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miWQS: Multiple Imputation Using
Weighted Quantile Sum Regression
by Paul M. Hargarten and David C. Wheeler

Abstract The miWQS package in the Comprehensive R Archive Network (CRAN) utilizes weighted
quantile sum regression (WQS) in the multiple imputation (MI) framework. The data analyzed is a
set/mixture of continuous and correlated components/chemicals that are reasonable to combine in
an index and share a common outcome. These components are also interval-censored between zero
and upper thresholds, or detection limits, which may differ among the components. This type of data
is found in areas such as chemical epidemiological studies, sociology, and genomics. The miWQS
package can be run using complete or incomplete data, which may be placed in the first quantile,
or imputed using bootstrap or Bayesian approach. This article provides a stepwise and hands-on
approach to handle uncertainty due to values below the detection limit in correlated component
mixture problems.

Introduction

When studying public health, researchers want to determine if a set/mixture of continuous and
correlated components/chemicals is associated with an outcome and if so, which components are
important in that mixture (Braun et al., 2016). These components share a common univariate outcome
but are interval-censored between zero and low thresholds, or detection limits, that may be different
across the components.

We have created the miWQS package to analyze epidemiological studies with chemical exposures,
but researchers may also apply the package to public health, genomics, or other areas in public
health and medicine. Epidemiologists examine chemical mixtures because human exposure to a large
number of chemicals may increase the risk of disease (Braun et al., 2016). Researchers may also create a
socioeconomic status (SES) index that is generally composed of continuous correlated variables in the
following domains: educational achievement, race, income, housing, and employment (Wheeler et al.,
2017, 2019a). For example, race may be represented by percent of the population that is white. There
are several examples of this in the literature (Wheeler et al., 2019b, 2020). Although these variables
may have missing values throughout the distribution, researchers may use the miWQS package to
create SES index even in the presence of missing data. Alternatively, genome-wide association studies
(GWAS’s) analyze DNA sequence variation using single nucleotide polymorphisms (SNPs) (Bush
and Moore, 2012). As SNPs constitute high-frequency changes of a single base in the DNA sequence
throughout the genome, SNPs serve as markers of a genomic region (Bush and Moore, 2012). Thus,
SNPs are highly correlated (Bush and Moore, 2012; Ferber and Archer, 2015). The research aim of a
GWAS is to find associations between genes and common and complex diseases like schizophrenia
and to identify specific associated genes. The miWQS package can answer this research aim while
simultaneously accounting for the correlation between SNPs.

In the data, an approach to account for the correlation among completely observed components is
the weighted quantile sum (WQS) regression (Carrico et al., 2014; Czarnota et al., 2015b; Gennings
et al., 2013). The application of WQS regression to censored data has been limited statistically and
computationally on CRAN (the Comprehensive R Archive Network) (Czarnota et al., 2015a; Horton
et al., 2015; Czarnota and Wheeler, 2015; Renzetti et al., 2020). In order to fully account for the
uncertainty due to censoring, the miWQS package utilizes WQS regression in the multiple imputation
(MI) framework (Hargarten and Wheeler, 2020, 2021).

As compared to other WQS packages in R, the miWQS package is specifically designed to use
highly correlated data that include interval-censoring. The wqs (Czarnota and Wheeler, 2015) package
performs WQS regression only on complete mixtures that share a continuous or binary outcome. The
wqs.est() function in the wqs package can be used for continuous outcomes and displays an error if
fed incomplete information. The gwqs() function in the gWQS package runs WQS regression when
the outcome is continuous, binary, binomial, multinomial, or a count. If incomplete components are
inputted into gwqs(), the function uses non-missing data without warning (Renzetti et al., 2020). By
contrast, the miWQS functions are constructed to handle both complete and incomplete mixture data
that share a continuous, binary, or count outcome by using MI.

