
CONTRIBUTED RESEARCH ARTICLES 69

Wide-to-tall Data Reshaping Using
Regular Expressions and the nc Package
by Toby Dylan Hocking

Abstract Regular expressions are powerful tools for extracting tables from non-tabular text data.
Capturing regular expressions that describe the information to extract from column names can be
especially useful when reshaping a data table from wide (few rows with many regularly named
columns) to tall (fewer columns with more rows). We present the R package nc (short for named
capture), which provides functions for wide-to-tall data reshaping using regular expressions. We
describe the main new ideas of nc, and provide detailed comparisons with related R packages (stats,
utils, data.table, tidyr, tidyfast, tidyfst, reshape2, cdata).

Introduction

Regular expressions are powerful tools for text processing that are available in many programming
languages, including R. A regular expression pattern or regex defines a set of matches in a subject
string. For some example subjects, consider the column names of the famous iris data set in R: Species,
Sepal.Length, Petal.Width, etc. Some example patterns: a dot between square brackets [.] matches
a period, a dot by itself . matches any non-newline character, and a dot followed by a star .* matches
zero or more non-newline characters. Therefore the pattern .*[.].* matches zero or more non-newline
characters, followed by a period, followed by zero or more non-newline characters. It would match
Sepal.Length and Petal.Width, but it would not match Species. For a more detailed discussion of
regular expressions, we refer the reader to help(regex) in R or the book of Friedl (2002).

The focus of this article is patterns with capture groups, which are typically defined using paren-
theses. For example, the pattern (.*)[.](.*) results in the same matches as the pattern in the previous
paragraph, and it additionally allows the user to capture and extract the substrings by group index
(e.g., group 1 matches Sepal, group 2 matches Length).

Named capture groups allow extracting the substring by name rather than by index. Using
names rather than indices is preferable in order to create more readable regular expressions (names
document the purpose of each sub-pattern) and to create more readable R code (it is easier to
understand the intent of named references than numbered references). For example, the pattern
(?<part>.*)[.](?<dimension>.*) documents that the flower part appears before the measurement
dimension; the part group matches Sepal and the dimension group matches Length.

Recently, Hocking (2019a) proposes a new syntax for defining named capture groups in R code.
Using this new syntax, named capture groups are specified using named arguments in R, which
results in code that is easier to read and modify than capture groups defined in string literals. For
example, the pattern in the previous paragraph can be written as part = ".*", "[.]", dimension =
".*". Sub-patterns can be grouped for clarity and/or re-used using lists, and numeric data may be
extracted with user-provided type conversion functions.

The main thesis of this article is that regular expressions can greatly simplify the code required to
specify wide-to-tall data reshaping operations (when the input columns adhere to a regular naming
convention). For one such operation, the input is a “wide” table with many columns, and the desired
output is a “tall” table with more rows, and some of the input columns are converted into a smaller
number of output columns (Figure 1). To clarify the discussion, we first define three terms that we will
use to refer to the different types of columns involved in this conversion:

Reshape columns contain the data which is present in the same amount but in different shapes in
the input and output. There are equivalent terms used in different R packages: varying in
utils::reshape, measure.vars in melt (data.table, reshape2), etc.

Copy columns contain data in the input which are each copied to multiple rows in the output (id.vars
in melt).

Capture columns are only present in the output, and contain data which come from matching a
capturing regex pattern to the input reshape column names.

For example, the wide iris data (W in Figure 1) have four numeric columns to reshape: Sepal.Length,
Sepal.Width, Petal.Length, Petal.Width. For some purposes (e.g., displaying a histogram of each
reshape input column using facets in ggplot2), the desired reshaping operation results in a table with
a single reshape output column (S in Figure 1), two copied columns, and two columns captured from
the names of the reshaped input columns. For other purposes (e.g., scatterplot to compare sepal and

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLES 70

 cm Species flower part dim
1: 5.1 setosa 1 Sepal Length
2: 3.5 setosa 1 Sepal Width
3: 1.4 setosa 1 Petal Length
4: 0.2 setosa 1 Petal Width
5: 7.0 versicolor 51 Sepal Length
6: 3.2 versicolor 51 Sepal Width
7: 4.7 versicolor 51 Petal Length
8: 1.4 versicolor 51 Petal Width

 Sepal.Length Sepal.Width Petal.Length Petal.Width Species flower
1: 5.1 3.5 1.4 0.2 setosa 1
2: 7.0 3.2 4.7 1.4 versicolor 51

 Sepal Petal Species flower dim
1: 5.1 1.4 setosa 1 Length
2: 3.5 0.2 setosa 1 Width
3: 7.0 4.7 versicolor 51 Length
4: 3.2 1.4 versicolor 51 Width

 Length Width Species flower part
1: 5.1 3.5 setosa 1 Sepal
2: 1.4 0.2 setosa 1 Petal
3: 7.0 3.2 versicolor 51 Sepal
4: 4.7 1.4 versicolor 51 Petal

Convert four
input reshape
columns to
Single output
reshape column
and two output
capture columns

Convert four input reshape
columns to Multiple (2)
output reshape columns and
one output capture column

W S

M1

M2 Output reshape column
for each dim

Output reshape column
for each part

Column type legend: Name = reshape, Name = copy, Name = capture.

Figure 1: Two rows of the iris data set (W, black) are considered as the input to a wide-to-tall reshape
operation. Four input reshape columns are converted to either a single output reshape column (S,
blue) or multiple (2) output reshape columns (M1, M2, red). Other output columns are either copied
from the non-reshaped input data, or captured from the names of the reshaped input columns.

petal sizes) the desired reshaping operation results in a table with multiple reshape output columns
(M1 with Sepal and Petal columns in Figure 1), two copied columns, and one column captured from
the names of the reshaped input columns.

