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Abstract Basket designs are prospective clinical trials that are devised with the hypothesis that the
presence of selected molecular features determine a patient’s subsequent response to a particular
“targeted” treatment strategy. Basket trials are designed to enroll multiple clinical subpopulations to
which it is assumed that the therapy in question offers beneficial efficacy in the presence of the targeted
molecular profile. The treatment, however, may not offer acceptable efficacy to all subpopulations
enrolled. Moreover, for rare disease settings, such as oncology wherein these trials have become
popular, marginal measures of statistical evidence are difficult to interpret for sparsely enrolled
subpopulations. Consequently, basket trials pose challenges to the traditional paradigm for trial
design, which assumes inter-patient exchangeability. The package basket for the R programmming
environment facilitates the analysis of basket trials by implementing multi-source exchangeability
models. By evaluating all possible pairwise exchangeability relationships, this hierarchical modeling
framework facilitates Bayesian posterior shrinkage among a collection of discrete and pre-specified
subpopulations. Analysis functions are provided to implement posterior inference of the response
rates and all possible exchangeability relationships between subpopulations. In addition, the package
can identify “poolable” subsets of and report their response characteristics. The functionality of the
package is demonstrated using data from an oncology study with subpopulations defined by tumor
histology.

Keywords: Bayesian analysis, basket design, hierarchical model, master protocol, oncology, patient
heterogeneity

Introduction

Basket designs are prospective clinical trials that are devised with the hypothesis that the presence of
selected molecular features determine a patient’s subsequent response to a particular “targeted” treat-
ment strategy. Central to the design are assumptions 1) that a patient’s expectation of treatment benefit
can be ascertained from accurate characterization of their molecular profile and 2) that biomarker-
guided treatment selection supersedes traditional clinical indicators for the studied populations, such
as primary site of origin or histopathology. Thus, basket trials are designed to enroll multiple clinical
subpopulations to which it is assumed that the therapy(s) in question offers beneficial efficacy in the
presence of the targeted molecular profile(s). These designs have become popular as drug developers
seek to conform therapeutic interventions to the individuals being treated with precision medicine
and biomarker-guided therapies. Most basket trials have been conducted within exploratory settings
to evaluate agent-specific estimates of tumor response. Cunanan et al. (Cunanan et al., 2017a) describe
three studies implemented in oncology settings which extend the basic formulation of a basket trial
to multiple targets and/or agent combinations. Most commonly uncontrolled trials, extensions have
recently accommodated a wide variety of potential motivations beyond exploratory studies.

Molecularly targeted treatment strategies may not offer acceptable efficacy to all putatively promis-
ing clinical indications. Early basket trials were criticized for their reliance on basketwise analysis
strategies that suffered from limited power in the presence of imbalanced enrollment as well as failed
to convey to the clinical community evidentiary measures of heterogeneity among the studied clinical
subpopulations, or “baskets”. Acknowledging the potential for differential effectiveness among the
enrolled patient subpopulations by design, heterogeneity exists as an intrinsic hypothesis in evalua-
tions of treatment efficacy. Moreover, for rare disease settings, such as oncology wherein these trials
have become popular, marginal measures of statistical evidence are difficult to interpret on the basis
of individual basket-wise analyses for sparsely enrolled subpopulations. Consequently, basket trials
pose specific challenges to the traditional paradigm for trial design, which assume that the patients
enrolled represent a statistically exchangeable cohort.

Hobbs and Landin (2018) extended the Bayesian multisource exchangeability model (MEM) frame-
work to basket trial design and subpopulations inference. Initially proposed by Kaizer et al. (2017), the
MEM framework addressed the limitations associated with “single-source” Bayesian hierarchical mod-
els, which rely on a single parameter to determine the extent of influence, or shrinkage, from all sources.
In the presence of subpopulations that arise as mixtures of exchangeable and non-exchangeable sub-
populations, single-source hierarchical models (SEM) are characterized by limited borrowing, even in
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the absence of heterogeneity (Kaizer et al., 2017). Moreover, when considering the effectiveness of a
particular treatment strategy targeting a common disease pathway that is observed among differing
histological subtypes, SEMs fail to admit statistical measures that delineate which patient subtypes
should be considered “non-exchangeable” based on the observed data. By way of contrast, MEM
provides a general Bayesian hierarchical modeling strategy accommodating source-specific smoothing
parameters. MEMs yield multi-resolution smoothed estimators that are asymptotically consistent and
accommodate both full and non-exchangeability among discrete subpopulations. The inclusion of
methods for shrinkage of multiple sources is not restricted to use in basket trial master protocols, but
has also been extended in the MEM framework to a sequential combinatorial platform trial design
where it demonstrated improved efficiency relative to approaches without information sharing (Kaizer
et al., 2018).