The MI approach provides valid statistical inference in estimating regression parameters when
data are missing (Dong and Peng, 2013; Rubin, 1987; White et al., 2011). Specifically, MI consists of
three stages: (1) imputation, (2) analysis, and (3) pooling (Figure 1). First, we create several imputed
datasets by replacing the below the detection limit (BDL) values by plausible data values. The complete
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Figure 1: Multiple Imputation in connection with the Weighted Quantile Sum regression (MI-WQS).
Given partially observed correlated chemical exposures that share a common outcome and covariates,
(stage 1) researchers impute the below detection limit values (dark circles) K times to form complete
datasets. In stage 2, each imputed dataset is analyzed using WQS regression. In stage 3, the coefficient
estimates from the K WQS regressions (diamonds) are combined into a final estimate (square).

datasets are identical for the observed data but are different in the imputed values. Second, we analyze
each complete dataset using WQS regression to obtain estimates (Carrico et al., 2014; Czarnota et al.,
2015b; Gennings et al., 2013; Hargarten and Wheeler, 2020). Lastly, we combine each WQS estimate
from different analyses to form one final estimate, to find its variance, and to perform statistical tests
in order to determine the significance of the exposure effects.

Other MI packages in R have functions that combine estimates, but these are different than
the pool.mi() function used in the miWQS package. The mice (multiple imputation by chained
equations) package implements a strategy to impute multivariate missing data using fully conditional
densities (van Buuren and Groothuis-Oudshoorn, 2011). Its pool function combines one estimate at
a time, while pool.mi() combines all estimates simultaneously. The norm package allows users to
impute values with an assumed multivariate normal distribution (Novo and Schafer, 2013). Its pool
function, mi.inference(), does not allow the user to adjust the degree of freedom due to small sample
sizes in contrast to pool.mi(). The mi package performs multiple imputation with missing values and
saves the results as a mi-class object (Su et al., 2011). As a mi-class object is used to pool estimates
inside the mi package, we cannot use it to pool estimates obtained in other packages.

Contrasting with the other packages on CRAN, the purpose of the miWQS package is to find
an association of interval-censored mixture data with an outcome. The miWQS package can be run
using complete or incomplete data. Incomplete data may be placed in the first quantile of the index
or imputed using bootstrap or Bayesian approach. In this vignette, we will discuss how the data are
formatted and then answer the research objectives using the miWQS package in four different ways:
(1) with complete data, (2) with incomplete data placed in the first quantile, (3) with incomplete data
imputed by bootstrapping, and (4) with incomplete data by using a Bayesian approach.

Data structure

This section describes what the data should look like in order to use the miWQS package. We wish to
assess the association of the mixture of components, X, and a univariate outcome, y, while accounting
for other covariates, Z. However, the continuous non-detects in the mixture (X) are interval-censored
between zero and different detection limits DL. Any missing values in the covariates or outcome
are ignored and removed before imputation and analysis. Although X may refer to a variable with
no obvious DL, we consider chemical concentrations X with each being partially observed in this
vignette.

Our example demonstrating the use of the miWQS package is the provided dataset, simdata87. It
is a list that consists of: 14 non-missing chemical concentrations, 14 chemical concentrations with each
having 10% missing, 14 detection limits, a binary outcome representing cancer diagnosis, and three
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covariates. The dataset was generated as part of a simulation study with 1,000 subjects (Hargarten
and Wheeler, 2020).

After installing the R package miWQS from CRAN, load the package and the dataset as follows.

> library("miWQS")

Loading required package: parallel

> data("simdata87")

The numeric components of interest to combine into an index X are stored in a matrix or a data
frame. Any missing values in X are denoted by NA’s and are assumed to be censored between zero
and an upper threshold, DL. The DL is a numeric vector, where each element represents the detection
limit (DL) for each chemical. In order to use the imputation techniques in miWQS, each chemical
must have a known DL, or an upper bound. Otherwise, chemical values are placed in the first quantile
(BDLQ1) of the weighted index (see Example 2). For instance, 14 non-missing chemical concentrations
are saved as columns in a matrix simdata87$X.true. The matrix simdata87$X.bdl contains these 14
chemical concentrations, but 100 values are subbed as missing for each chemical between zero and
different detection limits. These detection limits are saved in element DL of simdata87 and are printed
below along with their chemical names.