In this article, our original contribution is the R package nc which provides a new implementation
of the previously proposed named capture regex syntax of Hocking (2019a), in addition to several
new functions that perform wide-to-tall data reshaping using regular expressions. The main new idea
is to use a single named capture regular expression for defining both (1) the subset of reshape input
columns to convert and (2) the additional capture output columns. We will show that this results in a
simple, powerful, non-repetitive syntax for wide-to-tall data reshaping. A secondary contribution of
this article is a detailed comparison of current R functions for wide-to-tall data reshaping in terms
of syntax, computation times, and functionality (Table 1). Note that in this article, we do not discuss
tall-to-wide data reshaping, because regular expressions are not useful in that case.

The organization of this article is as follows. The rest of this introduction provides an overview
of current R packages for regular expressions and data reshaping. The second section describes the
proposed functions of the nc package, and then the third section provides detailed comparisons with
other R packages. The article concludes with a summary and discussion of possible future work.

Related work

There are many R functions which can extract tables from non-tabular text using regular expres-
sions. Recommended R package functions include base::regexpr and base::gregexpr as well as
utils::strcapture. CRAN packages which provide various functions for text processing using regu-
lar expressions include namedCapture (Hocking, 2019b), rematch2 (Csárdi, 2017), rex (Ushey et al.,
2017), stringr (Wickham, 2018), stringi (Gagolewski, 2018), tidyr (Wickham and Henry, 2018), and
re2r (Wenfeng, 2017). We refer the reader to our previous research paper for a detailed comparison of
these packages (Hocking, 2019a).

For reshaping data from wide (one row with many columns) to tall (one column with many rows),
there are several different R functions that provide similar functionality. Each function supports a
different set of features (Table 1); each feature/column is explained in detail below:

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=nc
https://CRAN.R-project.org/package=nc
https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=rematch2
https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=stringi
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=re2r

CONTRIBUTED RESEARCH ARTICLES 71

pkg::function single multiple regex na.rm types list

nc::capture_melt_multiple no yes capture yes any yes
nc::capture_melt_single yes no capture yes any yes
tidyr::pivot_longer yes yes capture yes any yes
stats::reshape yes if sorted capture no some no
data.table::melt, patterns yes if sorted match yes no yes
tidyfst::longer_dt yes no match yes no yes
tidyr::gather yes no no yes some yes
tidyfast::dt_pivot_longer yes no no yes no yes
cdata::rowrecs_to_blocks yes yes no no no yes
cdata::unpivot_to_blocks yes no no no no yes
reshape2::melt yes no no yes no no
utils::stack yes no no no no no

Table 1: Reshaping functions in R support various features: “single” for converting input columns into
a single output column; “multiple” for converting input columns (either “if sorted” in a regular order,
or “yes” for any order) into multiple output columns of possibly different types; “regex” for regular
expressions to “match” input column names or to “capture” and create new output column names;
“na.rm” for removal of missing values; “types” for converting input column names to non-character
output columns; “list” for output of list columns.

single refers to support for converting input reshape columns of the same type to a single reshape
output column.

multiple refers to support for converting input reshape columns of possibly different types to multiple
output reshape columns; “if sorted” means that conversion works correctly only if the input
reshape columns are sorted in a regular order, e.g., Sepal.Length, Sepal.Width, Petal.Length,
Petal.Width; “yes” means that conversion works correctly even if they are not sorted, e.g.,
Sepal.Length, Sepal.Width, Petal.Width, Petal.Length.

regex refers to support for regular expressions; “match” means a pattern is used to match the input
column names; “capture” means that the specified pattern is used to create new output cap-
ture columns — this is especially useful when the names consist of several distinct pieces of
information, e.g., Sepal.Length; “no” means that regular expressions are not directly supported
(although base::grep can always be used).

na.rm refers to support for removing missing values.

types refers to support for converting captured text to numeric output columns.

list refers to support for output of list columns.

Recommended R package functions include stats::reshape and utils::stack for reshaping
data from wide to tall. Of the features listed in Table 1, utils::stack only supports output with
a single reshape column, whereas stats::reshape supports the following features. For data with
regular input column names (output column, separator, time value), regular expressions can be used
to specify the separator (e.g., in Sepal.Length, Sepal is output column, dot is separator, Length is
time value). Multiple output columns are supported, but incorrect output may be computed if input
columns are not sorted in a regular order. The time value is output to a capture column named time
by default. Automatic type conversion is performed on time values when possible, but custom type
conversion functions are not supported. There is neither support for missing value removal nor list
column output.

The tidyr package provides two functions for reshaping data from wide to tall format: gather
and pivot_longer. The older gather function only supports converting input reshape columns to
a single output reshape column (not multiple). The input reshape columns to convert may not
be directly specified using regular expressions; instead, R expressions such as x:y can be used to
indicate all columns starting from x and ending with y. It does support limited type conversion;
if the convert = TRUE argument is specified, the utils::type.convert function is used to convert
the input column names to numeric, integer, or logical. In contrast, the newer pivot_longer also
supports multiple output reshape columns (even if input reshape columns are unsorted) and regular
expressions for specifying output capture columns (but to specify input reshape columns with a
regex, grep must be used). Arbitrary type conversion is also supported in pivot_longer, via the
names_transform argument, which should be a named list of conversion functions. Both functions
support list columns and removing missing values, although different arguments are used (na.rm for
gather, values_drop_na for pivot_longer).

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 72

The reshape2 and data.table packages each provide a melt function for converting data from
wide to tall (Wickham, 2007; Dowle and Srinivasan, 2019). The older reshape2 version only supports
converting input reshape columns to a single output reshape column, whereas the newer data.table
version also supports multiple output reshape columns. Regular expressions are not supported in
reshape2, but can be used with data.table::patterns to match input column names to convert
(although the output can be incorrect if columns are not sorted in a regular order). Neither function
supports type conversion, and both functions support removing missing values from the output using
the na.rm argument. List column output is supported in data.table but not reshape2. The tidyfast
(Barrett, 2020) and tidyfst (Huang and Zhao, 2020) packages provide reshaping functions that use
data.table::melt internally (but do not support multiple output reshape columns).

