
CONTRIBUTED RESEARCH ARTICLE 293

NTS: An R Package for Nonlinear Time
Series Analysis
by Xialu Liu, Rong Chen, and Ruey Tsay

Abstract Linear time series models are commonly used in analyzing dependent data and in forecasting.
On the other hand, real phenomena often exhibit nonlinear behavior and the observed data show
nonlinear dynamics. This paper introduces the R package NTS that offers various computational
tools and nonlinear models for analyzing nonlinear dependent data. The package fills the gaps of
several outstanding R packages for nonlinear time series analysis. Specifically, the NTS package
covers the implementation of threshold autoregressive (TAR) models, autoregressive conditional mean
models with exogenous variables (ACMx), functional autoregressive models, and state-space models.
Users can also evaluate and compare the performance of different models and select the best one for
prediction. Furthermore, the package implements flexible and comprehensive sequential Monte Carlo
methods (also known as particle filters) for modeling non-Gaussian or nonlinear processes. Several
examples are used to demonstrate the capabilities of the NTS package.

Introduction: nonlinear time series analysis in R

Time series analysis investigates the dynamic dependence of data observed over time or in space.
While linear time series analysis has been extensively studied in the literature with many software
packages widely available, nonlinear time series analysis only attracts limited attention. Although
there exist some software packages for analyzing nonlinear time series focusing on different sets of
tools, there are still significant gaps in capability. The NTS (Tsay et al., 2020), a recent R package,
provides a number of functions for simulating, analyzing, and predicting nonlinear time series data.
The available models include univariate and multivariate TAR models, conditional intensity models,
nonlinear state-space models, and functional time series models. The package also features various
nonlinearity tests and sequential Monte Carlo (SMC) methods. While NTS package does not intend
to be comprehensive, it fills the important missing parts of the existing packages, providing users
valuable tools for analyzing dependent data with nonlinear dynamics. The package is now available
from the Comprehensive R Archive Network at http://CRAN.R-project.org/package=NTS.

NTS incorporates the latest developments in statistical methods and algorithms for analyzing non-
linear time series data, and it makes the following contributions: (1) NTS offers various computational
tools with a wide range of applications, and it fills the gaps left by the existing R functions. There
are several R packages focusing on nonlinear time series. The nonlinearTseries (Garcia and Sawitzki,
2020) package implements the methods based on information theory, the NlinTS (Youssef, 2020)
package introduces functions for causality detection and neural networks, and the nlts (Bjornstad,
2018) package emphasizes nonparametric autoregression and tests. NTS, providing computational
tools for TAR models, ACMx models, convolutional functional autoregressive (CFAR) models, and
non-Gaussian and nonlinear state-space models, consists of some of the missing pieces in the cur-
rent coverage, hence making a more completed toolkit for nonlinear time series analysis in R. Other
well-known modern methods for nonlinear data such as smoothing, deep learning and random forest
that have been implemented in packages sm (Bowman and Azzalini, 2018), tree (Ripley, 2019) and
randomForest (Breiman et al., 2018) can be adopted for nonlinear time series analysis, even though
they are mainly designed for independent data. Hence, they are not included in this package. (2)
NTS provides complete solutions with superior performance for the nonlinear models entertained.
For example, NTS implements estimation, prediction, model building and model comparison pro-
cedures for TAR models. It allows the threshold variable in the model to be a lag variable or an
exogenous variable, while the TAR (Zhang and Nieto, 2017) package, using Markov Chain Monte
Carlo and Bayesian methods aiming to deal with missing values, assumes the threshold variable is
exogenous. Threshold estimation methods in NTS, which perform recursive least squares or nested
sub-sample searching, are more computationally efficient than the conditional least squares methods
implemented in package tsDyn (Narzo et al., 2020). Furthermore, the threshold nonlinearity test
proposed by Tsay (1989) in NTS is specifically designed for self-exciting TAR (SETAR) models while
the existing R package nonlinearTseries just conducts general nonlinearity tests. In addition, NTS
utilizes the out-of-sample forecasting to evaluate different TAR models to avoid overfitting, while
other R packages such as tsDyn just compare TAR models based on AIC and residuals. (3) NTS offers
additional options to existing packages with more flexibility. Specifically, NTS offers R functions to
fit the ACMx model for time series analysis of count data, which allow the conditional distribution
to be double Poisson, while the tscount (Liboschik et al., 2020) package uses the generalized linear
models and only considers Poisson and negative binomial distributions. Another example is that

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=NTS
http://CRAN.R-project.org/package=NTS
https://CRAN.R-project.org/package=nonlinearTseries
https://CRAN.R-project.org/package=NlinTS
https://CRAN.R-project.org/package=nlts
https://CRAN.R-project.org/package=sm
https://CRAN.R-project.org/package=tree
https://CRAN.R-project.org/package=randomForest
https://CRAN.R-project.org/package=TAR
https://CRAN.R-project.org/package=tsDyn
https://CRAN.R-project.org/package=tscount

CONTRIBUTED RESEARCH ARTICLE 294

NTS implements the estimation and prediction procedures of CFAR models proposed by Liu et al.
(2016), which give an intuitive and direct interpretation for functional time series analysis and provide
more flexibility for estimation to deal with irregular observation locations compared to functional
autoregressive models developed by Bosq (2000) introduced in the ftsa (Hyndman and Shang, 2020)
package. (4) NTS provides easy access to SMC methods with various options for statistical inference.
It contains different R functions which can be easily implemented for filtering and smoothing and are
much more user-friendly, while the SMC (Goswami, 2011) package only writes a generic function for
SMC and requires more effort from users.

The goal of this paper is to highlight the main functions of the NTS package. In the paper, we
first consider different models for nonlinear time series analysis, and provide an overview of the
available functions for parameter estimation, prediction and nonlinearity tests in the NTS package.
Then we discuss the functions for SMC methods and demonstrate their applications via an example.
Conclusions are given at the end.

Models and methods available in NTS

TAR models

TAR models are a piecewise extension of the autoregressive (AR) model proposed by Tong (1978). It
has been widely used in many scientific fields, such as economics (Tong and Lim, 1980; Tiao and Tsay,
1989), finance (Domian and Louton, 1997; Narayan, 2006), among others (Chen, 1995). The models
are characterized by partitioning the Euclidean space into non-overlapping regimes via a threshold
variable and fitting a linear AR model in each regime (Li and Tong, 2016). The partition is by various
thresholds in the domain of the threshold variable.

Let {ri | i = 0, . . . , m} be a sequence of real numbers satisfying

r0 = −∞ < r1 < r2 < . . . < rm−1 < rm = ∞.

A time series {yt|t = 1, . . . n} follows an m-regime TAR model with threshold variable zt, threshold
delay d > 0, and order (p1, . . . , pm), if

yt =


φ0,1 + ∑

p1
i=1 φi,1yt−i + σ1εt, if zt−d ≤ r1,

φ0,2 + ∑
p2
i=1 φi,2yt−i + σ2εt, if r1 < zt−d ≤ r2,

. . .
φ0,m + ∑

pm
i=1 φi,myt−i + σmεt, if rm−1 < zt−d,

(1)

where φi,j are real numbers, σ1, . . . , σm are positive real numbers, and εt are i.i.d random variates with
mean 0 and variance 1. If the threshold variable zt = yt for t = 1, . . . , n, Model (1) is called a SETAR
model with delay d. The coefficients φi,j must satisfy certain conditions for the stationarity of yt. These
conditions are complicated in general, but some special cases are available in the literature. See, for
instance, Chen and Tsay (1991) and the references therein. In particular, it is interesting to point out
that the stationarity of each marginal model in (1) is not needed for the stationarity of yt. As a matter of
fact, Model (1) would become more interesting when some of the marginal models are nonstationary.

Threshold estimation for two-regime TAR models

In this subsection, we introduce three algorithms for estimation of two-regime TAR models.

The two-regime TAR model can be rewritten as

yt = (β′1xt,1 + σ1εt)I(zt−d ≤ r1) + (β′2xt,2 + σ2εt)I(zt−d > r1), (2)

where I(·) is the indicator function, xt,j = (1, yt−1, . . . , yt−pj)
′, and βj = (φ0,j, φ1,j, . . . , φpj ,j)

′ collects
the AR coefficients in regime j, for j = 1, 2.

