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MoTBFs: An R Package for Learning
Hybrid Bayesian Networks Using
Mixtures of Truncated Basis Functions
by Inmaculada Pérez-Bernabé, Ana D. Maldonado, Antonio Salmerón and Thomas D. Nielsen

Abstract This paper introduces MoTBFs, an R package for manipulating mixtures of truncated
basis functions. This class of functions allows the representation of joint probability distributions
involving discrete and continuous variables simultaneously, and includes mixtures of truncated
exponentials and mixtures of polynomials as special cases. The package implements functions for
learning the parameters of univariate, multivariate, and conditional distributions, and provides
support for parameter learning in Bayesian networks with both discrete and continuous variables.
Probabilistic inference using forward sampling is also implemented. Part of the functionality of the
MoTBFs package relies on the bnlearn package, which includes functions for learning the structure
of a Bayesian network from a data set. Leveraging this functionality, the MoTBFs package supports
learning of MoTBF-based Bayesian networks over hybrid domains. We give a brief introduction to
the methodological context and algorithms implemented in the package. An extensive illustrative
example is used to describe the package, its functionality, and its usage.

Introduction

Mixtures of truncated basis functions (MoTBFs) (Langseth et al., 2012a) have been proposed as a
general framework for handling hybrid Bayesian networks, i.e., Bayesian networks where discrete
and continuous variables coexist. As special cases, the framework includes the so-called mixtures of
truncated exponentials (MTEs) (Moral et al., 2001) and mixtures of polynomials (MoPs) (Shenoy and
West, 2011; López-Cruz et al., 2012).

One of the advantages of MoTBFs is that they allow for hybrid Bayesian networks with no
structural restrictions on the relations between the continuous and discrete variables; this is in contrast
to conditional Gaussian (CG) models (Lauritzen, 1992), where discrete variables are not allowed to
have continuous parents. Restricting arc directions is problematic, for instance in situations where the
network structure is given a causal interpretation; the fact that MoTBFs have no such restriction make
them suitable for this kind of analysis. Furthermore, MoTBFs are closed under addition, multiplication,
and integration, which facilitates the use of exact probabilistic inference methods like the Shenoy-
Shafer architecture (Shenoy and Shafer, 1990) or the variable elimination algorithm (Zhang and Poole,
1996).

Methods for learning MoTBFs from data have previously been studied and cover algorithms for
learning both marginal (Langseth et al., 2012b,a) and conditional MoTBF densities from data (Langseth
et al., 2009, 2014; Pérez-Bernabé et al., 2015). To address situations where data availability is limited,
Pérez-Bernabé et al. (2016) proposed a methodology for integrating prior knowledge when learning
univariate and conditional MoTBFs from data. The underlying idea of the integration is to represent
the prior knowledge as an MoTBF density that is later combined with the density learned from data,
thus resulting in a new MoTBF density. Together, the learning algorithms for MoTBF-based Bayesian
networks facilitate learning in data-rich domains as well as domains where limited quantitative data
is counterbalanced by qualitative domain knowledge.

The aim of the MoTBFs package is to provide a free and accessible implementation of algorithms
for learning MoTBFs from data. The package implements state-of-the-art learning algorithms for
univariate, conditional, and joint MoTBF densities. By extension, functionality is also provided for
learning MoTBF-based Bayesian networks by leveraging functionality from the bnlearn package (Scu-
tari, 2010). Hybrid Bayesian networks supported by bnlearn are restricted to CG models, which
implies that conditional distributions of discrete variables given continuous ones are not permitted.
Other packages like deal (Bøttcher and Dethlefsen, 2003) and pcalg (Kalisch et al., 2012) are also
restricted to CG models. By adopting the MoTBF framework, the MoTBFs package sidesteps this
restriction on the possible network structures. Furthermore, the MoTBFs package also provides
methods for integrating prior domain knowledge in the learning process, thus also supporting data
sparse domains.

Another package that includes hybrid Bayesian networks functionality is HydeNet (Dalton and
Nutter, 2019). This package is able to handle conditional distributions beyond the Gaussian model
class, but discrete variables conditional on continuous ones are modeled using generalized linear
models, and inference is only possible using Markov Chain Monte Carlo through an interface to
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JAGS (Plummer, 2003). Unlike MoTBFs and bnlearn, HydeNet does not provide functionality for
learning the network structure. HydeNet is especially appropriate for modeling decision problems,
since it implements influence diagrams, which are extensions of Bayesian networks that include
decision and utility nodes, similarly to decision trees.

The package abn (Kratzer et al., 2019) deals with so-called additive Bayesian networks, which are
Bayesian networks where each node holds a generalized linear model, and the effect of the parents of
each node is additive in terms of the exponential family expression of the conditional distribution.
Unlike HydeNet, abn is able to learn the network structure from data, and adopts a fully Bayesian
approach, thus allowing the specification of prior distributions on the parameters in a natural way.
The main difference with respect to package MoTBFs is that MoTBF distributions do not belong to the
exponential family, and in that sense both packages are complementary.

Mixtures of truncated basis functions

The MoTBF framework (Langseth et al., 2012a) is based on the abstract notion of real-valued basis
functions, which includes both polynomial and exponential functions as special cases.

More formally, let X be a mixed n-dimensional random vector. Let Y = (Y1, . . . , Yd) and Z =
(Z1, . . . , Zc) be the discrete and continuous parts of X, respectively, with c + d = n. Let Ψ = {ψi(·)}∞

i=0
with ψi : R → R define a collection of real basis functions. We say that a function f̂ : ΩX 7→ R+

0 is
a mixture of truncated basis functions potential to level k wrt. Ψ if one of the following two conditions
holds:

• f can be written as

f (x) = f (y, z) =
k

∑
i=0

c

∏
j=1

a(j)
i,y ψi

(
zj

)
, (1)

where a(j)
i,y are real numbers.