The cdata package provides several functions for data reshaping, including rowrecs_to_blocks
and unpivot_to_blocks, which can convert data from wide to tall (Mount and Zumel, 2019). The
simpler of the two functions is unpivot_to_blocks, which supports a single output reshape column
(interface similar to reshape2::melt/tidyr::gather). The user of rowrecs_to_blocks must provide
a control table that describes how the input should be reshaped into the output. It, therefore, supports
multiple output reshape columns for possibly unsorted input columns. Both functions support list
column output, but other features from Table 1 are not supported (regular expressions, missing value
removal, type conversion).

Basic features for wide-to-tall data reshaping using regular expressions

The nc package provides new regular expression functionality based on the syntax recently proposed
by Hocking (2019a). During the rest of the article, we give only a brief overview of this syntax; for
a more detailed review, please read the nc package vignettes. In this section, we show how new nc
functions can be used to reshape wide data (with many columns) to tall data (with fewer columns,
and more rows). We begin by considering the two data visualization problems which were mentioned
in the introduction and which involve the familiar iris data set.

Single reshape output column

First, suppose we would like to visualize the univariate distribution of each numeric variable. One
way would be to use a histogram of each numeric variable, with row facets for the flower part and
column facets for the measurement dimension. Our desired output, therefore, needs a single column
with all of the reshaped numeric data to plot (Figure 1, W→S).

We can perform this operation using nc::capture_melt_single, which inputs a data frame and
a pattern which should match the names of the input columns to reshape. Any input columns with
names that do not match the pattern are considered copy columns; the output also contains a capture
column for each group specified in the pattern:

> (iris.tall.single <- nc::capture_melt_single(
+ iris, part = ".*", "[.]", dim = ".*", value.name = "cm"))

Species part dim cm
1: setosa Sepal Length 5.1
2: setosa Sepal Length 4.9
3: setosa Sepal Length 4.7
4: setosa Sepal Length 4.6
5: setosa Sepal Length 5.0

596: virginica Petal Width 2.3
597: virginica Petal Width 1.9
598: virginica Petal Width 2.0
599: virginica Petal Width 2.3
600: virginica Petal Width 1.8

The code above can be read as follows. The first argument, iris specifies the wide input to reshape
(a data frame or data table). The next three arguments (part = ".*", "[.]", dim = ".*") specify
the regex. Internally nc generates a capture group for each named argument, so the generated regex
pattern is (.*)[.](.*) in this example. The value.name argument is not considered part of the regex
and instead specifies the name of the output reshape column.

The output above is a data table (a data frame subclass with special methods with reference
semantics) because data.table::melt is used internally for the reshape operation. The output data

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=reshape2
https://CRAN.R-project.org/package=tidyfast
https://CRAN.R-project.org/package=tidyfst
https://CRAN.R-project.org/package=cdata

CONTRIBUTED RESEARCH ARTICLES 73

table consists of one copy column (Species), two capture columns (part, dim), and a single reshape
column (cm). These data can be used to create the desired histogram with ggplot2 via:

> library(ggplot2)
> ggplot(iris.tall.single) + facet_grid(part ~ dim) +
+ theme_bw() + theme(panel.spacing = grid::unit(0, "lines")) +
+ geom_histogram(aes(cm, fill = Species), color = "black", bins = 40)

Length Width

P
etal

S
epal

0 2 4 6 8 0 2 4 6 8

0
10
20
30
40

0
10
20
30
40

cm

co
un

t

Species

setosa

versicolor

virginica

For comparison, we show how the same reshape operation can be accomplished with the data.table
package:

> iris.pattern <- "(.*)[.](.*)"
> iris.wide <- data.table::as.data.table(iris)
> iris.tall <- data.table::melt(
+ iris.wide, measure = patterns(iris.pattern), value.name = "cm")
> iris.tall[, `:=`(part = sub(iris.pattern, "\\1", variable),
+ dim = sub(iris.pattern, "\\2", variable))][]

Species variable cm part dim
1: setosa Sepal.Length 5.1 Sepal Length
2: setosa Sepal.Length 4.9 Sepal Length
3: setosa Sepal.Length 4.7 Sepal Length
4: setosa Sepal.Length 4.6 Sepal Length
5: setosa Sepal.Length 5.0 Sepal Length

596: virginica Petal.Width 2.3 Petal Width
597: virginica Petal.Width 1.9 Petal Width
598: virginica Petal.Width 2.0 Petal Width
599: virginica Petal.Width 2.3 Petal Width
600: virginica Petal.Width 1.8 Petal Width

The code above uses data.table::melt with patterns which takes a regex used to specify the
four columns to reshape. The part and dim capture columns must be created during a post-processing
step. In this case, the nc code is substantially simpler because the named capture regular expression
was used to specify both the input columns to reshape and the capture columns to output.

Finally we show how the same reshape operation could be done using the tidyr package:

> tidyr::pivot_longer(iris, matches(iris.pattern), values_to = "cm",
+ names_to=c("part", "dim"), names_pattern=iris.pattern)

A tibble: 600 x 4
Species part dim cm
<fct> <chr> <chr> <dbl>

1 setosa Sepal Length 5.1
2 setosa Sepal Width 3.5
3 setosa Petal Length 1.4
4 setosa Petal Width 0.2
5 setosa Sepal Length 4.9
6 setosa Sepal Width 3
7 setosa Petal Length 1.4
8 setosa Petal Width 0.2

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 74

9 setosa Sepal Length 4.7
10 setosa Sepal Width 3.2
. . . with 590 more rows

The code above is almost as simple as the corresponding nc code, but with one key difference.
The output capture column names are defined in the names_to argument, which is far away from the
definition of the groups in iris.pattern. In this simple example with two groups in the regex this
separation of related concepts is not a huge problem, but the nc syntax should be preferred for more
complex patterns (with more groups) in order to keep the group names and sub-patterns closer and
easier to maintain/read in the code.