Define p = max{p1, p2, d}, and xj = (xp+1,j, . . . , xn,j)
′ for j = 1, 2. Write x1(r) = x1 ∗ I(zt−d ≤ r),

and x2(r) = x2 ∗ I(zt−d > r), where ∗ denotes the Hadamard product operator of matrices. Then
Equation (2) can be re-expressed in a matrix form

y = x1(r1)β1 + x2(r1)β2 + ε, (3)

where y = (yp+1, . . . , yn)′, ε = (ε̃p+1, . . . , ε̃n)′, and ε̃t = [I(zt−d ≤ r1)σ1 + I(zt−d > r1)σ2]εt for
t = p + 1, . . . , n.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=ftsa
https://CRAN.R-project.org/package=SMC

CONTRIBUTED RESEARCH ARTICLE 295

(Conditional) least squares: For each fixed threshold candidate r, least squares method can be used
to estimate the AR coefficients β1 and β2,

β̂1(r) = [x1(r)′x1(r)]−1x1(r)′y, β̂2(r) = [x2(r)′x2(r)]−1x2(r)′y. (4)

It yields the following error function

Sn(r) = y′y− β̂1(r)
′x1(r)′x1(r)β̂1(r)− β̂2(r)

′x2(r)′x2(r)β̂2(r). (5)

To get sufficient number of observations in each regime for estimation, we assume that the threshold
value r1 lies in a bounded interval [r, r]. Then it can be estimated as

r̂1 = arg min
r∈{zp−d+1,..., zn−d}∩[r, r]

Sn(r). (6)

Recursive least squares: Recursive least squares method provides an efficient way to update the least
squares solution with new observations, and is much less computationally expensive than the ordinary
least squares method. When we traverse all possible thresholds and calculate Sn(r) in (5), recursive
least squares can be used to estimate β1 and β2 in (4) helping us effectively reduce the computational
cost.

Let S = {zp−d+1, . . . , zn−d} ∩ [r, r] be the set containing all candidates for the threshold value, n0
be the number of elements in S , z(j) be the j-th largest value in set S , and t(j) be the time index for z(j).
In other words, z(j) = zt(j) .

Here is the algorithm of recursive least squares for TAR model estimation:

1. When z(1) is used as a tentative threshold value to estimate β1,

P1(1) = [x1(z(1))
′x1(z(1))]

−1, β̂1(z(1)) = P1(1)x1(z(1))
′y.

When z(n0) is used as a tentative threshold value to estimate β2,

P2(n0) = [x2(z(n0))
′x2(z(n0))]

−1, β̂2(z(n0)) = P2(n0)x2(z(n0))
′y.

2. For k = 2, . . . , n0, we estimate the AR coefficients in regime 1 with the following

K1(k) = P1(k− 1)xt(k)+d,1/[1 + x′t(k)+d,1P1(k− 1)xt(k)+d,1],

P1(k) = P1(k− 1)−K1(k)x′t(k)+d,1P1(k− 1),

β̂1(z(k)) = β̂1(z(k−1)) + K1(k)[yt(k)+d − β̂1(z(k−1))
′xt(k)+d,1].

For k = n0 − 1, . . . , 1, we estimate the AR coefficients in regime 2 with the following

K2(k) = P2(k + 1)xt(k)+d,2/[1 + x′t(k)+d,2P2(k + 1)xt(k)+d,2],

P2(k) = P2(k + 1)−K2(k)x′t(k)+d,2P2(k + 1),

β̂2(z(k)) = β̂2(z(k+1)) + K2(k)[yt(k)+d − β̂2(z(k+1))
′xt(k)+d,2].

3. With β̂1(z(j)) and β̂2(z(j)) for j = 1, . . . , n0, we can obtain Sn(z(j)) and then estimate r1 with (6).

Nested sub-sample search (NeSS) algorithm: NeSS algorithm proposed by Li and Tong (2016) pro-
duces a much faster way to search threshold candidates, and reduce the computational complexity
dramatically.

Li and Tong (2016) shows that there exists a positive constant C depending only on y, p1 and p2,
such that

sup
r∈[r, r]

∣∣∣C− Sn(r)
n

− J(r)
∣∣∣ p→ 0,

where J(r) is a non-stochastic continuous function over [r, r], and it is strictly monotonically increasing
in [r, r1] and strictly monotonically deceasing in [r1, r]. It implies that Sn(r) may have only one
minimum value over the set {k∆ : k ∈ Z} ∩ [r, r] for some ∆ > 0. This provides theoretical support
for the following NeSS algorithm to seek the minimizer of Sn(r).

NeSS algorithm:

0. Get the initial feasible set S = {zp−d+1, . . . , zn−d} ∩ [r, r] for the threshold value estimation.

1. Obtain the 25th, 50th, and 75th percentiles of the feasible set, and define them as q1, q2 and q3,
respectively. Calculate Sn(q1), Sn(q2), and Sn(q3).

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 296

Table 1: Comparison among various R functions for SETAR model estimation (200 replicates)

Function Sample size 200 Sample size 2000

Elapsed time MSE Elapsed time MSE

uTAR with recursive least squares 2.802s 0.0017 44.020s 2.08e-05
uTAR with NeSS algorithm 20.360s 0.0017 25.878s 2.08e-05
setar 7.147s 0.0017 286.226s 2.08e-05

2. If Sn(q1) ≤ Sn(q2) and Sn(q1) ≤ Sn(q3), the feasible set is updated as S ∩ (−∞, q2].
If Sn(q2) < Sn(q1) and Sn(q2) ≤ Sn(q3), the feasible set is updated as S ∩ [q1, q3].
Otherwise, the feasible set is updated as S ∩ [q2,+∞).
Repeat Steps 1-2 until the number of elements in the new feasible set is less than a pre-specified
positive integer k0.

3. Minimize Sn(r) over the new feasible set and get r̂1.

Comparing to the standard search algorithm which traverses all the threshold candidates, NeSS
algorithm reduces the number of least squares operations from O(n) to O(log n).

R functions for TAR models in NTS

In the R package NTS, the function uTAR implements recursive least squares estimation or the NeSS
algorithm for TAR model estimation. The two methods both have lower computational complexity
than the existing R function setar designed for SETAR model estimation in the tsDyn package, which
performs least squares estimation and adopts a single grid search algorithm.

To illustrate, we use the following data generating process to compare the performance of the three
methods1.

yt =

{
1− 0.3yt−1 + 0.5yt−2 + εt, if yt−2 ≤ 0.2,
−1 + 0.6yt−1 + 0.3yt−2 + εt, if yt−2 > 0.2.

(7)

Table 1 summarizes the average elapsed time and mean squared error (MSE) of the estimated threshold
value for 200 replications. Recursive least squares method and NeSS algorithm implemented by uTAR
both take shorter time than setar when sample size is large. It is also seen that when sample size is
large, NeSS algorithm is the fastest, but when the sample size is relatively small, the recursive least
squares method is the fastest.

Besides threshold value estimation for univariate time series, the NTS package implements data
generating, forecasting, model checking, and model comparison procedures for both univariate and
multivariate time series into user-friendly computational tools. Table 2 lists these functions of NTS
related to TAR models. In the following we will demonstrate the usage of functions for univariate
time series through the data generating process in Model (7).

Table 2: List of R functions about TAR models in the package NTS

Function Description

Univariate TAR model uTAR.sim Generate a univariate SETAR process for up to 3 regimes
uTAR Estimate univariate two-regime TAR models including threshold
uTAR.est Estimate multiple regimes TAR models with known threshold(s)
uTAR.pred Predict a fitted univariate TAR model
thr.test Test for threshold nonlinearity of a scalar series

Multivariate TAR model mTAR.sim Generate a multivariate two-regime SETAR process
mTAR Estimate multivariate two-regime TAR models including threshold
mTAR.est Estimate multivariate multiple-regime TAR models
ref.mTAR Refine a fitted multivariate two-regime TAR model
mTAR.pred Predict a fitted multivariate TAR model

The function uTAR.sim generates data from a given univariate SETAR model for up to three
regimes with following arguments: nob is the sample size of the generated data, arorder specifies the
AR orders for different regimes, phi is a real matrix containing the AR coefficients with one row for a

1The program is run on a personal computer with a 2.30GHz Intel Core(TM)i5-8259U CPU, 16GB RAM and
64-bit Operating system.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 297

regime, d is the time delay, cnst is a vector of constant terms for the regimes, and sigma is a vector
containing the standard deviations of the innovation process of the regimes. It also allows users to
customize the burn-in period with option ini. The function returns a list of components including the
generated data from the specified TAR model (series) and the innovation series (at).