> simdata87$DL

alpha-chlordane dieldrin gamma-chlordane lindane
0.9244609 4.4464426 29.1202898 8.2705681

methoxychlor dde ddt pentachlorophenol
41.3440690 2.3958978 4.5525251 5.1020673

pcb_105 pcb_118 pcb_138 pcb_153
1.6490457 1.9822575 1.2512259 0.7401736
pcb_170 pcb_180

3.3034084 1.0357342

A heat map of the observed logarithmic chemical concentrations (simdata87$X.bdl) shows the
correlations among the components in our dataset (Figure 2). The miWQS package handles such
correlated component data to examine whether the mixture is associated with the outcome.

>
> GGally::ggcorr(
+ log(simdata87$X.bdl),
+ method = c("pairwise", "spearman"),
+ geom = "tile",
+ layout.exp = 2,
+ hjust = 0.75,
+ size = 3,
+ legend.position = "bottom"
+ )

Chemical exposure patterns often differ between individuals due to demographics and other
confounders. The additional covariates Z can be represented as a vector, data frame, or matrix. For
example, the element Z.sim in the list simdata87 is a matrix that contains an individual’s age, sex
(Female/Male), ethnicity (Hispanic/Non-Hispanic), and race (White/non-White). Some statistics of
the covariates are shown below.

> summary(simdata87$Z.sim[, "Age"])

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0224 2.4909 3.7443 3.7176 4.8805 7.9771

> apply(simdata87$Z.sim[, -1], 2, table)

Female Hispanic Non-Hispanic_Others
0 611 670 766
1 389 330 234

The univariate outcome shared among the components, y, may be continuous, count-based, or
binary; it is represented as a numeric vector or a factor in R. The mean of the outcome, ξ, relates the
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Figure 2: Heat map of the correlations using the fourteen observed chemical logarithmic concentra-
tions in dataset simdata87 can be analyzed with the package miWQS. The heat map was generated
using the GGally package.

covariates and chemicals by a link function g() as in generalized linear models. Continuous, count-
based, and binary outcomes all commonly arise in public health and medicine. First, exposure to a
mixture of chemicals may be associated with continuous health outcomes, such as body mass index
(BMI), systolic blood pressure, or cholesterol. When y is continuous, we assume a Gaussian distribution
using an identity link. Next, count health outcomes may arise in evaluations of socioeconomic data
or environmental exposures in census regions. When y is a count, we assume a Poisson distribution
with a log link and use an offset if a rate is modeled. Finally, binary health outcomes are common in
environmental exposure data and in case-control studies. When y is binary, we assume a Bernoulli
distribution using a logistic link. In our dataset, the y.scenario element of simdata87 is binary.
Suppose that y.scenario consists of cancer cases (represented by 1) and controls (represented by 0).
The table below shows that 457 individuals (45.7%) are diagnosed with cancer.

> cat("Counts")
> table(simdata87$y.scenario)

Counts
0 1

543 457

In our dataset–simdata87–we will like to answer the following research questions: (1) Is the
mixture of correlated chemicals associated with cancer; (2) if so, what are the important chemicals? In
the examples that follow, we will use both non-missing and missing chemical concentrations that are
handled in four different ways.

Example 1: WQS regression using complete data

WQS regression allows us to estimate the effect of a chemical mixture on the disease while parsimo-
niously selecting important components (Carrico et al., 2014; Czarnota et al., 2015b; Gennings et al.,
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2013; Hargarten and Wheeler, 2020). Briefly, WQS regression was designed to select components
in environmental exposure analysis. The correlated components are scored into quantiles. Let qij
represent the values of the jth chemical exposed in the ith subject. Ideally, the data should be randomly
split into a training dataset and validation dataset. While the training set is used to create the WQS
index, the validation dataset is used to assess the association of the weighted index with the outcome.
Yet, small datasets should not be split as splitting them may result in inadequate power to detect a
signal.