This paper introduces the basket (Chen et al., 2019) package for the R-programming environment
to analyze basket trials under MEM assumptions. The main analyses conduct full posterior inference
with respect to a set of response rates corresponding to the studied subpopulations. The posterior
exchangeability probability (PEP) matrix is calculated, which describes the probability that any pair
of baskets are exchangeable. Based on the resultant PEP, subpopulations are clustered into meta-
baskets. Additionally, posterior effective sample sizes are calculated for each basket, describing the
extent of posterior shrinkage achieved. Posterior summaries are reported for both “basketwise” and
“clusterwise” analyses.

The package used in the examples below is available on CRAN at https://cran.r-project.org/
package=basket and it fits into the general category of the “Design and Analysis of Clinical Trials”
(Zhang and Zhang, 2018) focusing on uncontrolled, early-phase trial analysis. The interface is designed
to be simple and will readily fit into clinical trial frameworks. It has been tested using R version 3.5
and the basket package version 0.9.9.

Exchangeability for Trials with Subpopulations

The Single-Source Exchangeability Model

Y1 Y2 Y3 ... YJ

θ1 θ2 θ3 ... θJ

θ

Figure 1: A conventional single-source Bayesian hierarchical model with J subtypes.

Basket trials intrinsically include subpopulations, which require a priori consideration for inference.
When ignored the trial simply pools patients, conducting inference with the implicit assumption
of inter-patient statistical exchangeability, which can induce bias and preclude the identification of
unfavorable/favorable subtypes in the presence of heterogeneity. At the other extreme, subpopulation-
specific analyses assume independence. While attenuating bias, this approach suffers from low power,
especially in rare subpopulations enrolling limited sample size. Bayesian hierarchical models address
this polarity, facilitating information sharing by “borrowing strength” across subtypes with the intent
of boosting the effective sample size of inference for individual subtypes.

Single-source exchangeability models (SEM), represent one class of Bayesian hierarchical models.
In the context of a basket trial design, statistical approaches using the SEM framework rely on a
single parametric distributional family to characterize heterogeneity across all subpopulations, which
is computationally tractable but intrinsically reductive in characterization of heterogeneity. In the
presence of both exchangeable and non-exchangeable arms, the SEM framework tends to favor the
extremes of no borrowing or borrowing equally from all sources, effectively ignoring disjointed
singleton subpopulations and meta-subtypes.

Consider a basket trial which enrolls patients from J subpopulations (or subtypes) (j = 1, ..., J),
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where Yj represents the responses observed among patients in the jth subtypes. Using i to index each
patient, the SEM generally relies on model specifications that assume that patient-level responses, Yi,j,
are exchangeable Bernoulli random variables conditional on subtype-specific model parameters, e.g.
θj. The second-level of the model hierarchy assumes that the collection of subtype-specific model
parameters, θ1, ... , θJ , are statistically exchangeable through the specification of a common parent
distribution. Figure 1 illustrates this structure, wherein each Yj has its own subtype-specific θj which
are further assumed exchangeable to estimate the overall θ.

Examples of SEM approaches are introduced and discussed by (Berry et al., 2010, chapter 2), Thall
et al. (2003), and Berry et al. (2013), with Hobbs and Landin (2018) providing additional background
on these specific SEM implementations. SEM approaches are also implemented in packages by Nia
and Davison (2012) and Savage et al. (2018) and have been extended to more specialized applications
in fMRI studies (Stocco, 2014), modeling clearance rates of parasites in biological organisms (Sharifi-
Malvajerdi et al., 2019), modeling genomic bifurcations (Campbell and Yau, 2017), modeling ChIP-seq
data through hidden Ising models (Mo, 2018), modeling genome-wide nucleosome positioning with
high-throughput short-read data (Samb et al., 2015), and modeling cross-study analysis of differential
gene expression (Scharpf et al., 2009).

While integrating inter-cohort information, SEMs are limited by assumptions of exchangeability
among all cohorts. That is, the joint distribution P(Y1, Y2, ..., Yk) is invariant under a permutation
describing subpopulation subsets. P(Y1, Y2, ..., Yk) = (Yk, ..., Y2, Y1). SEMs are “single-source” in
the sense that the model uses a single set of parameters to characterize heterogeneity such that the
statistical exchangeability of model parameters is always assumed. Violations of these assumptions
with analyses of response rates in clinical trials yields bias, potentially inflating the estimated evidence
of an effective response rate for poorly responding cohort or minimizing the effect in effective subsets.
These assumptions have resulted in poor results for frequentist power when controlling for strong
type I error, leading some cancer trialists to question the utility of Bayesian hierarchical models for
phase II trials enrolling discrete subtypes (Freidlin and Korn, 2013; Cunanan et al., 2017b).