Multiple reshape output columns

For the second data reshaping task, suppose we want to determine whether or not sepals are larger
than petals for each measurement dimension and species. We could use a scatterplot of sepal versus
petal, with a facet for measurement dimension. We, therefore, need a data table with two reshape
output columns: a Sepal column to plot against a Petal column (Figure 1, W→M1). We can perform
this operation using another function, nc::capture_melt_multiple, which inputs a data frame and a
pattern which must contain the special column group and at least one other named group:

> (iris.parts <- nc::capture_melt_multiple(iris, column = ".*", "[.]", dim = ".*"))

Species dim Petal Sepal
1: setosa Length 1.4 5.1
2: setosa Length 1.4 4.9
3: setosa Length 1.3 4.7
4: setosa Length 1.5 4.6
5: setosa Length 1.4 5.0

296: virginica Width 2.3 3.0
297: virginica Width 1.9 2.5
298: virginica Width 2.0 3.0
299: virginica Width 2.3 3.4
300: virginica Width 1.8 3.0

Again, any input columns with names that do not match the pattern are considered copy columns
(Species in the example above). Each unique value captured in the special column group becomes
the name of an output reshape column (Petal, Sepal); other groups are used to create output capture
columns (dim). These data can be used to create the scatterplot using ggplot2 via:

> ggplot(iris.parts) + facet_grid(. ~ dim) +
+ theme_bw() + theme(panel.spacing = grid::unit(0, "lines")) +
+ coord_equal() + geom_abline(slope = 1, intercept = 0, color = "grey") +
+ geom_point(aes(Petal, Sepal, color = Species), shape = 1)

Length Width

0 2 4 6 0 2 4 6
2

4

6

8

Petal

S
ep

al

Species

setosa

versicolor

virginica

For comparison, we show how to output a data table with multiple reshape output columns using
the data.table and tidyr packages:

> iris.multiple <- data.table::melt(
+ iris.wide, measure = patterns(Petal="Petal", Sepal="Sepal"))
> iris.multiple[, dim := c("Length", "Width")[variable]]

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 75

Species variable Petal Sepal dim
1: setosa 1 1.4 5.1 Length
2: setosa 1 1.4 4.9 Length
3: setosa 1 1.3 4.7 Length
4: setosa 1 1.5 4.6 Length
5: setosa 1 1.4 5.0 Length

296: virginica 2 2.3 3.0 Width
297: virginica 2 1.9 2.5 Width
298: virginica 2 2.0 3.0 Width
299: virginica 2 2.3 3.4 Width
300: virginica 2 1.8 3.0 Width

> tidyr::pivot_longer(iris, matches(iris.pattern), values_to = "cm",
+ names_to=c(".value", "dim"), names_pattern=iris.pattern)

A tibble: 300 x 4
Species dim Sepal Petal
<fct> <chr> <dbl> <dbl>

1 setosa Length 5.1 1.4
2 setosa Width 3.5 0.2
3 setosa Length 4.9 1.4
4 setosa Width 3 0.2
5 setosa Length 4.7 1.3
6 setosa Width 3.2 0.2
7 setosa Length 4.6 1.5
8 setosa Width 3.1 0.2
9 setosa Length 5 1.4
10 setosa Width 3.6 0.2
. . . with 290 more rows

The code above computes equivalent results but suffers from the same drawbacks as discussed in
the previous section (repetition, separation of pattern and group names).

To conclude this section, nc provides two new functions for data reshaping using regular expres-
sions. Both functions input a data frame to reshape and a pattern to match with the column names.
For nc::capture_melt_single, all matching input columns are reshaped in the output to a single
column which is named using the value.name argument. For nc::capture_melt_multiple the output
is multiple reshape columns with names defined by the values captured in the special column group.
Values from other groups are stored in capture columns in the output. Both functions support the
output of numeric capture columns via user-specified type conversion functions, as we will see in the
next section.

Comparisons which highlight differences with other packages

In this section, we compare the new data reshaping functions in the nc package with similar functions
in other packages. We aim to demonstrate that the new nc syntax is often more convenient and less
repetitive without sacrificing speed.

Building a complex pattern from smaller sub-patterns

In terms of functionality for wide-to-tall data reshaping, the most similar package to nc is tidyr
(Table 1). One advantage of nc is that complex patterns may be defined in terms of simpler sub-
patterns, which can include group names and type conversion functions. Integrating these three
pieces results in a syntax that is easy to read as well; it is more difficult to build and read complex
patterns using tidyr syntax, which requires specifying regex pattern strings, group names, and types
as separate arguments. For example, consider a data set from the World Health Organization (WHO):

> data(who, package = "tidyr")
> set.seed(1);sample(names(who), 10)

[1] "newrel_f3544" "year" "new_ep_m65" "country" "new_ep_m1524"
[6] "new_sn_m4554" "new_ep_f3544" "new_sp_f2534" "new_sp_f65" "newrel_m4554"

>

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 76

Each reshape column name starts with new and has three distinct pieces of information: diagnosis
type (e.g., ep, rel), gender (m or f), and age range (e.g., 1524, 4554). We extract all three pieces of
information below and include a function for converting gender to a factor with levels in a specific
(non-default) order:

> nc.who.sub.pattern <- list(
+ "new_?", diagnosis = ".*", "_",
+ gender = ".", function(mf)factor(mf, c("m", "f")))
> nc.who.ages <- nc::capture_melt_single(who, nc.who.sub.pattern, ages = ".*")
> print(nc.who.ages[1:2], class = TRUE)

country iso2 iso3 year diagnosis gender ages value
<char> <char> <char> <int> <char> <fctr> <char> <int>

1: Afghanistan AF AFG 1997 sp m 014 0
2: Afghanistan AF AFG 1998 sp m 014 30

First, note that nc.who.sub.pattern is a sub-pattern list variable that we have used as the first
part of the pattern in the call to nc::capture_melt_single above (and we will use that sub-pattern
again below). Sub-pattern lists may contain regex character strings (patterns to match), functions (for
converting the previous capture group), or other sub-pattern lists. The reshaped output is a data table
with gender converted to a factor — this can also be done using tidyr::pivot_longer:

> tidyr.who.sub.names <- c("diagnosis", "gender") #L0
> tidyr.who.sub.pattern <- "new_?(.*)_(.)" #L1
> tidyr.who.pattern <- paste0(tidyr.who.sub.pattern, "(.*)") #L2
> tidyr::pivot_longer(#L3
+ who, cols = matches(tidyr.who.pattern), #L4
+ names_to = c(tidyr.who.sub.names, "ages"), #L5
+ names_ptypes = list(gender = factor(levels = c("m", "f"))), #L6
+ names_pattern = tidyr.who.pattern)[1:2,] #L7

A tibble: 2 x 8
country iso2 iso3 year diagnosis gender ages value
<chr> <chr> <chr> <int> <chr> <fct> <chr> <int>

1 Afghanistan AF AFG 1980 sp m 014 NA
2 Afghanistan AF AFG 1980 sp m 1524 NA

In the code above, we first define a sub-pattern variable for the diagnosis and gender capture
groups, as we did using nc. One difference is that the tidyr sub-pattern variable is a string with
un-named capture groups, whereas the nc sub-pattern variable is a list which includes capture group
names as well as a type conversion function. These three parameters are specified as three separate
arguments in tidyr, which results in some separation (e.g., group names defined on L0 and L5 but
corresponding sub-patterns defined on L1 and L2) and repetition (e.g., gender appears on L0 and L6)
in the code. The pattern also must be repeated: first in the cols argument (L4) to specify the set of
input reshape columns, second in the names_pattern argument (L7) to specify the conversion from
input reshape column names to output capture column values.

Now suppose we want to extract two numeric columns from ages, for example, to use as interval-
censored outputs in a survival regression. Using nc we can use the previously defined sub-pattern
(including the previously defined group names and type conversion function) as the first part of a
larger pattern:

> who.typed <- nc::capture_melt_single(who, nc.who.sub.pattern, ages = list(
+ ymin = "0|[0-9]{2}", as.numeric,
+ ymax = "[0-9]{0,2}", function(x)ifelse(x == "", Inf, as.numeric(x))))
> who.typed[1:2]

country iso2 iso3 year diagnosis gender ages ymin ymax value
1: Afghanistan AF AFG 1997 sp m 014 0 14 0
2: Afghanistan AF AFG 1998 sp m 014 0 14 30

> who.typed[, .(rows = .N), by = .(ages, ymin, ymax)]

ages ymin ymax rows
1: 014 0 14 10882
2: 1524 15 24 10868
3: 2534 25 34 10850

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 77

4: 3544 35 44 10875
5: 4554 45 54 10876
6: 5564 55 64 10851
7: 65 65 Inf 10844

Note in the code above that each group name, regex pattern string, and the corresponding type
conversion function appears on the same line — this syntax keeps these three related pieces of
information close together, which makes complex patterns easier to read and build from smaller pieces.
Also, note how an anonymous function is used to convert the values captured in the ymax group to
numeric (and it maps the empty string to Inf). Such custom type conversion functions are supported
by tidyr since version 1.1.0 (early 2020), so we can do:

> tidyr.who.range.pattern <- paste0(tidyr.who.sub.pattern, "((0|[0-9]{2})([0-9]{0,2}))")
> tidyr::pivot_longer(
+ who, cols = matches(tidyr.who.range.pattern),
+ names_to = c(tidyr.who.sub.names, "ages", "ymin", "ymax"),
+ names_transform = list(
+ gender = function(x)factor(x, levels = c("m", "f")),
+ ymin = as.numeric,
+ ymax = function(x)ifelse(x == "", Inf, as.numeric(x))),
+ names_pattern = tidyr.who.range.pattern)[1:7,]

A tibble: 7 x 10
country iso2 iso3 year diagnosis gender ages ymin ymax value
<chr> <chr> <chr> <int> <chr> <fct> <chr> <dbl> <dbl> <int>

1 Afghanistan AF AFG 1980 sp m 014 0 14 NA
2 Afghanistan AF AFG 1980 sp m 1524 15 24 NA
3 Afghanistan AF AFG 1980 sp m 2534 25 34 NA
4 Afghanistan AF AFG 1980 sp m 3544 35 44 NA
5 Afghanistan AF AFG 1980 sp m 4554 45 54 NA
6 Afghanistan AF AFG 1980 sp m 5564 55 64 NA
7 Afghanistan AF AFG 1980 sp m 65 65 Inf NA

The code above uses the names_transform argument to define type conversion functions, which
requires some repetition (e.g., ymax and ymin each appear twice).

To conclude this comparison, we have seen that nc syntax makes it easy to read and write complex
patterns because it keeps group-specific names and type conversion functions near the corresponding
sub-patterns. We have also shown that repetition is often necessary with tidyr (e.g., pattern, group
names), whereas such repetition can be avoided by using nc.