• There is a partition Ω1
X, . . . , Ωm

X of ΩX for which the domain of the continuous variables, ΩZ, is
divided into hyper-cubes and such that f is defined as

f (x) = f`(x) if x ∈ Ω`
X,

where each f`, ` = 1, . . . , m can be written in the form of Equation 1.

Typically, a univariate MoTBF for a variable X does not rely on a partitioning of ΩX .

To see the relationship between MoTBFs and MoPs (Shenoy and West, 2011), we can instantiate
the basis functions as polynomials (i.e., ψi(x) = xi, for i = 0, . . . , k) in which case the MoTBF model
reduces to an MoP model. For example, with polynomial basis functions, a univariate MoTBF of level
k for a variable X is given by

f (x) =
k

∑
i=0

θi ψi (x) .

Similarly, by having exponential basis functions the MoTBF model implements an MTE model (Moral
et al., 2001). For ease of exposition, we shall in the remainder of this paper assume polynomial basis
functions unless explicitly stated otherwise.

An MoTBF potential is a density if ∑y∈ΩY

∫
Ωz

f (y, z)dz = 1. Similarly, we say that an MoTBF
f (y, z) is a conditional density for Z′ ⊆ Z and Y′ ⊆ Y given (Z \ Z′) and (Y \ Y′) if

∑
y′∈ΩY′

∫
Ωz′

f (y′, y′′, z′, z′)dz′ = 1,

for all z′′ ∈ ΩZ\Z′ and y′′ ∈ ΩY\Y′ . Following Langseth et al. (2012a) we furthermore assume that
the influence that a set of continuous parent variables Z have on their child variable X is encoded
only through the partitioning of ΩZ into hyper-cubes, and not directly in the functional form of f (x|z)
inside the hyper-cube Ωj

Z. That is, for a partitioning P = {Ω1
Z , . . . , Ωm

Z} of ΩZ , the conditional MoTBF

is defined for z ∈ Ωj
Z , 1 ≤ j ≤ m, as

f (j)
k (x|z ∈ Ωj

Z) =
k

∑
i=0

θ
(j)
i ψ

(j)
i (x). (2)
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In the remainder of this paper we shall assume that a conditional MoTBF density includes only a
single ‘head’ variable, i.e., |Z′ ∪ Y′| = 1.

Learning univariate MoTBFs from data

Langseth et al. (2014) present a method for learning univariate MoTBF distributions from data. This
method is also implemented in the MoTBFs package and is briefly described here together with
its extension to both conditional and joint distributions. The estimation procedure relies on the
empirical cumulative distribution function (CDF) as a representation of the data, which, for a sample
D = {x1, . . . , xN}, is defined as

GN(x) =
1
N

N

∑
`=1

1{x` ≤ x}, x ∈ R, (3)

where 1{·} is the indicator function.

The algorithm developed by Langseth et al. (2014) fits a potential, whose derivative is an MoTBF,
to the empirical CDF using least squares. As an example, if we use polynomials as basis functions,
Ψ = {1, x, x2, x3, . . .}, the parameters of the CDF, denoted as c0, . . . , ck, are estimated by solving the
optimization problem

minimize
c0,...,ck

N

∑
`=1

(
GN(x`)−

k

∑
i=0

ci xi
`

)2

subject to
k

∑
i=1

i ci xi−1 ≥ 0 ∀x ∈ Ω, (4)

k

∑
i=0

ci αi = 0 and
k

∑
i=0

ci βi = 1,

where the constraints ensure that the obtained parameter estimates define a valid CDF, with α and β
being the minimum and maximum values of the data sample, respectively. More precisely, the first
constraint guarantees that the corresponding density is non-negative and the last two restrictions
ensure that it integrates to 1. The latter is equivalent to stating that the CDF should be equal to 0 at the
minimum and equal to 1 at the maximum. Note that the estimated function is not actually a density,
but a CDF instead. An MoTBF density can be obtained by simply taking the derivative of the CDF.

Note that the optimization program above is convex, and can be efficiently solved in theory.
However, the infinite number of constraints introduced by imposing that dF(x)

dx ≥ 0 for all x ∈ ΩX
complicates the implementation on a computer. In practice, we only check that the constraint is
fulfilled for a limited set of points spread across ΩX .

In learning scenarios involving a large amount of data (i.e., when N is large), solving the program
can be time consuming. In such cases we define a grid on ΩX , that is selected so that the number of
observations is the same between each pair of consecutive grid-points. The grid-points are used to
evaluate the objective function instead of the sample points.

The level k of the estimated MoP can be decided using different model selection techniques. For
the results presented in this paper we have performed a greedy search, choosing the value for k
maximizing the Bayesian information criterion (BIC) (Schwarz, 1978):

BIC( f , D) =
N

∑
`=1

log f (x`)−
k + 2

2
log N. (5)

This choice is motivated by Langseth et al. (2014), who showed that the estimators based on
Equation 4 are consistent in terms of the mean squared error for all x ∈ ΩX .

Learning conditional MoTBFs from data

In a conditional MoTBF density, the continuous parent variables Z only influence the child variable X
through the partitioning of the domain of Z into hyper-cubes, and not directly in the functional form
of f (x|z) inside each hyper-cube (Langseth et al., 2012a). Thus, learning a conditional MoTBF basically
consists in finding a partitioning of the domain of the parent variables and using the procedure above
for estimating the density of the child variable for each of these partitions.

This procedure is formally described by Langseth et al. (2014), where the domain of the parent

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 345

variables, ΩZ, is incrementally split as long as the BIC score improves. Equal frequency binning is
used to determine candidate split points. After splitting a variable Z, the algorithm fits a univariate
MoTBF density for each induced sub-partition Ω1

Z and Ω2
Z . A candidate partition ΩZ′ is only accepted

if the BIC score is improved, i.e., if

BIC-Gain(Ω′Z , Z) = BIC( f ′, D)− BIC( f , D) > 0,

where f ′ is the conditional MoTBF potential defined over the candidate partition.