In the training dataset, the weights are estimated from B bootstrapped samples of size nT to form
the weighted index. Each bootstrap sample is used to estimate the unknown weights wj that maximize
the likelihood in the following nonlinear model:

g(ξi) = β
(T)
0b + β

(T)
1b ·

 c

∑
j=1

wjb · qij

+ z′ib · θ
(T),

subject to

β
(T)
1b > 0, 0 ≤ wjb ≤ 1, and

c

∑
j=1

wjb = 1

for the bth bootstrap sample. The parameters are as follows: β
(T)
0b is the intercept, β

(T)
1b is the overall

mixture effect, and θ are the covariate parameters. The term
(

∑c
j=1 wjb · qij

)
represents the weighted

index of the c chemicals of interest. The parameters in the training dataset are represented with
superscript T. The final weight estimate w̄j is calculated as an average of the bootstrap estimates ŵjb
for the jth chemical:

w̄j =
1
B

B

∑
b=1

ŵjb.

A constraint is placed on β
(T)
1b to allow for interpretation of the index (Carrico et al., 2014). Often,

exploratory single-chemical analyses, shown in Appendix 1, show that some components in the
mixture have a negative association with the outcome, while others have a positive association. In
environmental risk analysis, researchers are often interested in a positive association between the
mixture of components and an adverse health outcome. However, if a researcher hypothesizes that the

overall mixture is protective of the outcome, the constraint β
(T)
1b > 0 should be switched to β

(T)
1b < 0.

Then, the weighted quantile index score of the ith individual is specified as: WQSi = ∑c
j=1 w̄j · qij,

which uses the quantiles in the validation dataset. In the validation dataset, the significance of the

WQS parameter (β(V)
1 ) can be determined from:

g(ξi) = β
(V)
0 + β

(V)
1 WQSi + z′i · θ

(V),

where superscript V represents the regression coefficients in the validation dataset. While β
(V)
1

describes the effect of the chemical mixture on the health outcome, the mean weight w̄j identifies the
relative importance that chemical j imposes on the outcome (Carrico et al., 2014; Czarnota et al., 2015b;
Gennings et al., 2013; Hargarten and Wheeler, 2020).

The estimate.wqs() function performs WQS regression in the miWQS package. The data as
specified in Data structure section are placed in the first three arguments. The y argument takes
the outcome, like simdata87$y.scenario. As y.scenario is binary, the binomial distribution is spec-
ified by setting the family argument to "binomial". The X argument takes the chemicals of inter-
est, like simdata87$X.true. If X contains NA’s (that represents missing values), the BDL values are
placed in the first quantile by default (see Example 2). Any additional demographic covariates, like
simdata87$Z.sim, are placed into the Z argument. If no covariates are present, set Z to NULL. The

b1.pos argument controls whether the overall mixture effect, β
(T)
1 , is positively related to the outcome.

A way to decide the direction is to use the analyze.individually() function, which is described in
more detail in Appendix 1. In our dataset, we assume a positive relationship between the mixture
and an outcome; we consequently set b1.pos to TRUE. The proportion.train argument specifies the
proportion of data given to the training dataset. As the sample size of our example dataset is large
(n = 1000), we will use 50% of the data to train. The B argument is the number of bootstraps used to
estimate the weights wj’s.

We set a seed to ensure reproducibility as we bootstrapped the data. The execution of the
estimate.wqs() function creates an object of class wqs, and printing it answers the main research
questions.
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> set.seed(50679)
> wqs.eg1 <- estimate.wqs(
+ y = simdata87$y.scenario, X = simdata87$X.true, Z = simdata87$Z.sim,
+ proportion.train = 0.5,
+ n.quantiles = 4,
+ place.bdls.in.Q1 = FALSE,
+ B = 100,
+ b1.pos = TRUE,
+ signal.fn = "signal.converge.only",
+ family = "binomial",
+ verbose = FALSE
+ )

#> No missing values in matrix detected. Regular quantiles computed.