Comparison with other packages which support multiple reshape output columns

In this section, we demonstrate the advantages of using nc over several alternatives which support
multiple reshape output columns. A major advantage is that nc directly supports regular expressions
for defining the input reshape columns and output capture columns. Another advantage is that nc
always returns a correct output data set with multiple reshape columns, even when the input columns
are not sorted in a regular order. For example, consider the following simple data set in which the
columns are not in regular order:

> (TC <- data.table::data.table(
+ treatment.age = 13,
+ control.gender = "M",
+ treatment.gender = "F",
+ control.age = 25))

treatment.age control.gender treatment.gender control.age
1: 13 M F 25

It is clear from the table above that the treatment group consists of a teenage female, whereas the
control group consists of a male aged 25 (not the best experimental design, but easy to remember for
the demonstration in this section). Assume we need an output data table with two reshape columns
(age and gender) as well as a capture column (group). The nc syntax we would use is:

> nc::capture_melt_multiple(TC, group = ".*", "[.]", column = ".*")

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 78

group age gender
1: control 25 M
2: treatment 13 F

The correct result is computed above because nc reshapes based on the input column names (the
order of the input columns is not relevant). A naïve user may attempt to perform this reshape using
data.table::patterns:

> data.table::melt(TC, measure.vars = patterns(age = "age", gender = "gender"))

variable age gender
1: 1 13 M
2: 2 25 F

First, note that the syntax above requires repetition of age and gender (in names and in pattern
strings). Also, it is clear that the result is incorrect! Actually, the patterns function is working as
documented; it “returns the matching indices” of the provided regex. However, since the input
columns are not sorted in regular order, melt returns an incorrect result (this is an incorrect use of
these functions, not a bug). To get a correct result, we can provide a list of index vectors:

> data.table::melt(TC, measure.vars = list(age = c(1,4), gender = c(3,2)))

variable age gender
1: 1 13 F
2: 2 25 M

This is what nc does internally; it also converts the variable output column to a more inter-
pretable/useful capture column (e.g., group above).

The stats::reshape function suffers from the same issue as the patterns usage above. Another
issue with this function is that it assumes the output reshape column names are the first part of the
input column names (e.g., Figure 1, W→M1). When input column names have a different structure
(e.g., Figure 1, W→M2), they must be renamed, putting the desired output reshape column names
first:

> TC.renamed <- structure(TC, names = sub("(.*)[.](.*)", "\\2.\\1", names(TC)))
> stats::reshape(TC.renamed, 1:4, direction = "long", timevar = "group")

group age gender id
1: treatment 13 M 1
2: control 25 F 1

However, the result above still contains incorrect results in the gender column. The correct result
can be obtained by sorting the input column names:

> TC.sorted <- data.frame(TC.renamed)[, sort(names(TC.renamed))]
> stats::reshape(TC.sorted, 1:4, direction = "long", timevar = "group")

group age gender id
1.control control 25 M 1
1.treatment treatment 13 F 1

After renaming and sorting the input columns, the correct result is obtained using stats::reshape.
Another way to obtain a correct result is with the cdata package:

> cdata::rowrecs_to_blocks(TC, controlTable = data.frame(
+ group = c("treatment", "control"),
+ age = c("treatment.age", "control.age"),
+ gender = c("treatment.gender", "control.gender"),
+ stringsAsFactors = FALSE))

group age gender
1 treatment 13 F
2 control 25 M

The cdata package is very powerful and can handle many more types of data reshaping operations
than nc. However, it requires a very explicit definition of the desired conversion in terms of a control
table, which results in rather verbose code. In contrast, the terse regular expression syntax of nc is a
more implicit approach, which assumes the input columns to reshape have regular names.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 79

1 second

cdata::rowrecs_to_blocks

data.table::melt

nc::capture_melt_multiple

stats::reshape

tidyr::pivot_longer

0.01

0.10

1.00

1e+02 1e+04 1e+06
Number of rows in wide input data table

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Multiple reshape output columns, variable number of input rows

Figure 2: Timings for computing a tall output table with multiple (2) reshape columns from a wide
input table with 8 reshape columns and a variable number of rows (x-axis).

To conclude this section, we have discussed some advantages of nc relative to other R packages.
Input columns with regular names do not need to be renamed/sorted for nc functions, whereas
renaming/sorting may be necessary using stats::reshape. Verbose/explicit control table code is
always necessary with cdata, whereas a terse/implicit regular expression syntax is used with nc to
simplify the definition of reshape operations.

Comparing computation times of functions for wide-to-tall data reshaping

In previous sections, we have shown that the nc package provides a convenient syntax for defining
wide-to-tall reshape operations. In this section, we investigate whether this convenience comes at the
cost of increased computation time. We aim to demonstrate that the computation time required for the
proposed nc package is comparable with other packages for data reshaping. In particular, since nc is
implemented using data.table, we expect that nc should be slightly slower than data.table (by only the
amount of time required for regex matching). In our result figures, we show the median and quartiles
over 10 timings using the microbenchmark package on an Intel Core i7-8700 3.20GHz processor. Note
that these timings include both the regex matching (which should be relatively fast) and the data
reshaping operation (which should be relatively slow). We varied the number of rows/columns in
each experiment by copying/duplicating the rows/columns in each source data set.

First, we performed timings on variants of the iris data with a variable number of rows and
twice the original number of reshape columns (8). The input reshape column names were of the
form day1.Sepal.Length, day2.Sepal.Length, day1.Sepal.Width, etc. Since the desired output has
two reshape columns (Sepal and Petal), we considered packages which support multiple output
columns (cdata, stats, tidyr, nc, data.table). As expected, we observed that all algorithms have similar
asymptotic time complexity (Figure 2). We observed that nc is slightly slower than data.table (by
constant factors), slightly faster than the other packages (cdata, stats), and about the same speed as
tidyr.