Learning joint MoTBFs from data

The procedure for learning joint densities is an extension of the program in Equation 4 to random
vectors of arbitrary dimension (Pérez-Bernabé et al., 2015). In the multivariate case, the sample is a set
of d-dimensional observations, D = {x1, . . . , xN}, x ∈ ΩX ⊂ Rd. We say that the event x` ≤ x is true
if and only if x`,i ≤ xi for each dimension i = 1, . . . , d. For notational convenience we use Ω−X ∈ Rd to
denote the minimal point of ΩX (obtained by choosing the minimum of ΩX in each dimension), and
let Ω+

X ∈ Rd be the corresponding maximal point. Then, the empirical CDF is defined as

GN(x) =
1
N

N

∑
`=1

1{x` ≤ x}, x ∈ ΩX ⊂ Rd.

The goal is to find a representation of the empirical CDF of the form

F(x) =
k

∑
`1=0

. . .
k

∑
`d=0

c`1,`2,...,`d

d

∏
i=1

x`i
i ,

obtained by solving the optimization problem

minimize
N

∑
`=1

(GN(x`)− F(x`))
2

subject to
∂dF(x)

∂x1, . . . , ∂xd
≥ 0 ∀x ∈ ΩX, (6)

F
(
Ω−X
)
= 0 and F

(
Ω+

X
)
= 1.

The solution to this problem is the parameter-set that defines the joint CDF, and the density can be
obtained by differentiation of the joint CDF. As in the univariate case, it is a quadratic optimization
problem, that can be solved efficiently if the objective function is only evaluated on a set of grid-points.

Incorporating prior knowledge

There are real world situations, where the amount of available data is insufficient for accurate density
estimation. The MoTBFs package includes implementations oriented to face these kinds of situa-
tions by allowing prior knowledge to be taken into account during density estimation. In Bayesian
statistics (Bernardo and Smith, 2009), prior information is encoded as prior probability distributions
over the parameters. As an example, consider the case of a random variable representing the body
temperature of a patient in a hospital, and assume that the variable is normally distributed with mean
µ and standard deviation σ. Prior knowledge could be provided in the form of a prior distribution on
µ by establishing that µ ∼ N (37, 0.1). However, in the case of MoTBF distributions, the parameters do
not have a meaning in general. Therefore, there is no clear way in which a practitioner could provide
prior information on any of the parameters, although some information could still be specified. For
instance, in the body temperature example, the practitioner could choose not to give prior information
on any single parameter, but instead provide a full distribution of the variable, reflecting his or her
prior knowledge when no data is available. Such prior information could, e.g., include that the body
temperature follows a normal distribution with mean 37 and standard deviation 0.5. This is the
approach followed by Pérez-Bernabé et al. (2016), where prior knowledge is encoded as an MoTBF
distribution over the random variable, which is then later combined with the MoTBF density learned
from data.

In order to represent such a prior distribution as an MoTBF, a sample is drawn from the prior – e.g.,
N (37, 0.1) in the example above – and the sample is then used to learn an MoTBF using the methods
previously described in this paper. Alternatively, one may also rely on direct translation schemes as
described in, e.g., (Langseth et al., 2010; Cobb et al., 2006).
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Given a prior MoTBF density fprior over a variable X, Pérez-Bernabé et al. (2016) obtain a posterior
density fpost by making a linear combination of the prior density and the density fdata learned from
data, expressed as

fpost = wp fprior + wd fdata ,

where wp is the weight of fprior and wd is the weight of fdata, with 0 ≤ wp ≤ 1, 0 ≤ wd ≤ 1 and
wp + wd = 1. The weights wp and wd reflect the way in which they explain the observed data. They
are computed by measuring the difference between the log-likelihood produced by each one of the
densities ( fprior and fdata) and the expected log-likelihood that would be produced by a randomly
generated MoTBF. See (Pérez-Bernabé et al., 2016) for a detailed explanation of the procedure.

Probabilistic inference

In a Bayesian network, probabilistic inference is the task of computing the posterior distribution of
any variable X given that some other variables Y have been observed to take some value y. Therefore,
the goal of probabilistic inference is to compute the density f (x|y), where the value y is fixed.

An easy approach to estimate this density is by forward sampling (Henrion, 1988). The idea is to
draw a sample of configurations of the variables in the Bayesian network by simulating each variable
using its conditional distribution following a top-down order. Prior to sampling, all the densities in
the network are restricted to the value Y = y and when a variable is to be sampled, its conditional
distribution is restricted to the values already obtained for its parents. Sampling is always possible
since the variables are sampled following the topological ordering of the network. Once the sample
has been obtained, f (x|y) is estimated as a univariate MoTBF as we described before.

Package description and illustrative example

The MoTBFs package is designed using S3 objects. The functions provided by the package implement
the methods explained in the previous sections. The package implements functions for learning
univariate, multidimensional, and conditional distributions, and provides support for parameter
learning in hybrid Bayesian networks. In addition, it includes functions for incorporating prior
knowledge when there is lack of data and for carrying out probabilistic inference. Moreover, two
classes are incorporated in the package, "motbf" for defining univariate mixtures of truncated basis
functions and "jointmotbf" for specifying multidimensional MoTBFs.

The functionality of the MoTBFs package is illustrated through an analysis carried out on a real
world dataset. More precisely, we use the ecoli dataset (Lichman, 2013), which is provided along with
the package. The dataset contains information about Escherichia coli and consists of n = 336 records,
8 input variables, and 1 output variable (the class). It is a bacterium of the genus Escherichia that is
commonly found in the lower intestine of warm-blooded organisms. This dataset can be downloaded
from http://archive.ics.uci.edu/ml/datasets/Ecoli.