We simulate the data generating process in Model (7) with the following code. Figure 1 shows the
time series plot of the first 200 observations of the simulated data.

R> set.seed(1687)
R> y <- uTAR.sim(nob = 2000, arorder = c(2,2), phi = t(matrix(c(-0.3, 0.5, 0.6,
+ -0.3), 2, 2)), d = 2, thr = 0.2, cnst = c(1, -1), sigma = c(1, 1))

0 50 100 150 200

−
4

−
2

0
2

4

Time series plot of a SETAR process

Time

Figure 1: Time series plot of the first 200 observations generated from the SETAR model in Equation
(7).

Estimation of the threshold value of the two-regime SETAR process can be done via the function
uTAR as illustrated below:

R> thr.est<- uTAR(y = y$series, p1 = 2, p2 = 2, d = 2, thrQ = c(0, 1), Trim = c(0.1,
+ 0.9), include.mean = T, method = "NeSS", k0 = 50)
Estimated Threshold: 0.1951103
Regime 1:

Estimate Std. Error t value Pr(>|t|)
X1 1.0356009 0.04902797 21.12265 8.946275e-85
X2 -0.3017810 0.01581242 -19.08506 2.383743e-71
X3 0.4890477 0.02707987 18.05945 7.230880e-65
nob1 & sigma1: 1236 1.017973
Regime 2:

Estimate Std. Error t value Pr(>|t|)
X1 -1.1352678 0.07222915 -15.717585 2.107275e-48
X2 0.5560001 0.03177212 17.499622 7.360494e-58
X3 -0.2122922 0.04641671 -4.573616 5.596852e-06
nob2 & sigma2: 762 1.034592

Overall MLE of sigma: 1.024343
Overall AIC: 101.8515

R> thr.est <- uTAR(y = y$series, p1 = 2, p2 = 2, d = 2, thrQ = c(0,1), Trim = c(0.1,
+ 0.9), include.mean = T, method = "RLS")
Estimated Threshold: 0.1951103
Regime 1:

Estimate Std. Error t value Pr(>|t|)
X1 1.0356009 0.04902797 21.12265 8.946275e-85
X2 -0.3017810 0.01581242 -19.08506 2.383743e-71
X3 0.4890477 0.02707987 18.05945 7.230880e-65
nob1 & sigma1: 1236 1.017973
Regime 2:

Estimate Std. Error t value Pr(>|t|)
X1 -1.1352678 0.07222915 -15.717585 2.107275e-48
X2 0.5560001 0.03177212 17.499622 7.360494e-58
X3 -0.2122922 0.04641671 -4.573616 5.596852e-06
nob2 & sigma2: 762 1.034592

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 298

Overall MLE of sigma: 1.024343
Overall AIC: 101.8515

uTAR has the following arguments: y is a vector of observed time seres, p1 and p2 are the AR order of
regime 1 and regime 2, respectively, d is the delay, and thrV contains the external threshold variable zt
which should have the same length as that of y. For SETAR models, thrV is not needed and should
be set to NULL. thrQ determines the lower and upper quantiles to search for threshold value. Trim
defines the lower and upper trimmings to control the minimum sample size in each regime and
determine [r, r] for estimation. include.mean is a logical value for including the constant term in each
linear model. method decides the way to search the threshold value, and there are two choices, "RLS"
for recursive least squares and "NeSS" for NeSS algorithm. k0 is only used when NeSS algorithm is
selected to controls the maximum sub-sample size.

From the output, the estimated threshold value is 0.195, which is close to the true value 0.2. The
estimated constant terms for regime 1 and regime 2 are 1.036 and −1.135, respectively. The estimated
AR coefficients for regime 1 and regime 2 are −0.302, 0.489, 0.556, and −0.212, respectively. The
estimated standard deviations of the innovation processes in two regimes are 1.018 and 1.035. As
expected, all estimates are significant and close their true parameters.

Here we provide an incomplete list of the returned values of the function uTAR:

• residuals: estimated innovations or residuals series.
• coefs: a 2-by-(p + 1) matrix. The first row and second row show the estimated coefficients in

regime 1 and 2, respectively.
• sigma: estimated covariances of the innovation process in regime 1 and regime 2.
• thr: estimated threshold value.

Estimation of a multiple-regime TAR model with pre-specified threshold values can be done by
the function uTAR.est.

R> est <- uTAR.est(y = y$series, arorder = c(2, 2), thr = thr.est$thr, d = 2,
+ output = FALSE)

Here aroder is a row vector of positive integers containing the AR orders of all the regimes. thr
collects the threshold values whose length should be the number of regimes minus 1. output is a
logical value for printing out the estimation results with default being TRUE. The function uTAR.est
returns the following components: coefs is a matrix with m rows in which each row contains the
estimated parameters for one regime, sigma contains the estimated innovation variances for different
regimes, residuals collects the estimated innovations, and sresi shows the standardized residuals.

The following R code provides one-step-ahead prediction with function uTAR.pred.

R> set.seed(12)
R> pred <- uTAR.pred(model = est, orig = 2000, h = 1, iteration = 100, ci = 0.95,
+ output = TRUE)
Forecast origin: 2000
Predictions: 1-step to 1 -step

step forecast
[1,] 1 -1.429635
Pointwise 95 % confident intervals

step Lowb Uppb
int 1 -2.991667 0.6531542

The output above shows that the one-step ahead prediction for y2001 is −1.43. Various options in the
function uTAR.pred provide users the flexibility to customize the forecasting origin with orig, forecast
horizon with h, number of iterations with iterations, and confidence level with ci. The function
uTAR.pred returns the prediction with pred.

The R function thr.test in the NTS package implements the F test designed for SETAR models
and proposed by Tsay (1989). The test helps users detect the existence of nonlinear dynamics in the
data. Below is the R code and output when we perform the nonlinearity tests with thr.test.

R> thr.test(y$series, p = 2, d = 2, ini = 40, include.mean = T)
SETAR model is entertained
Threshold nonlinearity test for (p,d): 2 2
F-ratio and p-value: 213.0101 1.511847e-119

ini is the initial number of data to start the recursive least square estimation. The output shows that
p-value is very small, and it indicates that there is nonlinearity in the series y$series.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 299

Back-testing can be used to evaluate the forecasting performance of a model and to conduct model
comparison between different models. Back-testing for a univariate SETAR model is implemented
through the function backTAR with syntax:

R> backTAR(model, orig, h = 1, iter = 3000)

where model is an object returned by uTAR or uTAR.est, h is the forecast horizon, and iter controls the
number of simulation iterations in prediction.

The function returns the model, out-of-sample rolling prediction errors and predicted states. It
also provides information for model comparison. The following example shows the out-of-sample
forecasting performance of SETAR models with delay 2 and 1, respectively. It shows that the root MSE,
mean absolute error, and biases of the model with delay 2 are all smaller than those of the model with
delay 1. Hence, as expected, the model with delay 2 is preferred.