The Multi-source Exchangeability Model

Limitations of SEM can be overcome through model specification devised to explicitly characterize
the evidence for exchangeability among collections of subpopulations enrolling in a clinical trial.
Multi-source exchangeability models (MEM) produce cohort-specific smoothing parameters that can
be estimated in the presence of the data to facilitate dynamic multi-resolution smoothed estimators
that reflect the extent to which subsets of subpopulations should be consider exchangeable. Shown to
be asymptotically consistent, MEMs were initially proposed by Kaizer et al. (2017) for “asymmetric”
cases wherein a primary data source is designated for inference in the presence of potentially non-
exchangeable supplemental data sources. The framework was extended by Hobbs and Landin (2018)
to the “symmetric” case wherein no single source or subtype is designated as primary (e.g., a basket
trial). The symmetric MEM approach considers all possible pairwise exchangeability relationships
among J subpopulations and estimates the probability that any subset of subpopulations should be
considered statistically exchangeable (or poolable).

The symmetric MEM is the motivation and focus of the basket package. While SEMs are pa-
rameterized by a single set of parameters θ, the MEM may have up to J (the number of subtypes)
sources of exchangeability with each set of data Yj contributing to only one set of parameters. All
possible combinations of exchangeability can be enumerated, denoted as K possible configurations
(Ωk, k = 1, ..., K).

Y1 Y2 Y3

θ1 θ2

(a) Model where Y1 and Y2 are exchangeable.

Y1 Y2 Y3

θ1 θ2

(b) Model where Y1 and Y3 are exchangeable.

Figure 2: Two example exchangeability configurations of the MEM.
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Model Description

Figure 2 depicts two possible MEMs among three subpopulations wherein at least two subpopulations
are statistically exchangeable. Both examples comprise two “sources” of exchangeability for inference,
with Y1 and Y2 combined to represent one “source” to estimate θ1 and Y3 to estimate θ2 in (a) and Y1
and Y3 combined in (b). Implementation of basket considers the number of “sources” ranging from
one (as in the single-source case), wherein all subtypes are pooled together, to J, the total number of
subtypes. The MEM Bayesian model specification facilitates posterior inference with respect to all
possible pairwise exchangeability relationships among J subpopulations. The framework facilitates
estimation of disjointed subpopulations comprised of meta-subtypes or singelton subtypes and thereby
offers additional flexibility when compared to SEM specifications.

The set space of all possible pairwise exchangeability relationships among a collection of J discrete
cohorts can be represented by a symmetric J × J matrix Ω with element Ωij = Ωji ∈ [0, 1] with value 1
(0) indicating that patients of subtype i are statistically exchangeable with (independent of) patients of
subtype j. Without additional patient-level characteristics, it is assumed patients within an identical
subtype are assumed to be statistically exchangeable. That is Ωii = 1 for {i : 1, ..., J}. There are
K = ∏J−1

j=1 2j possible configurations of Ω, each representing one possible pairwise exchangeability
relationship among the J subtypes. The framework differs fundamentally from SEM in that it allows for
the existence of multiple closed subpopulations (or cliques) comprised of fully exchangeable subtypes.
Therefore, following the terminology of Kaizer et al. (2017) we refer to each possible configuration of
Ω as a MEM.

For a basket trial designed to enroll a total of N patients in J baskets, let yij = 1 indicate the
occurrence of a successful response for the ith patient enrolled in basket j, and 0 indicate treatment
failure. Let nj denote the number of patients observed in basket j and denote the total number of

responses in basket j by Sj = ∑
nj

i=1 yij. The set {S1, S2, ..., SJ} is denoted S. Let π = {π1, π2, ...πJ}
vectorize the set of response rates such that πj denotes the probability of response for jth basket and
Sj ∼Bin(nj, πj) with prior distribution πj ∼ Beta(aj, bj). Let B() denote the beta function. Given an
exchangeability configuration Ωj, the marginal density of Sj follows as (see Hobbs and Landin, 2018,
for details)

m(Sj |Ωj, S(−j)) ∝
B
(

a + ∑J
h=1 Ωj,hSh, b + ∑J

k=1 Ωj,k(nk − Sk

)
B(a, b)

×

J

∏
i=1

(
B(a + Si, b + ni − Si)

B(a, b)

)1−Ωj,i

.