Second, we performed similar timings on variants of the iris data with a variable number of
columns and the original number of rows (150). As in the previous experiment, we expected that all
functions would have similar slopes, indicating linear asymptotic time complexity. Surprisingly, we
observed on the log-log plot (Figure 3) that cdata has a larger asymptotic slope than the other packages,
which suggests its time complexity may be super-linear in the number of columns to reshape. The
other packages differed by constant factors, with data.table being fastest, followed by tidyr, nc, cdata,
and finally the slowest stats. All packages except stats performed the operation in less than 1 second
for 1,000 or fewer columns. This comparison confirms the expectation that nc speed is comparable to
other packages.

Third, we performed timings on versions of the WHO data with a variable number of duplicated
rows and the original number of columns (56). We ran reshaping functions from several additional
packages (utils, reshape2, tidyfast) that can compute the desired output table with a single reshape
output column. We computed the amount of time it takes to create zero or four capture output
columns (with additional post-processing steps for tidyfast::dt_pivot_longer, reshape2::melt,
tidyr::gather, cdata::unpivot_to_blocks). We expected that functions which require additional
post-processing steps should be slower by constant factors. As we expected, all functions appear to
have similar asymptotic time complexity and differ only in terms of constant factors. For zero capture

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=microbenchmark

CONTRIBUTED RESEARCH ARTICLES 80

1 minute

1 second

cdata::rowrecs_to_blocks

data.table::melt

nc::capture_melt_multiple
stats::reshape
tidyr::pivot_longer

1e−02

1e−01

1e+00

1e+01

1e+02

1e+02 1e+04 1e+06
Number of columns in wide input data table

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Multiple reshape output columns, variable number of input columns

Figure 3: Timings for computing a tall output table with multiple (2) reshape columns from a wide
input table with 150 rows and a variable number of columns to reshape (x-axis).

output columns, the slowest functions were stats::reshape and cdata::unpivot_to_blocks, which
were the only ones to take more than one second for 10,000 input rows. The fastest functions were
data.table::melt and tidyfast::dt_pivot_longer (about 10ms for 10,000 input rows). As expected,
for four capture output columns, the functions which require post-processing were slower, and the
fastest functions were data.table::melt and nc::capture_melt_single.

Finally, we performed similar timings on variants of the WHO data with a variable number of
columns and a fixed number of rows (11). The desired output again has a single reshape output
column, and we again tried computing either zero or four capture output columns. We observed
timings (Figure 5) with similar asymptotic trends as in the previous comparisons. In particular, timings
for most packages appear to be linear in the number of input reshape columns, and timings for cdata
appear to be super-linear for a large number of columns. These data indicate that nc speed is similar
to comparable R packages.

Discussion and conclusions

In this paper, we described the nc package and its new functions for regular expressions and data
reshaping. The nc package allows a user to define a regular expression in R code, along with capture
group names and corresponding type conversion functions. We showed how this syntax makes it easy
to define complex regular expressions in terms of simpler sub-patterns, while providing a uniform
interface to three regex engines (ICU, PCRE, RE2). We showed several examples of how nc can be
used for wide-to-tall data reshaping. We provided a detailed comparison with other data reshaping
functions in terms of syntax, functionality, and computation time.

In all of our speed comparisons, we observed that the speed of nc is similar to other R functions for
wide-to-tall data reshaping. We expected that all R functions would have linear asymptotic timings,
and differ only in constant factors. We were surprised to observe in our empirical timings that the
cdata package appears to have asymptotic time complexity that is super-linear in the number of
columns to reshape. This result suggests that the speed of cdata could be improved by adopting one
of the linear time reshaping algorithms used in the other packages.

The tidyr::pivot_longer function provides a feature set which is most similar to nc data reshap-
ing functions. We showed that both packages could perform the same data reshaping operations, but
nc provides a syntax that reduces repetition in user code. Another advantage is that nc R code allows
sub-pattern lists which contain group names, regex patterns, and type conversion functions, whereas
in tidyr these three related pieces of information must be defined in seperate arguments. Therefore nc
syntax may be preferable in order to ease the definition of complex patterns and to avoid repetition in
user code.

In nc, there are two different functions for wide-to-tall data reshaping: nc::capture_melt_single
computes a single output reshape column, and nc::capture_melt_multiple computes multiple out-
put reshape columns. In contrast, other functions that support multiple output reshape columns also
support a single output reshape column (Table 1). It is natural to ask whether these two nc functions
could be combined into a single function that could handle both kinds of output. Of course, it is possi-
ble, but we prefer to keep the two functions separate in order to provide more specific/informative
documentation, examples, and error messages.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 81

1 minute

1 second

data.table::melt
tidyfast::dt_pivot_longer
nc::capture_melt_single
utils::stack
reshape2::melt
tidyr::pivot_longer
tidyr::gather

cd
ata::u

npivo
t_to_blo

ck
s

sta
ts:

:re
sh

ape

1 minute

1 second

data.table::melt
nc::capture_melt_single
tidyfast::dt_pivot_longer
tidyr::pivot_longer

reshape2::melt
tidyr::gather

utils
::s

tack

sta
ts:

:re
sh

ape

cd
ata::u

npivo
t_to_blo

ck
s

capture.columns: 0 capture.columns: 4

1e+02 1e+03 1e+04 1e+05 1e+02 1e+03 1e+04 1e+05

1e−02

1e+00

1e+02

Number of rows in wide input data table

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Single reshape output column, variable number of input rows

Figure 4: Timings for computing a tall output table with a single reshape column from a wide input
table with 56 reshape columns and a variable number of rows (x-axis). The Left panel shows time to
compute output data table with no capture columns; The Right panel shows time to compute output
data table with four capture columns (typically slower as post-processing steps may be necessary).

