between scientists.
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