R> set.seed(11)
R> backTAR(est, 50, 1, 3000)
Starting forecast origin: 50
1-step to 1 -step out-sample forecasts
RMSE: 1.02828
MAE: 0.8172728
Bias: -0.001337478
Performance based on the regime of forecast origins:
Summary Statistics when forecast origins are in State: 1
Number of forecasts used: 1204
RMSEj: 1.029292
MAEj: 0.8172963
Biasj: 0.00259177
Summary Statistics when forecast origins are in State: 2
Number of forecasts used: 746
RMSEj: 1.026645
MAEj: 0.817235
Biasj: -0.007679051

R> thr.est2 <- uTAR(y = y$series, p1 = 2, p2 = 2, d = 1, thrQ = c(0, 1),
+ Trim=c(0.1, 0.9), include.mean = T, method = "RLS")
R> est2 <- uTAR.est(y = y$series, arorder = c(2, 2), thr = thr.est2$thr, d = 1)
R> set.seed(11)
R> backTAR(est2, 50, 1, 3000)
Starting forecast origin: 50
1-step to 1 -step out-sample forecasts
RMSE: 1.38731
MAE: 1.105443
Bias: -0.006635381
Performance based on the regime of forecast origins:
Summary Statistics when forecast origins are in State: 1
Number of forecasts used: 1112
RMSEj: 1.360347
MAEj: 1.090989
Biasj: 0.2462278
Summary Statistics when forecast origins are in State: 2
Number of forecasts used: 838
RMSEj: 1.4223
MAEj: 1.124622
Biasj: -0.3421769

The usage of functions for multivariate two-regime TAR models listed in Table 2, including
mTAR.sim, mTAR, mTAR.pred, is similar to that of the univariate counterpart functions discussed before.
The only exception is that these multivariate functions take different arguments to define the vector
autoregressive(VAR) coefficients:

• phi1,phi2: VAR coefficient matrices of regime 1 and regime 2.
• sigma1,sigma2: innovation covariance matrices of regime 1 and regime 2.
• c1,c2: constant vectors of regime 1 and regime 2.
• delay: two elements (i, d) with "i" being the index of the component to be used as the threshold

variable and "d" the delay for threshold variable.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 300

The function mTAR conducts the nested sub-sample search algorithm and provides different choices
of criterion for threshold selection with the option score, namely (AIC, det(RSS)). It has less compu-
tational cost, but only applies to two-regime models. mTAR.est can handle multiple regimes. They
both return a list of components with the estimated VAR coefficients in beta, estimated innovation
covariance matrices in sigma, and estimated innovations in residuals.

Analysis of non-Gaussian time series

Autoregressive conditional mean (ACM) models are designed for time series of count data, starting
with the autoregressive conditional Poisson models, and various extensions of ACM models were inves-
tigated. The NTS includes a function ACMx for the estimation of ACMx models. Let yt be the time series
of interest, xt be a vector containing the exogenous variables, and Ft = {yt−1, yt−2, . . . ; xt, xt−1, . . .}.
The ACMx models postulate

yt | Ft ∼ F(· | µt),

where µt = E(yt | Ft) = exp(x′tβ)λt, and λt follows the model

λt = ω +
p

∑
i=1

αi

[
yt−i

exp(x′t−iβ)

]
+

q

∑
j=1

γjλt−j,

p and q are nonnegative integers, ω > 0, and αi and γj are parameters satisfying certain conditions so
that λt is always positive and finite. The conditional distribution F(yt | Ft) can be Poisson, negative
binomial, or double Poisson (Tsay and Chen, 2018).

The estimation of ACMx models is implemented via the function ACMx with syntax:

R> ACMx(y, order = c(1, 1), X = NULL, cond.dist = "po", ini = NULL)

where y is the series of count data, X is the matrix of exogenous variables, order specifies the values
for p and q, cond.dist determines the conditional distribution with options: "po" for Poisson, "nb" for
negative binomial, and "dp" for double Poisson, and ini collects initial parameter estimates designed
for use with "nb" or "dp".

We illustrate the function ACMx with an example below:

R> set.seed(12)
R> x <- rnorm(1000)*0.1
R> y <- matrix(0, 1000, 1)
R> y[1] <- 2
R> lambda <- matrix(0, 1000, 1)
R> for (i in 2:1000){
+ lambda[i] <- 2 + 0.2*y[i-1]/exp(x[i-1]) + 0.5*lambda[i-1]
+ set.seed(i)
+ y[i] <- rpois(1, exp(x[i]) * lambda[i])
+ }
R> ACMx(y, order = c(1, 1), x, "po")
Initial estimates: 1.056732 1.738874 0.05 0.5
loB: -1.056732 1e-06 1e-06 1e-06
upB: 3.170195 19.12762 0.5 0.999999
Maximized log-likehood: -2373.08

Coefficient(s):
Estimate Std. Error t value Pr(>|t|)

beta 1.0562836 0.1274853 8.28553 2.2204e-16 ***
omega 2.6696378 0.5569954 4.79293 1.6437e-06 ***
alpha 0.1579050 0.0265997 5.93634 2.9145e-09 ***
gamma 0.4427157 0.0913361 4.84711 1.2528e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here a time series following the ACMx model with Poisson conditional distribution, order (1,1),
β = 1, ω = 2, α = 0.2 and γ = 0.5 is generated. The R output reports the estimated coefficients which
are all significant and close to their true values.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 301

Functional time series

Functional time series analysis has received much attention since the pioneering work of Bosq (2000),
and has been widely applied in many fields, including environmental science (Hormann and Kokoszka,
2010), social science (Hyndman and Shang, 2009), and finance (Diebold and Li, 2006; Horváth et al.,
2013). Liu et al. (2016) proposed a new class of models called the CFAR models, which has an intuitive
and direct interpretation of the dynamics of a stochastic process. The NTS encompasses functions to
implement the method proposed by Liu et al. (2016).

Before presenting these R functions, we briefly introduce the CFAR model and its estimation
procedure. A sequence of square integrable random functions {Xt | t = 1, . . . , T} defined on [0, 1]
follows a CFAR model of order p if

Xt(s) =
p

∑
i=1

∫ 1

0
φi(s− u)Xt−i(u)du + εt(s), s ∈ [0, 1],

where φi(·) are square integrable and defined on [−1, 1] (i = 1, . . . , p) and are called the convolutional
coefficient functions, and εt are i.i.d. Ornstein-Uhlenbeck (O-U) processes defined on [0,1] satisfying
the stochastic differential equation, dεt(s) = −ρεt(s)ds + σdWs, ρ > 0, and Ws is a Wiener process.

In practice, Xt(·) is usually observed only at discrete points, si = i/N, i = 0, . . . N for time
t = 1, . . . T. Liu et al. (2016) recovers the function Xt(·) by linear interpolation,

X̃t(s) =
(si − s)Xt(si−1) + (s− si−1)Xt(si)

1/N
, for si−1 ≤ s < si,

and approximates φi(·) by cubic B-splines,

φi(·) ≈ φ̃i(·) =
k

∑
j=1

βk,i,jBk,j(·), for i = 1, . . . p,

where {Bk,j, j = 1, . . . , k} are uniform cubic B-spline basis functions with k degrees of freedom.

With the above approximation, the B-spline coefficients β = {βk,i,j}, ρ, and σ2 can be estimated by
maximizing the approximated log-likelihood function. Specifically

(β̂, ρ̂, σ̂2) = arg max Q(β, ρ, σ2),

where

Q(β, ρ, σ2) = C +
(N + 1)(T − p)

2
ln
(

πσ2

ρ

)
− N(T − p)

2
ln(1− e−2ρ/N)− 1

2

T

∑
t=1

e′tΣ
−1et,

where C is a constant, et = (et,0, . . . et,N)′, et,` = Xt(`/N)−∑
p
i=1 ∑k

j=1 βk,i,j
∫ 1

0 Bk,j(`/N − u)X̃t(s)du

for ` = 0, . . . , N, and Σ is an (N + 1)-by-(N + 1) matrix with σ2e−ρ|i−j|/N as its (i, j)-th entry.

The convolutional functions are estimated by

φ̂i(·) =
k

∑
j=1

β̂k,i,jBk,j(·).

In the NTS package, model specification and estimation of a CFAR process can be carried out by
the functions F_test_cfar and est_cfar with the syntax:

R> F_test_cfar(f, p.max = 6, df_b = 10, grid = 1000)
R> est_cfar(f, p = 3, df_b = 10, grid = 1000)

The observed functional time series is stored in f, which is a T-by-(N + 1) matrix, where T is the
length of time, and (N + 1) is the number of discrete observations of the functional data at a given
time period. p specifies the CFAR order. df_b determines the degrees of freedom k for the natural
cubic splines, and grid is the number of grid points used to construct the functional time series and
noise process.