> wqs.eg1

Odd Ratios & 95% CI (N.valid = 500)
Odds Ratio SE.OR 95% CI P-value

(Intercept) 0.142 1.51 0.142 (0.063, 0.320) <0.001
Age 0.950 1.06 0.950 (0.854, 1.056) 0.339
Female 0.947 1.22 0.947 (0.646, 1.388) 0.780
Hispanic 1.580 1.23 1.578 (1.059, 2.352) 0.025
Non.Hispanic_Others 1.030 1.25 1.034 (0.671, 1.593) 0.880
WQS 3.660 1.25 3.663 (2.372, 5.659) <0.001
AIC: 660.7468

All (100) bootstraps have converged.

Weights Adjusted by signal.converge.only using N.train = 500 observations:
ddt pcb_105 pcb_170 pcb_138

0.3905 0.2413 0.1105 0.1014
pcb_153 dde pcb_118 pentachlorophenol
0.0344 0.0339 0.0217 0.0216

lindane gamma.chlordane methoxychlor alpha.chlordane
0.0200 0.0138 0.0043 0.0028

pcb_180 dieldrin
0.0024 0.0014

Important chemicals defined as mean weights > 1/14~0.071.

An increase in the chemical mixture is associated with an increase in the odds of being diagnosed
with cancer by 3.66. The coef(wqs.eg1) gives us estimates on the logit scale of coefficients in the vali-
dation model. We identify chemicals in the mixture as important if their weight estimates are greater
than the reciprocal of the number of chemicals. Alpha-chlordane, PCB 153, PCB 105, and p,p-DDE
approximately constitute 88% of the effect in the index. Thus, these three chemicals are associated with
increased cancer risk. The weight estimates are directly extracted with wqs.eg1$processed.weights.
The Akaike information criterion (AIC) is used as the goodness-of-fit measure of the WQS model and
is directly computed using AIC(wqs.eg1$fit).

Plotting a WQS object gives a list of histograms: the distributions of the weight estimates, the
overall effect of the mixture, and the WQS index score (Wickham, 2016).

> eg1.plots <- plot(wqs.eg1)
> names(eg1.plots)

[1] "hist.weights" "hist.beta1" "hist.WQS"

Commonly, researchers look at distributions of the weight estimates to determine which chemicals
are important in the mixture (Figure 3). Looking at the histograms for complete WQS data, most
chemicals have no effect among all bootstraps. However, this panel of histograms indicates that alpha-
chlordane, p,p-DDE, PCB 153, and PCB 105 are important, which agrees with our above statistical
analysis.

The second histogram provides us insight into the distribution of the overall effect of the mixture

on the outcome, β
(T)
1 , across the bootstraps (Figure 4). Most bootstraps indicate that the chemical

mixture is not associated with the outcome (median around 1).

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 232

pcb_170 pcb_180

pcb_105 pcb_118 pcb_138 pcb_153

methoxychlor dde ddt pentachlorophenol

alpha.chlordane dieldrin gamma.chlordane lindane

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75

0
25
50
75

100

0
25
50
75

100

0
25
50
75

100

0
25
50
75

100

weight

co
un

t

Chemical Weight Estimates Histogram

Figure 3: Histograms of chemical weight estimates across 100 bootstraps for Example 1 to select
important chemicals. Weight estimates are constrained to be between zero and one.

The third histogram shows us the distribution of the weighted quantile sum. Given constraints
placed on the weights, WQS is a continuous index between zero and the number of quantiles minus 1
(given by the n.quantiles argument in estimate.wqs() ) (Figure 5). In our example, the number of
quantiles is four. Across the bootstrap samples, most values of the chemical mixture are between one
and two.