(1)

Marginal posterior inference with respect to πj | S averages the conditional posterior of πj | Ωj, S
with respect to the marginal posterior probability of G = 2J−1 possible exchangeability configurations
of Ωj. Let ω = {ω1, ..., ωG} denote the collection of vectors each of length J that collectively span the
sample space of Ωj. The marginal posterior distribution can be represented by a finite mixture density

q(πj|S) ∝
G

∑
g=1

q(πj | S, Ωj = ωg)Pr(Ωj = ωg | S), (2)

where the posterior probability of exchangeability configuration ωg given the observed data follows
from Bayes’ Theorem in proportion to the marginal density of the data given ωg and its unconditional
prior probability

Pr(Ωj = ωg | S) ∝
m(Sj |Ωj = ωg, S(−j))Pr(Ωj = ωg)

∑G
u=1 m(Sj |Ωj = ωu, S(−j))Pr(Ωj = ωu)

. (3)

Model specification for the symmetric MEM method is described in detail by Hobbs and Landin
(2018).

Estimating Basketwise Exchangeability

The basket package computes the posterior probability that subpopulations i and j should be consid-
ered statistically exchangeable. The collection of all pairwise posterior exchangeability probabilities
(PEP) is denoted in the output as the PEP matrix. Additionally, basket identifies the maximum a
posteriori (MAP) multisource exchangeability model.

Let O denote the entire sample domain of Ω comprised of K = ∏J−1
j=1 2j strictly symmetric MEMs.
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The PEP matrix is obtained by evaluating the union of MEMs for which Ωij = 1 over the sample
domain of O,

P(Ωij = 1|S) = ∑
Ω∈O

1{Ωij=1} P(Ω|S),

where P(Ω|S) is the product of row-wise calculations specified in Equation 3. Note that there are
K/2https://www.overleaf.com/project/5c982c6d19014f441ddd8c2d MEM configurations in the space
of O where Ωij = 1. The MAP follows as the MEM configuration that attains maximum Pr(Ω | S)
over O.

Effective Sample Size

Measurement of the extent to which information has been shared across sources in the context of a
Bayesian analysis is best characterized by the effective sample size (ESS) of the resultant posterior
distribution Hobbs et al. (2013); Murray et al. (2015). ESS quantifies the extent of information sharing,
or Bayesian “shrinkage,” as the number of samples that would be required to obtain the extent of
posterior precision achieved by the candidate posterior distribution when analyzed using a vague
“reference” or maximum entropy prior. Calculation of the ESS in basket deviates from the approach
suggested in Hobbs and Landin (2018), which is sensitive to heavy-tailed posteriors. Robustness is
introduced with basket through beta distributional approximation, which yields more conservative
estimates of ESS. Specifically, the simulated annealing algorithm (implemented with GenSA package
Yang Xiang et al. (2013)) is used to identify the parametric beta distribution with minimal Euclidean
distance between the interval boundaries obtained from the posterior estimated HPD interval and
the corresponding beta 1−hpd_alpha Bayesian credible interval. Shape parameters attained from the
“nearest” parametric beta distribution are summed to yield estimates of posterior ESS for each basket
and cluster.

Posterior Probability

Basket trials are devised for the purpose of testing the hypothesis that a targeted treatment strategy
achieves sufficiently promising activity among a partition of the targeted patient population. The
MEM framework acknowledges the potential for heterogeneity with respect to the effectiveness of the
enrolled patient subpopulations or baskets. Within the MEM framework, this testing procedure follows
from the cumulative density function (cdf) of the marginal posterior distribution (2). Specifically, the
posterior probability that πj exceeds a null value π0 is computed by the weighted average of cdfs
for all possible exchangeability configurations. basket implements this computation and allows for
subpopulation-specific values of the null hypothesis, π0, which quantify differing benchmarks for
effectiveness among the studied baskets. Note that this feature accommodates basket formulation on
the basis of varying levels of clinical prognosis.

Package Overview

The basket package facilitates implementation of the binary, symmetric multi-source exchangeability
model with posterior inference arising with both exact computation and Markov chain Monte Carlo
sampling. The user is required to input vectors that describe the number of samples (size) and
observed successes (responses) corresponding to each subpopulation (or basket). Analysis output
includes full posterior samples, highest posterior density (HPD) interval boundaries, effective sample
sizes (ESS), mean and median posterior estimates, posterior exchangeability probability matrices, and
the maximum a posteriori MEM. Subgroups can be combined into meta-baskets, or clusters, by setting
logical argument cluster_analysis to TRUE. Cluster analyses use graphical clustering algorithms
implemented with the igraph package.