To begin the analysis, the package and the data are loaded by

> install.packages("MoTBFs")
> library("MoTBFs")
> data("ecoli", package = "MoTBFs")
> str(ecoli)

'data.frame': 336 obs. of 9 variables:
$ Sequence.Name: chr "AAT_ECOLI" "ACEA_ECOLI" "ACEK_ECOLI" "ACKA_ECOLI" ...
$ mcg : num 0.49 0.07 0.56 0.59 0.23 0.67 0.29 0.21 0.2 0.42 ...
$ gvh : num 0.29 0.4 0.4 0.49 0.32 0.39 0.28 0.34 0.44 0.4 ...
$ lip : chr "0.48" "0.48" "0.48" "0.48" ...
$ chg : chr "0.5" "0.5" "0.5" "0.5" ...
$ aac : num 0.56 0.54 0.49 0.52 0.55 0.36 0.44 0.51 0.46 0.56 ...
$ alm1 : num 0.24 0.35 0.37 0.45 0.25 0.38 0.23 0.28 0.51 0.18 ...
$ alm2 : num 0.35 0.44 0.46 0.36 0.35 0.46 0.34 0.39 0.57 0.3 ...
$ class : chr "cp" "cp" "cp" "cp" ...

The ecoli dataset is a data frame with 336 rows corresponding to proteins and 9 columns corre-
sponding to variables. The dataset contains 4 discrete variables, stored as characters, and 5 continuous
variables. The variables provide measurements of the cells used for predicting the localization site
of proteins. The first variable, Sequence.Name, which is the accession number for the SWISS-PROT
database, and the output variable class will not be used in this running example, and we will therefore
remove them from the data frame. The discrete variables lip and chg are binary attributes, where
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character numbers are used as states; "0.48" and "1", and "0.5" and "1", respectively. For validation
purposes, the dataset is split into a training and a test set.

> data <- ecoli[,-c(1,9)]
> set.seed(2)
> dataTT <- TrainingandTestData(data, percentage_test = 0.2)
> trainingData <- dataTT$Training
> testData <- dataTT$Test

The seed value determines the partitioning of the data into training and test, and is therefore key
to reproducing the experiments. From now on, we will carry out all the analyses on the training data,
leaving the test dataset for estimating the predictive capabilities of the learned models.

Our illustrative example basically consists of fitting MoTBF densities to a previously learned
Bayesian network structure over the variables in the dataset. The structure can, for instance, be
obtained, using the function hc() from the bnlearn package. This function returns a directed acyclic
graph obtained from the dataset using a local search method. For the sake of simplicity, we have
included the function LearningHC() in our package, which automatically converts into factors those
columns that are non-numeric, before calling the function hc() in bnlearn. LearningHC() can also be
used to discretize the dataset before calling hc(), but we are not using this functionality in the running
example.

> dag <- LearningHC(trainingData)
> dag

Bayesian network learned via Score-based methods

model:
[lip][alm1][mcg|lip:alm1][chg|lip][aac|alm1][gvh|mcg][alm2|gvh:lip:alm1]
nodes: 7
arcs: 8
undirected arcs: 0
directed arcs: 8
average markov blanket size: 3.14
average neighbourhood size: 2.29
average branching factor: 1.14

learning algorithm: Hill-Climbing
score: BIC (cond. Gauss.)
penalization coefficient: 2.797356
tests used in the learning procedure: 102
optimized: TRUE

> plot(dag)

The network structure obtained is shown in Figure 1.

Figure 1: Directed acyclic graph learned from 80 percent of the ecoli dataset used as training data.

Before describing how to learn the MoTBF distributions associated with the network structure,
we first present the basic functionality for learning different types of MoTBF representations, i.e.,
univariate, conditional, and joint MoTBF densities.
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We illustrate the learning of a univariate MoTBF density by considering the continuous variable
mcg.

> f1 <- univMoTBF(trainingData[,1], POTENTIAL_TYPE = "MTE", nparam = 13)
> f2 <- univMoTBF(trainingData[,1], POTENTIAL_TYPE = "MOP", nparam = 11)

The univMoTBF() function is used for learning univariate densities. The function is at the core of
a collection of functions included in the package to learn densities of class "motbf" from data. Least
squares optimization is used to minimize the mean squared error between the empirical cumulative
distribution and the estimated MoTBF.

The function takes two mandatory arguments, data and POTENTIAL_TYPE, where the latter can
either be "MOP" or "MTE" if polynomial or exponential basis functions should be used, respectively.
univMoTBF() also accepts optional arguments: it is possible to specify the domain over which the
model will be fitted, evalRange, the exact number of basis functions to be used, nparam, and the
maximum number of parameters in the function, maxParam, which selects the best fit using the log-
likelihood score. If nparam or maxParam are not given, then the Bayesian information criterion (BIC)
(Schwarz, 1978) is used for scoring and function selection: it evaluates the two next functions and if
the BIC value does not improve then the function with the best BIC score so far is returned.

An overview of the obtained results is shown via print() and summary().1

R> print(f1)

[1] 31692.5765-19886.9389*exp(2*x)-3430.0930*exp(-2*x)+6520.8968*exp(4*x)
-91374.9603*exp(-4*x)-1269.7572*exp(6*x)+189285.9358*exp(-6*x)
+145.8260*exp(8*x)-186348.2886*exp(-8*x)-8.9962*exp(10*x)+94460.6774*exp(-10*x)
+0.2244*exp(12*x)-19787.1017*exp(-12*x)

> summary(f2)

MoTBFs FOR UNIVARIATE DISTRIBUTIONS

Model:
0.0009+31.8820*x-1161.8247*x^2+16513.1506*x^3-121362.4662*x^4+529132.7157*x^5
-1434074.5145*x^6+2426253.6805*x^7-2482246.1917*x^8+1401057.0127*x^9-334304.5309*x^10

Class: motbf
Subclass: mop

Coefficients:
0.001 31.8821 -1161.825 16513.15 -121362.5 529132.7 -1434075 2426254
-2482246 1401057 -334304.5

Domain:
(0, 0.89)

Number of Iterations: 7

Processing Time: 0.002254009 secs

The object returned by univMoTBF() is a list containing several elements, including its mathematical
expression and other hidden elements related to the learning task. The processing time is one of the
values returned by this function and it can be extracted by $Time. Although the learning process is
always the same for a particular data sample, the processing time can vary inasmuch as it depends on
the CPU.