1 minute

1 second
stats::reshape

cdata::unpivot_to_blocks

data.table::melt

nc::capture_melt_single

reshape2::melt

tidyfast::dt_pivot_longer

tidyr::gather

tidyr::pivot_longer
utils::stack

1 minute

1 second

stats::reshape

cdata::unpivot_to_blocks

data.table::melt

nc::capture_melt_single

reshape2::melt

tidyfast::dt_pivot_longer

tidyr::gather

tidyr::pivot_longer

utils::stack

capture.columns: 0 capture.columns: 4

1e+02 1e+03 1e+04 1e+05 1e+02 1e+03 1e+04 1e+05

1e−02

1e+00

1e+02

Number of columns in wide input data table

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Single reshape output column, variable number of input columns

Figure 5: Timings for computing a tall output table with a single reshape column from a wide input
table with 11 rows and a variable number of columns to reshape (x-axis). The Left panel shows time to
compute output data table with no capture columns; The Right panel shows time to compute output
data table with four capture columns (typically slower as post-processing steps may be necessary).

We have shown how the nc package provides a powerful and efficient new syntax for wide-to-tall
data reshaping using regular expressions. The inverse operation, tall-to-wide data reshaping, is not
supported. For tall-to-wide reshaping operations, we recommend using the efficient implementation
in data.table::dcast.

Future work

For future work, we will be interested to explore other operations and R packages/functions which
could be simplified using regular expressions. For example, the tidyr::pivot_longer function
requires some repetition of the pattern (in names_pattern and cols arguments); it could be simplified
by changing the behavior when names_pattern is specified, and cols is not (currently an error, could
instead set cols to the set of columns which match names_pattern).

Another example where there is room for improvement is data.table::melt, which we have
shown requires some post-processing steps to output capture columns. As a result of this research, we
have proposed changes to data.table::melt1 that allow efficient specification and output of capture
columns. Since nc uses data.table internally, we plan to eventually use these changes for speedups of
nc functions.

Reproducible research statement. The source code for this article can be freely downloaded from
https://github.com/tdhock/nc-article

1https://github.com/Rdatatable/data.table/pull/4731

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://github.com/tdhock/nc-article
https://github.com/Rdatatable/data.table/pull/4731

CONTRIBUTED RESEARCH ARTICLES 82

Bibliography

T. Barrett. tidyfast: Fast Tidying of Data, 2020. URL https://CRAN.R-project.org/package=tidyfast.
R package version 0.2.1. [p72]

G. Csárdi. rematch2: Tidy Output from Regular Expression Matching, 2017. URL https://CRAN.R-
project.org/package=rematch2. R package version 2.0.1. [p70]

M. Dowle and A. Srinivasan. data.table: Extension of ‘data.frame‘, 2019. http://r-datatable.com. [p72]

J. E. F. Friedl. Mastering Regular Expressions. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2 edition,
2002. [p69]

M. Gagolewski. R package stringi: Character string processing facilities, 2018. URL http://www.
gagolewski.com/software/stringi/. [p70]

T. D. Hocking. Comparing namedcapture with other r packages for regular expressions. R Journal,
2019a. [p69, 70, 72]

T. D. Hocking. namedCapture: Named Capture Regular Expressions, 2019b. R package version 2019.01.14.
[p70]

T.-Y. Huang and B. Zhao. tidyfst: Tidy verbs for fast data manipulation. Journal of Open Source Software,
5(52):2388, 2020. doi: 10.21105/joss.02388. URL https://doi.org/10.21105/joss.02388. [p72]

J. Mount and N. Zumel. cdata: Fluid Data Transformations, 2019. URL https://CRAN.R-project.org/
package=cdata. R package version 1.1.2. [p72]

K. Ushey, J. Hester, and R. Krzyzanowski. rex: Friendly Regular Expressions, 2017. URL https://CRAN.R-
project.org/package=rex. R package version 1.1.2. [p70]

Q. Wenfeng. re2r: RE2 Regular Expression, 2017. URL https://CRAN.R-project.org/package=re2r. R
package version 0.2.0. [p70]

H. Wickham. Reshaping data with the reshape package. Journal of Statistical Software, 21(12):1–20, 2007.
URL http://www.jstatsoft.org/v21/i12/. [p72]

H. Wickham. stringr: Simple, Consistent Wrappers for Common String Operations, 2018. URL https:
//CRAN.R-project.org/package=stringr. R package version 1.3.1. [p70]

H. Wickham and L. Henry. tidyr: Easily Tidy Data with ’spread()’ and ’gather()’ Functions, 2018. URL
https://CRAN.R-project.org/package=tidyr. R package version 0.8.2. [p70]

Toby Dylan Hocking
School of Informatics, Computing, and Cyber Systems
Northern Arizona University
Flagstaff, Arizona
USA
toby.hocking@nau.edu
ORCID 0000-0002-3146-0865

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=tidyfast
https://CRAN.R-project.org/package=rematch2
https://CRAN.R-project.org/package=rematch2
http://www.gagolewski.com/software/stringi/
http://www.gagolewski.com/software/stringi/
https://doi.org/10.21105/joss.02388
https://CRAN.R-project.org/package=cdata
https://CRAN.R-project.org/package=cdata
https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=re2r
http://www.jstatsoft.org/v21/i12/
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=tidyr
mailto:toby.hocking@nau.edu

	Wide-to-tall Data Reshaping Using Regular Expressions and the nc Package
	Introduction
	Related work
	Basic features for wide-to-tall data reshaping using regular expressions
	Single reshape output column
	Multiple reshape output columns

	Comparisons which highlight differences with other packages
	Building a complex pattern from smaller sub-patterns
	Comparison with other packages which support multiple reshape output columns
	Comparing computation times of functions for wide-to-tall data reshaping

	Discussion and conclusions
	Future work