The function F_test_cfar returns the test statistics and the p-values for a sequence of F-tests with
H0 : φk(·) = 0, φi(·) 6= 0, i = 1 . . . , k− 1 versus Ha : φi(·) 6= 0, i = 1, . . . , k for k = 1, . . ., p.max. The
function est_cfar returns the following values: phi_coef collects the estimated spline coefficients
β̂k,i,j for the convolutional function(s) which is a (df_b+ 1)× p matrix, and phi_func contains the
estimated convolutional function values which is a (2× grid+ 1)× p matrix. rho is the estimated ρ
in the O-U process, and sigma is estimated standard deviation of the noise process, respectively.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 302

−1.0 −0.5 0.0 0.5 1.0
0

1
2

3
4

True
Estimated

Figure 2: Plot of true convolution function φ(·) and estimated convolution function φ̂(·) of the
functional time series generated from Equation (8).

The function g_cfar in the NTS package generates a CFAR process with argument tmax being the
length of time, rho is the parameter for the O-U process, sigma is the standard deviation of the O-U
process, phi_list is the convolutional function(s), and ini is the burn-in period. It returns a list with
two components. One is cfar, a tmax-by-(grid+1) matrix following the CFAR(p) model, and the other
one epsilon is the innovation at time tmax. Function p_cfar provides the forecasts of a CFAR model
with argument model as a result of an est_cfar fit and argument m as the forecasting horizon.

Let us consider a CFAR(1) process with the following convolutional coefficient function

φ(s) =
10√
2π

e−50s2
, s ∈ [−1, 1], (8)

where φ(·) is the probability density function of a Gaussian random variable with mean 0 and standard
deviation 0.1 truncated in the interval [−1, 1]. For the O-U process, ρ = 5 and its standard deviation
is 1. The following R code simulates such a CFAR(1) process specified in Equation (8) with N = 50,
T = 1000, and burn-in period 100, conducts an F test, performs the estimation procedure, and provides
a one-step ahead prediction.

R> phi_func <- function(x){
+ return(dnorm(x, mean = 0, sd = 0.1))
+ }
R> t <- 1000; N <- 50
R> x <- g_cfar(t, rho = 5, phi_func, sigma = 1, ini = 100)
R> f <- x$cfar[, seq(1, 1001, 1000/N)]
R> F_test_cfar(f, p.max = 2, df_b = 10, grid = 1000)
Test and p-value of Order 0 vs Order 1:
[1] 1368.231 0.000
Test and p-value of Order 1 vs Order 2 :
[1] 0.6848113 0.7544222
R> model <- est_cfar(f, p = 1, df_b = 10, grid = 1000)
R> print(c(model$rho, model$sigma))
[1] 4.940534 1.005315
R> pred <- p_cfar(model, f, m = 3)

From the output, the p-values for F tests suggest that we choose CFAR(1) model for the data.
ρ̂ = 4.941 and the standard deviation of the noise process is estimated as 1.005, and they are both close
to their true values. Figure 2 plots the estimated convolutional coefficient function (dashed line) and
true function φ(·) (solid line). It can be seen that est_cfar performs well.

F_test_cfarh and est_cfarh in NTS can deal with heteroscedasticity and irregular observation
locations, while the existing R package ftsa designed for functional time series assumes that the
functional data are observed at regular locations. The two functions come with following arguments:
weight is the heteroscedasticity weight function of the noise process with grid+1 elements, num_obs is
a t-by-1 vector and collects the numbers of observations at different times, and x_pos is a t-by(N + 1)
matrix and shows the observation locations, where (N + 1) is the maximum number of observation at
a time. The R code below will yield the same results as the previous one does. Hence, the output is
omitted.

R> num_obs <- rep(N+1, t); x_pos <- matrix(rep(seq(0, 1, 1/N), each = t), t, N+1);
R> weight0 <- function(x){return(rep(1, length(x)))}

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 303

R> F_test_cfarh(f, weight0, p.max = 2, df_b = 10, grid = 1000, num_obs, x_pos)
R> modelh <- est_cfarh(f, weight0, p = 1, df_b = 10, grid = 1000, num_obs, x_pos)

State-space modelings via SMC methods

It is challenging to derive analytic solutions for filtering or smoothing of nonlinear or non-Gaussian
state-space models. The SMC approach fully utilizes the dynamic nature of the model, and is an
effective way to solve such complex problems (Tsay and Chen, 2018). Consider the state-space model:

State equation:xt = st(xt−1, εt) or xt ∼ qt(· | xt−1),

Observation equation:yt = ht(xt, et) or yt ∼ ft(· | xt),

where xt is the unobservable state variable and yt is the observation (t = 1, . . . T). The underlying states
evolve through the known function st(·) and the state innovation εt, following a known conditional
distribution qt(·). The information on the underlying states is observed indirectly through yt via the
known function ht(·) and with observational noise et. The function ht(·) and the distribution of et are
known with possibly unknown parameters to be estimated.

In general, there are four main statistical inference objectives associated with a state-space model:

1. Filtering: obtain the marginal posterior distribution of the current state xt given the entire
history of the observations up to the current time, that is, p(xt | y1, . . . yt).

2. Prediction: obtain the marginal posterior distribution of the future state given the current
available information, that is, p(xt+1 | y1, . . . , yt).

3. Smoothing: obtain the posterior distribution of the state at the time t given the entire available
information, that is, p(xt | y1, . . . , yT) for t < T.

4. Likelihood and parameter estimation. SMC uses a set of weighted samples {x(j)
t , w(j)

t } to evalu-
ate the likelihood function L(θ) = p(y1, . . . , yT | θ) =

∫
p(x1, . . . , xT , y1, . . . , yT | θ)dx1 . . . dxT .

SMC is a recursive procedure with three components:

• Propagation step: At time t for j = 1, . . . , m: draw x(j)
t from a trial distribution gt(xt | x(j)

t−1, yt),

where m is the Monte Carlo sample size. Attach it to x(j)
t−1 to form x(j)

t = (x(j)
t−1, x(j)

t). Compute

the new weight for x(j)
t .

• Resampling step: Sample a set of indices {I1, . . . , Im}, where Ik ∈ {1, . . . , m} according to a set

of priority scores α
(j)
t , j = 1, . . . , m. Replace the sample with {x(Ij)

t , w̃
(Ij)
t = w

(Ij)
t /α

(Ij)
t }.

• Inference Step: Estimation of Eπt [(h(xt)] for some integrable function h(·) using the generated

weighted samples (x(j)
t , w(j)

t), j = 1, . . . , m, where πt(·) is the target distribution.

The selection of the propagation trial distribution gt(xt | xt−1, yt) plays a key role for an efficient im-
plementation of SMC. Since the efficiency of SMC is determined by the variance of weight distribution,
one would naturally want to choose gt(·) so that the incremental weight is as close to a constant as
possible. Liu and Chen (1995, 1998) proposed the trial distribution

gt(xt | xt−1) = p(xt | xt−1, yt) ∝ qt(xt | xt−1) ft(yt | xt).

The proposed distribution utilizes information from both the state and observation equations, hence is
termed a full information propagation step.

Algorithm: Full information propagation step
At time t, for j = 1, . . . , m:

1. Draw x(j)
t from the local posterior distribution,

gt(xt | x(j)
t−1, yt) = p(xt | x(j)

t−1, yt) ∝ ft(yt | xt)qt(xt | x(j)
t−1).

2. Compute the incremental weight

u(j)
t =

∫
ft(yt | xt)qt(xt | x(j)

t−1)dxt,

and the new weight w(j)
t = w(j)

t−1u(j)
t .

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 304

Because using full information propagation allows for more efficient estimation procedure with
Rao-Blackwellization, in NTS we provide a specific function for it, different from the more general
function using any user designed propagation function.

It is shown that the variance of the weight distributions stochastically increases over time. Contin-
uing to propagate the samples with small weights forward is a waste of computational resources since
inference is based on weighted average of the samples. One solution is to use resampling schemes
to duplicate the importance samples and to eliminate the ones with low weights. Hence resampling
steps are essential in SMC implementations. Another issue to consider is how to make inference as
efficient as possible. Rao-Blackwellization is one of the effective tools that can be used.