> hist(trainingData[,1], prob = TRUE , main = "", xlab = "X")
> plot(f1, xlim = range(trainingData[,1]), col = "red", add = TRUE)
> plot(f2, xlim = range(trainingData[,1]), col = "blue", add = TRUE)

Figure 2 shows the model fits, provided by univMoTBF(), displayed using the generic method
plot().

1In order to save space and increase readability, we are only printing the 4 most significant digits in the examples
in this paper.
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Figure 2: Univariate learning with blue dashed line for MOPs and red solid line for MTEs overlaying
the histogram of the training data of the mcg variable.

To evaluate the predictive ability of the models we use the generic method as.function() devel-
oped for the "motbf" class to get the log-likelihood as well as BICMoTBF() to obtain the BIC score.

> sum(log(as.function(f1)(testData[,1])))
[1] 9.1945

> sum(log(as.function(f2)(testData[,1])))
[1] 8.7249

> BICMoTBF(f1,testData[,1])
[1] -20.2383

> BICMoTBF(f2,testData[,1])
[1] -16.5032

An alternative way to visually check the goodness of fit of the estimated models is to simulate a
data sample from the learned functions and compare it with the training data. For doing this, we use
the inverse transform method, a technique for generating random samples from a specific probability
distribution based on evaluating the inverse of the CDF on a uniform random number, yielding a
value for the random variable being sampled. This is done by function rMoTBF(). For the sake of
reproducibility, we fix the seed for the random numbers to be used by the rMoTBF() function, which is
set to 5 in this example. In the next code snippet, the previous function fitted with a polynomial basis,
f2, will be used.

> set.seed(5)
> X <- rMoTBF(size = 400, fx = f2)
> ks.test(trainingData[,1], X)

Two-sample Kolmogorov-Smirnov test

data: trainingData[, 1] and X
D = 0.065167, p-value = 0.5018
alternative hypothesis: two-sided

In this example the two-sample Kolmogorov-Smirnov test is used. The p-value is notably above
0.05, so there is no evidence to reject the null hypothesis that both samples are drawn from the same
population.

> hist(X, prob = TRUE, col = "deepskyblue3", main = "", ylim = c(0,2.2))
> hist(trainingData[,1], prob = TRUE, col = adjustcolor("gold",
+ alpha.f = 0.5), add = TRUE)
> plot(ecdf(trainingData[,1]), cex = 0, main = "")
> plot(integralMoTBF(f2), xlim = range(trainingData[,1]), col = "red", add = TRUE)
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(a) (b)

Figure 3: Histogram of variable mcg plotted over the histogram of the generated sample (a). Illustration
of the inverse transform method (b), red solid line is the CDF of the generated sample, and black
dashed line is the empirical CDF of the training data for variable mcg.

Figure 3 shows two plots comparing the training data of variable mcg and the sample simulated
from the distribution learned using the same training data.

We can also manipulate the distributions with a collection of methods for class "motbf". Here is
an example of the use of three of them, coef(), integralMoTBF(), and derivMoTBF().

> coef(f1)
[1] 3.1692e+04 -1.9886e+04 -3.4300e+03 6.5208e+03 -9.1374e+04
[6] -1.2697e+03 1.8928e+05 1.4582e+02 -1.8634e+05 -8.9962e+00
[11] 9.4460e+04 2.2449e-01 -1.9787e+04

> integralMoTBF(f2)
[1] 0.0009*x+15.9410*x^2-387.2749*x^3+4128.2876*x^4-24272.4932*x^5+88188.7859*x^6
-204867.7877*x^7+303281.7100*x^8-275805.1324*x^9+140105.7012*x^10-30391.3209*x^11

> integralMoTBF(f2, min = min(trainingData[,1]), max = max(trainingData[,1]))
[1] 1

> derivMoTBF(f2)
[1] 31.8820-2323.6495*x+49539.4519*x^2-485449.8648*x^3+2645663.5790*x^4
-8604447.0881*x^5+16983775.7655*x^6-19857969.5358*x^7+12609513.1160*x^8
-3343045.3101*x^9

The learning process for multidimensional variables is similar to the previous one. The function
parametersJointMoTBF() is used to solve the quadratic optimization problem. It returns Parameters,
Range and Time, among other values. The function jointMoTBF() is used for obtaining the analytical
expression, where the returned object is of class "jointmotbf". The expression is the only visible
element, while the others can be retrieved using attributes(). In this example only two variables are
used, mcg and alm1, in order to be able to plot the results.

> parameters <- parametersJointMoTBF(X = trainingData[,c("mcg", "alm1")],
+ dimensions = c(5,5))
> P <- jointMoTBF(parameters)
> attributes(P)

$names
[1] "Function" "Domain" "Iterations" "Time"
$class
[1] "jointmotbf"

> plot(P, data = trainingData[,c(1,6)])
> plot(P, data = trainingData[,c(1,6)], filled = FALSE)
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> plot(P, type = "perspective", data = trainingData[,c(1,6)], orientation=c(60,20))

(a) (b) (c)

Figure 4: Filled contour (a), simple contour (b) and perspective (c) plots of the joint MoTBF f (Y, X) of
variables mcg and alm1.