A specific clustering algorithm needs to be specified via argument cluster_function. The
cluster_function is a user defined function that first creates a graph using the MAP, then assigns
the baskets to discrete clusters using one of the community detection algorithms implemented in the
igraph package. The default value of cluster_function is cluster_membership, a function defined in
the basket package that implements cluster analysis based on the "cluster_louvain" method. Users
can define their own cluster_function using different clustering methods in the igraph package.
cluster_analysis is set to FALSE by default. The package includes similar calculations, summaries,
and visualization for “clusterwise” and “basketwise” results. Additionally, plotting tools are provided
to visualize basket and cluster densities as well as their pairwise exchangeability.

Analysis requires the specification of beta shape parameters (shape1 and shape2) for the prior
distributions of the basketwise response probabilities πj. Shape parameter arguments may be specified
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as single positive real values, by which identical prior distributions are assumed for all πj, or as vectors
of length J with each pair of shape1 and shape2 values corresponding to each basket. Arguments
shape1 and shape2 assume values 0.5 by default characterizing prior distributions with the effective
sample size of 1 patient for each πj.

The user must additionally specify the symmetric matrix of prior exchangeability probabilities
(prior). The model assumes that exchangeable information is contributed among patients enrolling
into a common basket. Thus, all diagonal entries of prior must assume value 1. Off-diagonal entries,
however, quantify the a priori belief that each pair of subpopulations represents an exchangeable unit.
Thus, off-diagonal cells of prior may assume any values on the unit interval. The basket package
assumes the “reference” prior proposed by Hobbs and Landin (2018) as the default setting for which all
off-diagonal cells assume prior probability 0.5, and thus are unbiased with respect to exchangeability
in the absence of the data.

Evidence for sufficient activity is reported by basket and cluster as posterior probabilities. Posterior
probability calculations require the further specification of either a null response rate or vector of
null response rates corresponding to each basket (p0 set to 0.15 by default) as well as the direction
of evaluation (alternative set to “greater” by default). Additionally, summary functions report the
posterior estimates by basket and cluster. The highest posterior density (HPD) is calculated for a given
a level of probabilistic significance (hpd_alpha set to 0.05 by default).

Bayesian computation is implemented by two methods: the exact method (mem_exact() function)
and the Markov chain Monte Carlo (MCMC) sampling method (mem_mcmc() function). mem_mcmc()
is the preferred method. mem_exact() provides slightly more precise estimates than the former but
scales poorly in number of baskets. The discrepancy in precision between exact and sampling-based
implementations is easily controlled by specifying a larger number of MCMC iterations (num_iter set
to 2e+05 by default) in mem_mcmc().

The Exact Method and the MCMC Method

Implementation of mem_exact() conducts posterior inference through enumeration of the entire
sample domain of MEMs, denoted O above. Facilitating precise calculation of the posterior estimators,
mem_exact() is computationally feasible only in the presence of a small number of subpopulations.
Increasing the size of J increases the number of configurations in O by order of O(2J2

). Thus, the exact
computation is impractical for large values of J. We recommend its use for J < 7.

Our MCMC sampling method, formulated from the Metropolis algorithm (see e.g. Gelman et al.,
2013), extends the model’s implementation to larger collections of subpopulations, which currently
accommodates more than J = 20 baskets. Specifically, MCMC sampling is used to approximate
the posterior distribution P(Ωj = ωg| S). Implementation of mem_mcmc() requires the specification
of an initial MEM matrix (initial_mem) used as the starting point for Ω from which to initiate the
Metropolis algorithm. Argument initial_mem is set to round(prior -0.001) by default, which for
the default setting of prior yields the identity matrix.

The MCMC algorithm proceeds in iterative fashion with each step selecting a random number
of cells of Ω to flip from 0 to 1 or from 1 to 0 to produce a new candidate MEM which we denote
Ω∗. Acceptance criteria for the candidate Ω∗ compares the marginal posterior density of Ω∗ and
its unconditional prior distribution with respect to the last accepted MEM matrix configuration.
Denote the sum of log marginal posterior density and prior distribution with new candidate MEM
configuration by D∗ and previously accepted configuration by D0, respectively. If D∗ − D0 ≥ 0, the
candidate configuration is accepted. Otherwise, the new configuration is accepted randomly with
probability exp (D∗ − D0). For each sampled Ω configuration, πj, is sample from its conditional
posterior distribution for all j = 1, ..., J.