Smoothing is another important inference to make when we analyze data with state-space models.
Delayed estimation (e. g. , making inference on p(xt−d | y1, . . . , yt)) is a special case of smoothing. It

can be achieved simply by using the weighted sample {(xt−d, w(j)
t)}. However, when d is large, this

sampling approach does not work well because resampling reduces the number of unique ancestors
and thus increases the estimation errors. A more efficient algorithm is to calculate the backward

smoothing weights, after obtaining the forward filtering weighted samples {(x(j)
t , w(j)

t), j = 1, . . . , m}.
The resulting weighted sample {(x(j)

t , w̃(j)
t), j = 1, . . . , m} is properly weighted.

Algorithm: Weight marginalization SMC smoother
Let w̃(j)

T = w(j)
T , j = 1, . . . , m. For t = T − 1, T − 2, . . . , 1 and j = 1, . . . , m:

Calculate

ũ(j)
t =

m

∑
i=1

qt+1(x(i)t+1 | x(j)
t)

∑m
k=1 qt+1(x(i)t+1 | x(k)t)w(k)

t

w̃(i)
t+1,

and the smoothing weight w̃(j)
t = w(j)

t ũ(j)
t .

Table 3 lists functions in NTS that implement the aforementioned SMC procedures. Compared to
the existing R package SMC coming with one generic function, NTS provides various functions for
statistical inference and are much more user-friendly.

Table 3: List of R functions about SMC in package NTS

Usage Function Description

Generic function SMC SMC method with delay but not using a full information propagation step
SMC.Smooth SMC smoothing method
SMC.Full SMC method using a full information propagation step

SMC.Full.RB
SMC method using a full information propagation step with
Rao-Blackwellization estimate and no delay

The SMC function can be called by:

R> SMC(Sstep, nobs, yy, mm, par, xx.init, xdim, ydim, resample.sch,
+ delay = 0, funH = identity)

The following arguments need to be specified for SMC.

• Sstep: A function that performs one step propagation using a proposal distribution. Its input
variables include (mm,xx,logww,yyy,par,xdim,ydim), where xx and logww are the prior iteration
samples and their corresponding log weights, and yyy is the observation at current time step. It
returns a list that contains xx (the sample xt) and logww (their corresponding log weights).

• nobs: the number of observations, T.
• yy: the observations with T columns and ydim rows.
• mm: the Monte Carlo sample size m.
• par: a list of parameter values to pass to Sstep.
• xx.init: the initial samples of x0.
• xdim,ydim: the dimension of the state variable xt and the observation yt.
• resample.sch: a binary vector of length nobs, reflecting the resampling schedule.

resample.sch[i]=1 indicates resample should be carried out at step i.
• delay: the maximum delay lag for delayed wighting estimation. Default is zero.
• funH: a user supplied function h(·) for estimating E(h(xt) | yt+d). Default is identify function

for estimating the mean with no delay. The function should be able to take vector or matrix as
input and operates on each element of the input.

The function returns xhat, an array with dimensions (xdim,nobs,delay+1) and the scaled log-likelihood
value loglike. The functions SMC.Smooth, SMC.Full and SMC.Full.RB have similar inputs and outputs,
except that SMC.Smooth needs another input function for the backward smoothing step and funH is a
function for estimating E(h(xt) | y1, . . . , yT).

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 305

Here is an example demonstrating how to implement SMC methods using the NTS package.
Passive sonar is often used in military surveillance systems to track a target and to reduce the chance
to be detected by the target. Without using an active sonar, it collects the signals generated by the
motion of the target, and thus only the direction (or bearing) of the target is observed with error.
With multiple detectors, the location of the target can be identified (Peach, 1995; Kronhamn, 1998;
Arulampalam et al., 2004; Tsay and Chen, 2018).

Suppose the target is moving in a two-dimensional plane and there are two stationary detectors
located on the same plane at (ηi1, ηi2) (i = 1, 2) corresponding to a Cartesian coordinate. At each time
t the observations consist of two angles φit (i = 1, 2) of the target related to the detectors with noise.
Assume that the target is moving with random acceleration in both directions. We use d1t and d2t to
denote the true locations at time t in x axis and y axis respectively, and s1t and s2t to denote the speed
at time t in x axis and in y axis respectively. Let ∆T be the time duration between two consecutive
observations and we assume that the target maintains a random but constant acceleration between two
consecutive observations. ε1t and ε2t are the total acceleration within the period in x and y directions
which are assumed to follow N(0, q2

1) and N(0, q2
2), respectively. The motion model is

dit = dit−1 + st−1∆T + 0.5∆Tεit, εit ∼ N(0, q2
i),

sit = si,t−1 + εit, for i = 1, 2.

The unobserved state variable is xt = (d1t, d2t, s1t, s2t)
′. One observes only the directions of the

target with observational errors. Assume ∆T = 1, the system can be rewritten as

State equation xt = Hxt−1 + Wwt, (9)

Observation equation φit = arc tan
(

d2t − ηi2
d1t − ηi1

)
+ eit, for i = 1, 2, (10)

where

H =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 , W =


0.5q1 0

0 0.5q2
q1 0
0 q2

 ,

wt = [wt1 wt2]
′, wit ∼ N(0, 1) and eit ∼ N(0, r2) for i = 1, 2. We restrict φit ∈ [−π/2, π/2]. This

problem is highly nonlinear.

In this example, the sensors are placed as (η11, η12) = (0, 0) and (η21, η22) = (20, 0), and the
measurement errors e1t and e2t follow N(0, 0.022). A target moves with an initial value x0 =
(10, 0, 0.01, 0.01) and a random acceleration with variance q2

1 = q2
2 = 0.032 in both directions.

We use the following code to generate data.

R> simPassiveSonar <- function(nn = 300, q, r, W, V, s2, start, seed){
+ set.seed(seed)
+ x <- matrix(nrow = 4, ncol = nn)
+ y <- matrix(nrow = 2, ncol = nn)
+ for(ii in 1:nn){
+ if(ii == 1) x[, ii] <- start
+ if(ii > 1) x[, ii] <- H%*%x[, ii - 1] + W%*%rnorm(2)
+ y[1, ii] <- atan(x[2, ii]/x[1, ii])
+ y[2, ii] <- atan(x[2, ii]/(x[1, ii] - s2))
+ y[, ii] <- (y[, ii] + V%*%rnorm(2) + 0.5*pi)%%pi -0.5*pi
+ }
+ return(list(xx = x, yy = y, H = H, W = W, V = V))
+ }

R> s2 <- 20; nobs <- 300
R> q <- c(0.03, 0.03); r <- c(0.02, 0.02)
R> start <- c(10, 10, 0.01, 0.01)
R> H <- c(1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0,1)
R> H <- matrix(H, ncol = 4, nrow = 4, byrow = T)
R> W <- c(0.5*q[1], 0, 0, 0.5*q[2], q[1], 0, 0, q[2])
R> W <- matrix(W, ncol = 2, nrow = 4, byrow = T)
R> V <- diag(r)
R> simu_out <- simPassiveSonar(nobs, q, r, W, V, s2, start, seed = 2000)
R> plot(simu_out$xx[1,], simu_out$xx[2,], xlab = 'x', ylab = 'y', type = "l")

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 306

−10 0 10 20 30 40 50
−

10
0

10
20

30
40

Target trajectory

x

y

Figure 3: Simulated path of the SMC example generated from Equation (9) and Equation (10).

R> points(c(0, 20), c(0, 0), pch = 15, cex = 2)

Figure 3 shows a simulated trajectory for t = 1, . . . , 300, which contains two sharp turns in the
middle of the observational period.

We consider using the state equation as the proposal distribution. Specifically, given x(i)t−1, generate

x(j)
t using (9). The incremental weight u(j)

t ∝ p(yt | x(j)
t) = ∑m

i=0 p(yt | x(j)
t) becomes

u(j)
t exp

− (φ1t − φ̂
(j)
1t)

2 + (φ2t − φ̂
(j)
2t)

2

2r2

 .