The plots in Figure 4 are generated using plot(), developed for objects of class "jointmotbf". This
function accepts optional arguments such as type, where one can choose between "perspective" and
"contour", ranges, used to specify the plotting range, orientation, which indicates the orientation of
the perspective graph, and filled for getting a filled contour plot.

The function print() can be used to obtain an expression of the learned joint density, while
summary() yields a more thorough excerpt of the "jointmotbf" object.

> summary(P)

MoTBFs FOR MULTIVARIATE DISTRIBUTIONS

Model:
0.0355-0.2915*y+0.8351*y^2-0.9711*y^3+0.3939*y^4-2.9706*x+88.6144*x*y
-339.2388*x*y^2+451.7559*x*y^3-198.1810*x*y^4-9.2802*x^2+494.5320*x^2*y
-1392.3658*x^2*y^2+1175.9828*x^2*y^3-268.7925*x^2*y^4+35.3166*x^3
-1708.9509*x^3*y+5662.3268*x^3*y^2-5878.6313*x^3*y^3+1889.8292*x^3*y^4
-22.2566*x^4+1164.5531*x^4*y-4117.2185*x^4*y^2+4479.3097*x^4*y^3-1504.3348*x^4*y^4

Class: jointmotbf

Coefficients:
0.0355 -0.2915 0.8351 -0.9711 0.3939 -2.9706 88.6144 -339.2388 451.7559
-198.1811 -9.2802 494.5321 -1392.366 1175.983 -268.7926 35.3166 -1708.951
5662.327 -5878.631 1889.829 -22.2566 1164.553 -4117.219 4479.31 -1504.335

Domain x:
(0, 0.89)
Domain y:
(0.03, 1)

Number of Iterations: 96

Processing Time: 1.144651 secs

As in the univariate case, the processing time, P$Time, can vary depending on the CPU, but the
learning outcome will always be the same for a specific data sample. The marginalJointMoTBF()
function computes the marginals of joint densities. In this example we have two variables, so there are
two marginal densities.

> marginalJointMoTBF(P, var = 1)
[1] 0.0031+1.6119*x+14.1692*x^2-23.7487*x^3+6.7540*x^4

> marginalJointMoTBF(P, var = 2)
[1] -0.2716+13.0463*y-32.4520*y^2+32.5558*y^3-12.8781*y^4
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Figure 5: Conditional density of gvh given mcg.

The next step in our analysis is learning conditional densities, which is implemented by the
function conditionalMethod(). Five of its arguments are compulsory: data, the dataset; nameParents,
a character vector indicating the name of the parents; nameChild, a character string containing the
name of the child; numIntervals, the maximum number of intervals for splitting the domain of
the parent variables; POTENTIAL_TYPE, the type of basis function. Other arguments are optional, like
maxParam, indicating the maximum number of parameters for each function, and s, the expert’s relative
confidence in any prior knowledge, and priorData if prior knowledge is incorporated in the analysis.

We will do the conditional analysis for only two variables in order to be able to make a 2-
dimensional plot of the obtained results using plotConditional(). For example, taking into account
the relationship found by the dag, we consider the child variable gvh with parent variable mcg.

> P <- conditionalMethod(trainingData, nameParents = "mcg", nameChild = "gvh",
+ numIntervals = 5, POTENTIAL_TYPE ="MOP")
> printConditional(P)

Parent: mcg Range: 0 < mcg < 0.44
[1] 115.8704-1783.8943*x+10688.6518*x^2-32342.1750*x^3+54497.1689*x^4-52033.2599*x^5
+26393.6470*x^6-5536.0079*x^7
Parent: mcg Range: 0.44 < mcg < 0.89
[1] -37.3009+733.0877*x-5676.3802*x^2+22283.2874*x^3-47834.5916*x^4+56908.0376*x^5
-35242.7482*x^6+8867.5576*x^7

> plotConditional(P, data = trainingData, nameChild = "gvh", points = TRUE)

Figure 5 shows the resulting conditional density (a MOP in this case) with the sample points
overlaid. It can be noticed that the learning algorithm decides to split the domain of the parent into
two intervals even though we have set the argument numIntervals to five. This is because the BIC
score is not improved any further by splitting the domain into more than two intervals.

The last step is to learn the distributions tied to the Bayesian network learned previously. For doing
this task, the MoTBFs_Learning() function of the MoTBFs package is used. The graph is a mandatory
argument, that can be of class "bn", "graphNEL" or "network". Other mandatory arguments are the
data, the maximum number of intervals for splitting the domain of the parents, and the type of basis
function. The function also accepts additional arguments, but they are not listed here.

In the example, the DAG was obtained using the bnlearn package and therefore it is an object of
class "bn". As an example, we will use a maximum of 4 intervals and "MTE" potentials when learning
the densities (i.e. exponential basis functions).

> bn <- MoTBFs_Learning(dag, data = trainingData, numIntervals = 4,
+ POTENTIAL_TYPE = "MTE")
> printBN(bn)

Potential(mcg)
Parent: alm1 Range: 0.03 < alm1 < 0.33
Parent: lip Range = "0.48"
[1] 77.3522-39.7786*exp(2*x)-4.7525*exp(-2*x)+7.4896*exp(4*x)
-110.4468*exp(-4*x)-0.48548*exp(6*x)+71.3407*exp(-6*x)
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Parent: alm1 Range: 0.33 < alm1 < 1
Parent: lip Range = "0.48"
[1] -5.4620+3.3347*exp(2*x)+3.6655*exp(-2*x)-0.4237*exp(4*x)-1.0852*exp(-4*x)
Parent: lip Range = "1"
[1] -11.4070+6.0014*exp(2*x)+4.4488*exp(-2*x)-0.7109*exp(4*x)+2.3944*exp(-4*x)