The algorithm initiates with a burn-in period (mcmc_burnin set to 50,000 by default). Discarding
the burn-in samples, PEP calculation with mem_mcmc() evaluates the distribution of sampled MEMs,
reporting for all basket pair combinations the proportion of samples that identify basket i as exchange-
able with basket j. The MAP calculation reports the posterior mode or most frequently sampled
MEM. Bayesian computation facilitated by mem_mcmc() scales MEM analyses to more than 20 baskets.
Specification of the size of the MCMC iterations (num_iter) is pivotal to attaining precise estimates of
the resultant posterior quantities. Our investigations support the default value of 2e+05 as a practical
lower bound. In practice, one may gradually increase the number of the MCMC iterations until the
resultant PEP matrix converges to stable values.
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Method Return Description
basket_pep Basketwise PEP matrix
basket_map Basketwise maximum a posteriori probability (MAP) matrix
cluster_baskets Basket assignments for each cluster
cluster_pep Clusterwise PEP matrix
cluster_map Clusterwise MAP matrix

Table 1: MEM model accessor functions.

MEM Data Structure and Associated Methods

Analysis functions mem_mcmc() and mem_exact() are parameterized almost identically, with the former
requiring extra arguments that control the MCMC algorithm: the current seed (for reproducibility),
the length of burn-in and number of MCMC iterations for computation of posterior quantities, and
an initial MEM matrix from which to start the algorithm. Function arguments are specified with
reasonable default values for implementation of either analysis type. Both functions return a common
list data structure. Both are derived from an abstract S3 "exchangeability_model" class with concrete
type "mem_mcmc" or "mem_exact" depending on which function generated the analysis. The two data
structures differ only by extra elements included with "mem_mcmc" objects to control implementation
of the MCMC algorithm. For convenience, and to promote using "mem_mcmc" by default, a wrapper
function basket() was created. The method argument allows the user to specify the analysis function
as either MCMC (via "mcmc") or exact (via "exact"). By default the argument is set to "mcmc".

MEM or “exchangeability” objects are composed of named elements. The first, "call" is the
expression used to generate the analysis. Second is the "basket" element, which is a list with concrete
class mem_basket, derived from the mem abstract class. Basket reports posterior estimates of trial
subpopulations including the PEP, HPD interval, posterior probability, ESS, and other distribution
characteristics. The "cluster" element comprises a list with concrete class mem_cluster and abstract
class mem which contains posterior estimates for clusters rather than baskets. In addition to these three
elements, an mem_mcmc object will also contain the seed used to generate the results. This value can be
used to reproduce subsequent analyses.

Because they are relatively complex, a summary function is implemented to summarize the compo-
nents relevant to exchangeability models for trial analysis. The
summary.exchangeability_model() method returns an object of type "mem_summary". A
print.mem_summary() method is provided for a user-readable summary of the trial. Because there is
little distinction between an exchangeability_model object and its summary,
print.exchageability_model() method prints the summary object.

The mem_summary object provides access to the overall study characteristic. Accessor methods are
also provided to extract other key information from the analysis objects at both the basket and cluster
levels. These functions and their descriptions are given in Table 1. In addition, a complete MEM
analysis is computationally intensive; altering the null response rate need not imply rerunning the
entire analysis. To facilitate partial analysis updates under a new null (argument p0), the update_p0()
function is provided. Likewise samples can be drawn from the posterior distribution of the basket and
cluster models using the sample_posterior() function.

Visualizations

Two types of functions are provided for visualizing the results of an MEM analysis, both of which
are supported at basket and cluster levels of inference. Density plotting is available with the
plot_density() functions, which produce graphs depicting the posterior distributions of response
probabilities at the basket and cluster level. Additionally, functions for visualizing exchangeability
relationships are provided in a manner similar to correlograms. Since the values visualized are ex-
changeability, rather than correlation, we have termed these plots exchangeograms. These can be plotted
for PEP and MAP matrices using the plot_pep() and plot_map() functions, respectively. A network
graphical visualization integrating the resultant PEP and posterior probability is provided via function
plot_PEP_graph().

Case Study: The Vemurafenib Basket Trial

The “Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations” study (Hyman
et al., 2015), enrolled patients into predetermined baskets that were determined by organ site with
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Basket Enrolled Evaluable Responses Response Rate
NSCLC 20 19 8 0.421
CRC (vemu) 10 10 0 0.000
CRC (vemu+cetu) 27 26 1 0.038
Bile Duct 8 8 1 0.125
ECD or LCH 18 14 6 0.429
ATC 7 7 2 0.286

Table 2: Vemurafenib trial enrollment and responses.

primary end point defined by Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1
(Eisenhauer et al., 2009) or the criteria of the International Myeloma Working Group (IMWG) (Durie
et al., 2006). Statistical evidence for preliminary clinical efficacy was obtained through estimation of
the organ-specific objective response rates at 8 weeks following the initiation of treatment. This section
demonstrates the implementation of basket through analysis of six organs comprising non–small-cell
lung cancer (NSCLC), cholangiocarcinoma (Bile Duct), Erdheim–Chester disease or Langerhans’-cell
histiocytosis (ECD or LCH), anaplastic thyroid cancer (ATC), and colorectal cancer (CRC) which
formed two cohorts. Patients with CRC were initially administered vemurafenib. The study was later
amended to evaluate vemurafenib in combination with cetuximab for CRC which comprised a new
basket. Observed outcomes are summarized in Table 2 by basket. Included in the basket package, the
dataset is accessible in short vemu_wide as well as long formats vemu.