The following statements are user generated functions for SMC implementation.

R> SISstep.Sonar <- function(mm, xx, logww, yy, par, xdim = 1, ydim = 1){
+ H <- par$H; W <- par$W; V <- par$V; s2 <- par$s2;
+ xx <- H%*%xx + W%*%matrix(rnorm(2*mm), nrow = 2, ncol = mm)
+ y1 <- atan(xx[2,]/xx[1,])
+ y2 <- atan(xx[2,]/(xx[1,] - s2))
+ res1 <- (yy[1] - y1 + 0.5*pi)%%pi - 0.5*pi
+ res2 <- (yy[2] - y2 + 0.5*pi)%%pi - 0.5*pi
+ uu <- -res1**2/2/V[1, 1]**2 - res2**2/2/V[2, 2]**2
+ logww <- logww + uu
+ return(list(xx = xx, logww = logww))
+ }

R> SISstep.Smooth.Sonar <- function(mm, xxt, xxt1, ww, vv, par){
+ H <- par$H; W <- par$W;
+ uu <- 1:mm
+ aa <- 1:mm
+ xxt1p <- H%*%xxt
+ for(i in 1:mm){
+ res1 <- (xxt1[1, i] - xxt1p[1,])/W[1,1]
+ res2 <- (xxt1[2, i] - xxt1p[2,])/W[2, 2]
+ aa[i] <- sum(exp(-0.5*res1**2 - 0.5*res2**2)*ww)
+ }
+ for(j in 1:mm){
+ res1 <- (xxt1[1,] - xxt1p[1, j])/W[1, 1]
+ res2 <- (xxt1[2,] - xxt1p[2, j])/W[2, 2]
+ uu[j] <- sum(exp(-0.5*res1**2 - 0.5*res2**2)*vv/aa)
+ }
+ vv <- ww*uu
+ return(list(vv = vv))
+ }

Now we are ready to run the Monte Carlo sample with size m = 10000.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 307

−10 0 10 20 30 40

20
25

30
35

Delayed filtering results

x

y

delay 0
delay 5
delay 10

−10 0 10 20 30 40

20
25

30
35

SMC smoothing results

x

y

SMC Smoother

0 50 100 150 200 250 300

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

Tracking error in x direction

Index

x
er

ro
r

delay 0
delay 5
delay 10

0 50 100 150 200 250 300

−
2.

0
−

1.
0

0.
0

0.
5

1.
0

1.
5

Tracking error in y direction

Index

y
er

ro
r

delay 0
delay 5
delay 10

Figure 4: Delayed filtering and smoothing results for the SMC example generated from Equation (9)
and Equation (10).

R> mm <- 100000
R> set.seed(1)
R> resample.sch <- rep(1,nobs)
R> xdim <- 4; ydim <- 2
R> mu0 <- start; SS0 <- diag(c(1, 1, 1, 1))*0.01
R> xx.init <- mu0 + SS0%*%matrix(rnorm(mm*4), nrow = 4, ncol = mm)
R> par <- list(H = H, W = W, V = V, s2 = s2)
R> delay <- 10
R> out <- SMC(SISstep.Sonar, nobs, yy, mm, par, xx.init, xdim, ydim, resample.sch, delay)
R> tt <- 100:nobs
R> plot(simu_out$xx[1, tt], simu_out$xx[2, tt], xlab = 'x', ylab = 'y')
R> for(dd in c(1, 6, 11)){
+ tt <- 100:(nobs - dd)
+ lines(out$xhat[1, tt, dd], out$xhat[2, tt, dd], lty = 23 - 2*dd, lwd = 1)
+ }
> legend(25, 22.5, legend = c("delay 0", "delay 5", "delay 10"), lty = c(21, 11, 1))

The top left panel in Figure 4 shows the delayed estimation using the delay weighting method
with delay d = 0, 5, and 10, and Monte Carlo sample size m = 10000. The bottom panels in Figure
4 plot the estimation error in the x and y directions. The benefit of using delayed estimation can be
clearly seen.

SMC smoothing can be implemented with the following R code. The top right panel in Figure 4
plots the smoothing results, and it shows that the SMC smoothing function performs very well.

R> set.seed(1)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 308

R> mm <- 5000
R> par <- list(H = H, W = W, V = V, s2 = s2)
R> xx.init <- mu0 + SS0%*%matrix(rnorm(mm*4), nrow = 4, ncol = mm)
R> out.s5K <- SMC.Smooth(SISstep.Sonar, SISstep.Smooth.Sonar, nobs, yy, mm, par,
+ xx.init, xdim, ydim, resample.sch)
R> plot(simu_out$xx[1, tt], simu_out$xx[2, tt], xlab = 'x', ylab = 'y')
R> lines(out.s5K$xhat[1, tt], out.s5K$xhat[2, tt], lty = 1, lwd = 2)
+ legend(17, 19.5, legend = c("SMC Smoother"), lty = 1, lwd = 2)

Conclusion

The paper introduces the R package NTS which offers a broad collection of functions for the analysis
of nonlinear time series data. We briefly review various nonlinear time series models, including TAR
models, ACMx models, CFAR models, and state-space models. The associated estimation, identifica-
tion, and forecasting procedures are discussed. The NTS package provides computational tools to fit
these models, to evaluate their performance, and to provide predictions. Furthermore, the functions
can be used, extended, and modified within the package to analyze larger univariate/multivariate,
Gaussian/non-Gaussian time series. These features enable users to carry out a comprehensive and
complex analysis of time series without the constraints from software availability.

Bibliography

D. Arulampalam, B. Ristic, N. Gordon, and T. Mansell. Bearings-only tracking of maneuvering targets
using particle filters. EURASIP Journal of Applied Signal Processing, 2004:2351–2365, 2004. URL
https://doi.org/10.1155/S1110865704405095. [p305]

O. Bjornstad. nlts: NonlinearTime Series Analysis, 2018. URL https://CRAN.R-project.org/package=
nlts. R package version 1.0-2. [p293]

D. Bosq. Linear Processes in Function Spaces, Theory and Applications. Springer-Verlag, New York, 2000.
URL http://doi.org/10.1007/978-1-4612-1154-9. [p294, 301]

A. Bowman and A. Azzalini. sm: Smoothing Methods for Nonparametric Regression and Density Estimation,
2018. URL https://CRAN.R-project.org/package=sm. R package version 2.2-5.6. [p293]

L. Breiman, A. Cutler, A. Liaw, and M. Wiener. randomForest: Breiman and Cutler’s Random Forests for
Classification and Regression, 2018. URL https://CRAN.R-project.org/package=randomForest. R
package version 4.6-14. [p293]

R. Chen. Threshold variable selection in open-loop threshold autoregressive models. Journal of Time
Series Analysis, 16:461–481, 1995. URL https://doi.org/10.1111/j.1467-9892.1995.tb00247.x.
[p294]

R. Chen and R. Tsay. On the ergodicity of tar(1) processes. The Annals of Applied Probability, 1:613–634,
1991. URL http://doi.org/10.1214/aoap/1177005841. [p294]

F. X. Diebold and C. Li. Forecasting the term structure of government bond yields. Journal of
Econometrics, 130:337–364, 2006. URL https://doi.org/10.1016/j.jeconom.2005.03.005. [p301]

D. Domian and D. Louton. A threshold autoregressive analysis of stock returns and real economic
activity. International Review of Economics and Finance, 6:167–179, 1997. URL https://doi.org/10.
1016/S1059-0560(97)90022-8. [p294]

C. Garcia and G. Sawitzki. nonlinearTseries: Nonlinear Time Series Analysis, 2020. URL https://CRAN.R-
project.org/package=nonlinearTseries. R package version 0.2.10. [p293]

G. Goswami. SMC: Sequential Monte Carlo (SMC) Algorithm, 2011. URL https://CRAN.R-project.org/
package=SMC. R package version 1.1. [p294]

S. Hormann and P. a. Kokoszka. Weakly dependent functional data. The Annals of Statistics, 38:
1845–1884, 2010. URL http://doi.org/10.1214/09-aos768. [p301]