Potential(gvh)
Parent: mcg Range: 0 < mcg < 0.51
[1] -97.6780+34.1822*exp(2*x)-282.2167*exp(-2*x)-2.7274*exp(4*x)+2028.8986*exp(-4*x)
-0.12096*exp(6*x)-3609.5088*exp(-6*x)+0.0175*exp(8*x)+2069.4440*exp(-8*x)
Parent: mcg Range: 0.51 < mcg < 0.89
[1] 685.6507-360.2896*exp(2*x)+252.1477*exp(-2*x)+79.5432*exp(4*x)-3074.9108*exp(-4*x)
-8.3530*exp(6*x)+4377.0877*exp(-6*x)+0.3410*exp(8*x)-2004.8518*exp(-8*x)

Potential(lip)
0.9630 0.0369

Potential(chg)
Parent: lip Range = "0.48"
1 0
Parent: lip Range = "1"
0.8181 0.1818

Potential(aac)
Parent: alm1 Range: 0.03 < alm1 < 1
[1] -3742.3665+2528.6429*exp(2*x)+1860.6477*exp(-2*x)-894.0268*exp(4*x)
+2121.1450*exp(-4*x)+175.4771*exp(6*x)-3473.1126*exp(-6*x)-18.0836*exp(8*x)
+1679.6126*exp(-8*x)+0.7634*exp(10*x)-238.3277*exp(-10*x)

Potential(alm1)
[1] 158.6127-95.2652*exp(2*x)-56.9318*exp(-2*x)+25.4631*exp(4*x)-97.0824*exp(-4*x)
-3.1624*exp(6*x)+52.8052*exp(-6*x)+0.1480*exp(8*x)+17.6287*exp(-8*x)

Potential(alm2)
Parent: alm1 Range: 0.03 < alm1 < 0.33
Parent: gvh Range: 0.16 < gvh < 1
Parent: lip Range = "0.48"
[1] 193.4903-112.6569*exp(2*x)-52.9058*exp(-2*x)+28.5291*exp(4*x)-185.8167*exp(-4*x)
-3.3698*exp(6*x)+155.0492*exp(-6*x)+0.1517*exp(8*x)-21.3863*exp(-8*x)
Parent: alm1 Range: 0.33 < alm1 < 0.45
Parent: gvh Range: 0.16 < gvh < 1
Parent: lip Range = "0.48"
[1] 395.0603-217.7061*exp(2*x)+16.0642*exp(-2*x)+51.0248*exp(4*x)-1009.4114*exp(-4*x)
-5.6246*exp(6*x)+1224.5254*exp(-6*x)+0.2387*exp(8*x)-454.1703*exp(-8*x)
Parent: alm1 Range: 0.45 < alm1 < 0.71
Parent: gvh Range: 0.16 < gvh < 1
Parent: lip Range = "0.48"
[1] -3.0260+3.1097*exp(2*x)+6.9062*exp(-2*x)-0.8013*exp(4*x)-12.5762*exp(-4*x)
+0.0578*exp(6*x)+6.3306*exp(-6*x)
Parent: lip Range = "1"
[1] 1.9648-0.2660*exp(2*x)-0.2660*exp(-2*x)
Parent: alm1 Range: 0.71 < alm1 < 1
Parent: gvh Range: 0.16 < gvh < 1
Parent: lip Range = "0.48"
[1] -1.2697+0.6353*exp(2*x)+0.6353*exp(-2*x)
Parent: lip Range = "1"
[1] 1.0101+0*exp(2*x)

The results are reported using the printBN() function. Notice how nodes in the DAG with only
discrete parents contain as many functions as configurations of the parents, nodes that have continuous
parents have at most 4 functions for each parent and nodes that have mixed parents contain as many
functions as configurations of the discrete parents times the number of regions into which the domain
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of the continuous parents is split. The BIC criterion is used to decide the number of splitting points of
the domain of the continuous parent nodes and to choose the number of basis functions used. The
function BiC.MoTBFBN() can be used to compute the log-likelihood and the BIC score of a dataset
given the Bayesian network.

> bic <- BiC.MoTBFBN(bn, data = testData)
> attributes(bic)
$names
[1] "LogLikelihood" "BIC"

> bic$LogLikelihood
[1] 173.5496
> bic$BIC
[1] -51.40147

We will now exemplify the use of prior knowledge in the learning process. In order to illustrate
the approach, we first select a small subset of the Ecoli dataset using TrainingandTestData(). In the
next example the percentage of the test data is 99%, which means the training data is only 1% of the
full dataset.

> set.seed(4)
> dataTT <- TrainingandTestData(data, percentage_test = 0.99)
> trainingData <- dataTT$Training
> testData <- dataTT$Test
> nrow(trainingData)
[1] 13

There are 13 entries in the training dataset. We are going to fit MoTBFs with and without prior
information. To generate an artificial prior dataset the generateNormalPriorData() function can be
used.

> means <- sapply(data, mean)
> set.seed(4)
> priorData <- generateNormalPriorData(dag, data = trainingData, size = 5000,
+ means = means)

Learning univariate and conditional distributions and Bayesian networks can be done using
the functions learnMoTBFpriorInformation() and MoTBFs_Learning(). The arguments for these
functions are the same as previously explained and, in addition, it is necessary to specify the expert
confidence in the prior knowledge, s, and the prior dataset priorData. Argument s takes values on
the interval [0, N], where N is the sample size, and is used to synchronize the support of the prior
knowledge and the sample. We refer the reader to (Pérez-Bernabé et al., 2016) for the details. In this
example we will use the aac variable from the data set, have s = 5 as confidence level, and set "MOP"
as potential type.