Inspection of Table 2 reveals heterogeneity among the studied baskets. CRC (vemu), CRC
(vemu+cetu), and Bile Duct had relatively low response rates when compared to other baskets,
suggesting that patients presenting the BRAF V600 mutation may not yield exchangeable information
for statistical characterization of the effectiveness of the targeted therapy. Therefore, the MEM frame-
work is implemented to measure the extent of basketwise heterogeneity and evaluate the effectiveness
of the targeted therapy on the basis of its resultant multi-resolution smoothed posterior distributions.
Hobbs et al. (2018) present a permutation study which extends the evaluation of heterogeneity to
evaluate summaries of patient attributes reported in Table 1 of the aforementioned trial report. This
case study reports posterior probabilities evaluating the evidence that the response probability for
each organ-site exceeds the null rate of p0 = 0.25.

The analysis can be reproduced by loading the vemu_wide data, which is included with the package.
The data set includes the number of evaluable patients (column evaluable), the number of responding
patients (column responders), and the associated baskets for the respective results (column baskets).
The model is fit by passing these values to the basket() function along with an argument specifying
the null response rate of 0.25 for evaluation of each basket. The results are shown by passing the fitted
model object to the summary() function. Code to perform the analysis as well as produce the output is
shown below.

library(basket)
data(vemu_wide)
vm <- basket(vemu_wide$responders, vemu_wide$evaluable,
vemu_wide$baskets, p0 = 0.25, cluster_analysis = TRUE)
summary(vm)

-- The MEM Model Call ----------------------------------------------------------

mem_mcmc(responses = responses, size = size, name = name, p0 = p0,
shape1 = shape1, shape2 = shape2, prior = prior, hpd_alpha = hpd_alpha,
alternative = alternative, mcmc_iter = mcmc_iter, mcmc_burnin = mcmc_burnin,
initial_mem = initial_mem, seed = seed, cluster_analysis = cluster_analysis,
call = call, cluster_function = cluster_function)

-- The Basket Summary ----------------------------------------------------------

The Null Response Rates (alternative is greater):
NSCLC CRC (vemu) CRC (vemu+cetu) Bile Duct ECD or LCH ATC

Null 0.250 0.250 0.25 0.250 0.25 0.250
Posterior Prob 0.972 0.003 0.00 0.225 0.97 0.891

Posterior Mean and Median Response Rates:
NSCLC CRC (vemu) CRC (vemu+cetu) Bile Duct ECD or LCH ATC
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Mean 0.394 0.055 0.053 0.148 0.394 0.358
Median 0.392 0.046 0.045 0.097 0.391 0.361

Highest Posterior Density Interval with Coverage Probability 0.95:
NSCLC CRC (vemu) CRC (vemu+cetu) Bile Duct ECD or LCH ATC

Lower Bound 0.242 0.00 0.001 0.005 0.238 0.17
Upper Bound 0.550 0.13 0.122 0.403 0.551 0.56

Posterior Effective Sample Size:
NSCLC CRC (vemu) CRC (vemu+cetu) Bile Duct ECD or LCH ATC

37.254 49.039 54.514 10.528 36.148 21.786

-- The Cluster Summary ---------------------------------------------------------

Cluster 1
"CRC (vemu)" "CRC (vemu+cetu)" "Bile Duct"

Cluster 2
"NSCLC" "ECD or LCH" "ATC"

The Null Response Rates (alternative is greater):
Cluster 1 Cluster 2

Null 0.250 0.250
Posterior Prob 0.076 0.944

Posterior Mean and Median Response Rates:
Cluster 1 Cluster 2

Mean 0.085 0.382
Median 0.057 0.382

Highest Posterior Density Interval with Coverage Probability 0.95:
Cluster 1 Cluster 2