L. Horváth, P. Kokoszka, and R. Reeder. Estimation of the mean of functional time series and a
two-sample problem. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75:
103–122, 2013. URL https://doi.org/10.1111/j.1467-9868.2012.01032.x. [p301]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.1155/S1110865704405095
https://CRAN.R-project.org/package=nlts
https://CRAN.R-project.org/package=nlts
http://doi.org/10.1007/978-1-4612-1154-9
https://CRAN.R-project.org/package=sm
https://CRAN.R-project.org/package=randomForest
https://doi.org/10.1111/j.1467-9892.1995.tb00247.x
http://doi.org/10.1214/aoap/1177005841
https://doi.org/10.1016/j.jeconom.2005.03.005
https://doi.org/10.1016/S1059-0560(97)90022-8
https://doi.org/10.1016/S1059-0560(97)90022-8
https://CRAN.R-project.org/package=nonlinearTseries
https://CRAN.R-project.org/package=nonlinearTseries
https://CRAN.R-project.org/package=SMC
https://CRAN.R-project.org/package=SMC
http://doi.org/10.1214/09-aos768
https://doi.org/10.1111/j.1467-9868.2012.01032.x

CONTRIBUTED RESEARCH ARTICLE 309

R. Hyndman and H. L. Shang. ftsa: Functional Time Series Analysis, 2020. URL https://CRAN.R-
project.org/package=ftsa. R package version 6.0. [p294]

R. J. Hyndman and H. L. Shang. Forecasting functional time series. Journal of the Korean Statistical
Society, 38:199–211, 2009. URL https://doi.org/10.1016/j.jkss.2009.06.002. [p301]

T. Kronhamn. Bearings-only target motion analysis based on a multihypothesis kalman filter and
adaptive ownship motion control. IEE Proceedings- Radar, Sonar, and Navigation, 145:247–252, 1998.
URL http://doi.org/10.1049/ip-rsn:19982130. [p305]

D. Li and H. Tong. Nested sub-sample search algorithm for estimation of threshold models. Statistica
Sinica, 26:1543–1554, 2016. URL http://doi.org/10.5705/ss.2013.394t. [p294, 295]

T. Liboschik, R. Fried, K. Fokianos, P. Probst, and J. Rathjens. tscount: Analysis of Count Time series, 2020.
URL https://CRAN.R-project.org/package=tscount. R package version 1.4.3. [p293]

J. Liu and R. Chen. Blind deconvolution via sequential imputations. Journal of the American Statistical
Association, 90(430):567–576, 1995. URL https://doi.org/10.2307/2291068. [p303]

J. Liu and R. Chen. Sequential monte carlo methods for dynamic systems. Journal of the American
Statistical Association, 93:1032–1044, 1998. URL https://doi.org/10.2307/2669847. [p303]

X. Liu, R. Chen, and H. Xiao. Convolutional autoregressive models for functional time series. Journal
of Econometrics, 194:263–282, 2016. URL https://doi.org/10.1016/j.jeconom.2016.05.006. [p294,
301]

P. Narayan. The behavior of us stock prices: Evidence from a threshold autoregressive model.
Mathematics and Computers in Simulation, 71:103–108, 2006. URL https://doi.org/10.1016/j.
matcom.2005.11.016. [p294]

A. F. D. Narzo, J. L. Aznarte, M. Stigler, and H. Tsung-wu. tsDyn: Nonlinear Time series Models with
Regime Switching, 2020. URL https://CRAN.R-project.org/package=tsDyn. R package version
10-1.2. [p293]

N. Peach. Bearings-only tracking using a set of range-parameterized extended kalman filter. IEE
Proceedings- Control Theory and Applications, 142:73–80, 1995. URL http://doi.org/10.1049/ip-
cta:19951614. [p305]

B. Ripley. tree: Classification and Regression Trees, 2019. URL https://CRAN.R-project.org/package=
tree. R package version 1.0-40. [p293]

G. Tiao and R. Tsay. Model specification in multivariate time series. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 51:157–213, 1989. URL http://doi.org/10.1111/j.2517-
6161.1989.tb01756.x. [p294]

H. Tong. On a threshold model. Pattern Recognition and Signal Processing, 1978. Sihhoff& Noordhoof,
Amsterdam. [p294]

H. Tong and K. Lim. Threshold autoregression, limit cycles and cyclical data. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 42(3):245–292, 1980. URL http://doi.org/10.
1111/j.2517-6161.1980.tb01126.x. [p294]

R. Tsay. Testing and modeling threshold autoregressive process. Journal of the American Statistical
Association, 84:231–240, 1989. URL https://doi.org/10.2307/2289868. [p293, 298]

R. Tsay and R. Chen. Nonlinear Time Series Analysis. John Wiley & Sons, New Jersey, 2018. ISBN
978-1-119-26407-1. URL http://doi.org/10.1002/9781119514312. [p300, 303, 305]

R. Tsay, R. Chen, and X. Liu. NTS: Nonlinear Time Series Analysis, 2020. URL https://CRAN.R-
project.org/package=NTS. R package version 1.1.2. [p293]

H. Youssef. NlinTS: Models for Non Linear Causality Detection in Time Series, 2020. URL https://CRAN.R-
project.org/package=NlinTS. R package version 1.4.4. [p293]

H. Zhang and F. Nieto. TAR: Bayesian Modeling of Autoregressive Threshold Time Series Models, 2017. URL
https://CRAN.R-project.org/package=TAR. R package version 1.0. [p293]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=ftsa
https://CRAN.R-project.org/package=ftsa
https://doi.org/10.1016/j.jkss.2009.06.002
http://doi.org/10.1049/ip-rsn:19982130
http://doi.org/10.5705/ss.2013.394t
https://CRAN.R-project.org/package=tscount
https://doi.org/10.2307/2291068
https://doi.org/10.2307/2669847
https://doi.org/10.1016/j.jeconom.2016.05.006
https://doi.org/10.1016/j.matcom.2005.11.016
https://doi.org/10.1016/j.matcom.2005.11.016
https://CRAN.R-project.org/package=tsDyn
http://doi.org/10.1049/ip-cta:19951614
http://doi.org/10.1049/ip-cta:19951614
https://CRAN.R-project.org/package=tree
https://CRAN.R-project.org/package=tree
http://doi.org/10.1111/j.2517-6161.1989.tb01756.x
http://doi.org/10.1111/j.2517-6161.1989.tb01756.x
http://doi.org/10.1111/j.2517-6161.1980.tb01126.x
http://doi.org/10.1111/j.2517-6161.1980.tb01126.x
https://doi.org/10.2307/2289868
http://doi.org/10.1002/9781119514312
https://CRAN.R-project.org/package=NTS
https://CRAN.R-project.org/package=NTS
https://CRAN.R-project.org/package=NlinTS
https://CRAN.R-project.org/package=NlinTS
https://CRAN.R-project.org/package=TAR

CONTRIBUTED RESEARCH ARTICLE 310

Xialu Liu
Department of Management Information Systems
San Diego State University
5500 Campanile Drive, San Diego, CA 92182
USA
xialu.liu@sdsu.edu

Rong Chen
Department of Statistics
Rutgers University
57 US Highway 1, New Brunswick, NJ 08901
USA
rongchen@stat.rutgers.edu

Ruey Tsay
Booth School of Business
University of Chicago
5807 S. Woodlawn Ave, Chicago, IL 60637
USA
ruey.tsay@chicagobooth.edu

Chen’s research is supported in part by National Science Foundation grants DMS-1503409, DMS-
1737857, IIS-1741390 and CCF-1934924. Tsay’s research is supported in part by the Booth School of
Business, University of Chicago.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

mailto:xialu.liu@sdsu.edu
mailto:rongchen@stat.rutgers.edu
mailto:ruey.tsay@chicagobooth.edu

	NTS: An R Package for Nonlinear Time Series Analysis
	Introduction: nonlinear time series analysis in R
	Models and methods available in NTS
	TAR models
	Threshold estimation for two-regime TAR models
	R functions for TAR models in NTS
	Analysis of non-Gaussian time series
	Functional time series

	State-space modelings via SMC methods
	Conclusion