> f <- learnMoTBFpriorInformation(priorData$aac, trainingData$aac,
+ s = 5, POTENTIAL_TYPE = "MOP")
> attributes(f)

$names
[1] "coeffs" "posteriorFunction" "priorFunction"
[4] "dataFunction" "domain"

> print(f)

$coeffs
[1] 0.5509206 0.4490794

$posteriorFunction
[1] 0.2911+2.7626*x+4.3721*x^2-30.4218*x^3-0.8389*x^4+965.8444*x^5-4183.3860*x^6
+7735.8433*x^7-7321.9450*x^8+3498.9449*x^9-671.5104*x^10

$priorFunction
[1] 0.0673+1.7639*x+11.8532*x^2-55.2199*x^3-1.5228*x^4+1753.1465*x^5-7593.4470*x^6
+14041.6676*x^7-13290.3826*x^8+6351.0879*x^9-1218.8879*x^10
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Figure 6: Univariate density estimation using prior knowledge. Solid black, dashed red and dotted
blue lines represent the posterior, the data, and the prior function, respectively.

$dataFunction
[1] 0.5656+3.9878*x-4.8055*x^2

$domain
[1] -0.1232 0.9531

> sum(log(as.function(f$posteriorFunction)(testData$aac)))
[1] 134.566
> sum(log(as.function(f$dataFunction)(testData$aac)))
[1] 78.96405

The best model, taking into account the log-likelihood, is the MoTBF which uses the prior data,
f$posteriorFunction. The generic method plot() for "motbf" object is used for displaying the
functions depicted in Figure 6.

> plot(f$posteriorFunction, xlim = f$domain, ylim = c(0,2.1))
> plot(f$dataFunction, xlim = f$domain, add = TRUE, col = 2)
> plot(f$priorFunction, xlim = f$domain, add = TRUE, col = 4)

The last step is to incorporate the prior knowledge in the full Bayesian network. For this analysis
we are not going to print out the results, because the structure is similar to the previous Bayesian
network representations. As an example, we will use numIntervals = 2, POTENTIAL_TYPE = "MOP",
and s = 5.

> priorBN <- MoTBFs_Learning(dag, trainingData, numIntervals = 2,
+ POTENTIAL_TYPE = "MOP", s = 5, priorData = priorData)
> BN <- MoTBFs_Learning(dag, trainingData, numIntervals = 2, POTENTIAL_TYPE = "MOP")

> logLikelihood.MoTBFBN(priorBN, data = testData)
[1] 124.384
> logLikelihood.MoTBFBN(BN, data = testData)
[1] 14.64589

Looking at the log-likelihood corresponding to the network with and without prior data, we can
see that, in this example, incorporating prior knowledge is better when data is scarce.

After a Bayesian network has been constructed, the MoTBFs package can be used to obtain the
conditional density of any variable in the network given that some other variables have been observed.
The conditional distribution is obtained by forward sampling. As an example, consider a network
estimated from the ecoli dataset:

> data("ecoli", package = "MoTBFs")
> data <- ecoli[,-c(1,9)]
> dag <- LearningHC(data)
> bn <- MoTBFs_Learning(dag, data = data, numIntervals = 4, POTENTIAL_TYPE = "MTE")
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The observed values are specified using a data frame. In the example, we are assuming that we want
to compute the conditional density of alm2 given that lip="0.48", alm1 = 0.55 and gvh = 1. This
is achieved by using the function forward_sampling were we have chosen a sample size equal to 10
specified by parameter size = 10.

> obs <- data.frame(lip = "0.48", alm1 = 0.55, gvh = 1, stringsAsFactors=FALSE)
> node <- "alm2"
> set.seed(5)
> forward_sampling(bn, dag, target = node, evi = obs, size = 10, maxParam = 15)

Processing Time: 0.209545850753784secs

$fx
[1] -4.3738+2.4552*exp(2*x)+1.5054*exp(-2*x)-0.2392*exp(4*x)+2.0045*exp(-4*x)

$sample
mcg gvh lip chg aac alm1 alm2
1 0.7450156 1 0.48 0.5 0.3564026 0.55 0.53709571
2 0.2493266 1 0.48 0.5 0.4873396 0.55 0.55395502
3 0.4075408 1 0.48 0.5 0.5052861 0.55 0.74832025
4 0.3205169 1 0.48 0.5 0.4844040 0.55 0.82546475
5 0.4448844 1 0.48 0.5 0.4248584 0.55 0.07672959
6 0.5717975 1 0.48 0.5 0.4611889 0.55 0.35412707
7 0.7548104 1 0.48 0.5 0.5695499 0.55 0.68322911
8 0.5475842 1 0.48 0.5 0.7797320 0.55 0.45343460
9 0.3048408 1 0.48 0.5 0.5251502 0.55 0.73064241
10 0.7281756 1 0.48 0.5 0.3819332 0.55 0.70396470

The output consists of the posterior density and the sample from which the density parameters
were estimated.

Conclusions

This paper has presented the R package MoTBFs for learning Mixtures of Truncated Basis Functions
in hybrid Bayesian networks. It provides a free and accessible implementation of algorithms for
learning the parameters of MoTBFs densities as well as MoTBF-based Bayesian networks relying on
state-of-the-art learning algorithms.

The MoTBFs package is designed to provide the required implementation to tackle experimental
data analysis with both discrete and continuous data. Not only does the package provide methods for
learning distributions from data, it also includes a set of auxiliary functions to perform descriptive
statistics as well as other basic operations like inference using forward sampling.

The MoTBFs package expands the functionality for handling hybrid Bayesian networks already
provided by packages bnlearn and HydeNet, by implementing MoTBF distributions, resulting in
unrestricted network structures, regardless of the discrete or continuous nature of the variables
involved, and by providing methods for building models from data that are compatible with exact
inference methods. The package MoTBFs is complementary to abn in the sense that the former is
based on MoTBF densities, which do not belong to the exponential family.
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