Lower Bound 0.000 0.221
Upper Bound 0.313 0.559

Posterior Effective Sample Size:
Cluster 1 Cluster 2

9.786 30.12

Bayesian MEM analysis using the MCMC sampler with reference prior distribution for exchange-
ability identifies the most likely MEM to be comprised of two closed subgraphs (or meta-baskets).
Cluster 1 consists of CRC (vemu) with CRC (vemu+cetu) and BD, while cluster 2 is comprised of
NSCLC, ECD or LCH, and ATC. Cluster 1 results in an estimated posterior mean response rate of
0.087. The posterior probability that baskets assigned to cluster 1 exceed the null response rate of
0.25 is only 0.082. Conversely, attaining a posterior probability of 0.944 and posterior mean of 0.382,
indications identified in cluster 2 demonstrate more promising indications of activity. Figures 3a and
3b depict full posterior distributions of response probabilities for each basket and cluster produced by
the plot_density() function.

plot_density(vm, type = "basket")
plot_density(vm, type = "cluster")

The resultant posterior probability of each pairwise exchangeability relationship (PEP) is sum-
marized with the basket_pep() function and depicted in Figure 4 by application of the plot_pep()
function. The results demonstrate that the posterior exchangeability between the high-response
baskets is higher than that of the lower responding baskets. For example, the posterior probability
that NSCLC and ED.LH patients are exchangeable with respect to evaluating their response to Vemu-
rafenib is 0.938. Similarly, the analysis resulted in PEPs of 0.86 for the pairwise relationships between
NSCLC with ATC and ED.LH with ATC, suggesting that these indications can be averaged. The study
provided strong support to conclude that vemurafenib is identically ineffective among CRC (vemu)
and CRC (vemu+cetu) subtypes with PEP = 0.92. The effectiveness of BD was identified as marginally
exchangeable with CRC (vemu) and CRC (vemu+cetu) with PEP = 0.64 and 0.63, respectively. Con-
versely, both NSCLC and ED.LH resulted in PEPs of 0 for each CRC basket, demonstrating strong
evidence of differential activity among these indications. Thus, definitive trials devised to estimate
population-averaged effects should not expect these subtypes to comprise statistically exchangeable
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(a) Posterior basket response density. (b) Posterior cluster response density.

Figure 3: Posterior distributions of the MEM analysis.

patients.

Figure 5 provides a network graphical representation of the results from analysis of the Ve-
murafenib study. This graph is generated using the plot_pep_graph() function. Nodes represent
individual baskets. A node’s color depicts the Bayesian evaluation of the null hypothesis that the
posterior probability that the objective response rate exceeds 0.25 for the corresponding basket. Edge
thickness between any pair of baskets is determined by PEP. Edges with shorter length and thicker
width denote basket pairs with higher magnitudes of pairwise posterior exchangeability. For example,
baskets ATC, NSCLC, and ECD or LCH, depicted with yellow colored nodes, resulted in higher poster
probability when compared to the other three baskets. The relatively thick edges between these baskets
confer their large PEP values, suggesting that these indications can be averaged.

basket_pep(vm)
plot_pep(vm$basket)
plot_pep_graph(vm)

NSCLC CRC (vemu) CRC (vemu+cetu) Bile Duct ECD or LCH ATC
NSCLC 1.000 0.002 0.000 0.231 0.938 0.866
CRC (vemu) 0.002 1.000 0.917 0.643 0.002 0.068
CRC (vemu+cetu) 0.000 0.917 1.000 0.626 0.000 0.031
Bile Duct 0.231 0.643 0.626 1.000 0.243 0.536
ECD or LCH 0.938 0.002 0.000 0.243 1.000 0.861
ATC 0.866 0.068 0.031 0.536 0.861 1.000

Figure 4: The exchangeogram depicting PEP resulting from analysis of the Vemurafenib study.
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Figure 5: Network graphical representation of PEP resulting from analysis of the Vemurafenib study.

Summary

With the emergence of molecularly targeted therapies, contemporary trials are devised to enroll po-
tentially heterogeneous patient populations defined by a common treatment target. Consequently,
characterization of subpopulation heterogeneity has become central to the design and analysis of
clinical trials, in oncology in particular. By partitioning the study population into subpopulations that
comprise potentially non-exchangeable patient cohorts, the basket design framework can be used to
study treatment heterogeneity in a prospective manner. When applied in this context, the Bayesian
multisource exchangeability model (MEM) methodology refines the estimation of treatment effec-
tiveness to specific subpopulations. Additionally, the MEM inferential strategy objectively identifies
which patient subpopulations should be considered exchangeable and to what extent.

This article introduced the R package basket as well as demonstrated its implementation for
basket trial analysis using the MEM methodology. An oncology case study using data acquired from a
basket trial was presented and used to demonstrate the main functionality of the package. The basket
package is the first available software package implementing Bayesian analysis with the MEM. The
package is being actively maintained and used in ongoing trials.
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