Example 2: BDLQ1 approach on interval-censored data

BDLQ1 approach

Unlike Example 1, many studies contain partially observed chemical concentrations that are measured
to different detection limits. One approach to use WQS with missing data is to place the BDL values
into the first quantile (BDLQ1), and to score the observed component values in the remaining quantiles.
The make.quantile.matrix() function demonstrates this approach by creating n.quantiles quantiles
from a matrix argument X. If X is completely observed, regular quantiles are made; however, if the first
values in X are missing, they are placed in the first quantile. For example, suppose we are interested in
making four quantiles of 14 chemicals using 1,000 subjects in our dataset. If we use the completely
observed concentrations found in X.true element of simdata87, regular quantiles for all 14 chemicals
are made with the following number of individuals per quantile.

> q <- make.quantile.matrix(
+ X = simdata87$X.true,
+ n.quantiles = 4
+ )

#> No missing values in matrix detected. Regular quantiles computed.
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Figure 4: Histogram of overall chemical effect in the training dataset across 100 bootstraps for Example
1. Its constraint is governed by the b1.pos argument in the estimate.wqs() function. In the simdata87
dataset, the overall mixture is constrained to have a positive association with cancer. Most bootstraps
indicate that the chemical mixture is not associated with the outcome.
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Figure 5: Histogram of the weighted quantile sum (WQS) using validation quantiles for Example 1 to
show where most values of the chemical mixture lie.

> apply(q, 2, table)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
0 250 250 250 250 250 250 250 250 250 250 250 250 250 250
1 250 250 250 250 250 250 250 250 250 250 250 250 250 250
2 250 250 250 250 250 250 250 250 250 250 250 250 250 250
3 250 250 250 250 250 250 250 250 250 250 250 250 250 250

However, if the chemical concentrations are incomplete (with the missing values indicated as NA’s),
the BDLQ1 approach works as follows. Suppose we wish to make quartiles of the X.bdl matrix in our
dataset, where each chemical has 100 BDL concentrations. Using BDLQ1, the 100 observations are
placed into the first quartile, and the remaining quartiles are evenly split in which each contains 900/3
= 300 observations. The number of individuals in each quartile of each chemical, and the total number
of missing values in each chemical are shown below. Note that the first row of the matrix matches the
total number of missing values (100).

> q <- make.quantile.matrix(
+ simdata87$X.bdl,
+ n.quantiles = 4,
+ verbose = TRUE
+ )
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#> All BDLs are placed in the first quantile

##> Summary of Quantiles
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]

0 100 100 100 100 100 100 100 100 100 100 100 100 100 100
1 300 300 300 300 300 300 300 300 300 300 300 300 300 300
2 300 300 300 300 300 300 300 300 300 300 300 300 300 300
3 300 300 300 300 300 300 300 300 300 300 300 300 300 300
##> Total Number of NAs--Q1 (The first row) should match.
100 100 100 100 100 100 100 100 100 100 100 100 100 100

The number of individuals in the first quantile in BDLQ1 increases if more BDL values exist. For
instance, X.80 substitutes 800 values for each chemical from simdata87$X.true to be missing BDL.
Applying the BDLQ1 approach to X.80, all 800 values are placed into the first quartile, while roughly
200/3 ≈ 66 values are placed in remaining quartiles.

> q <- make.quantile.matrix(X.80, n.quantiles = 4, verbose = TRUE)

#> All BDLs are placed in the first quantile

##> Summary of Quantiles
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]

0 800 800 800 800 800 800 800 800 800 800 800 800 800 800
1 67 67 67 67 67 67 67 67 67 67 67 67 67 67
2 66 66 66 66 66 66 66 66 66 66 66 66 66 66
3 67 67 67 67 67 67 67 67 67 67 67 67 67 67
##> Total Number of NAs--Q1 (The first row) should match.
800 800 800 800 800 800 800 800 800 800 800 800 800 800

Instead of quantiles, we could also categorize the chemicals into deciles by changing the n.quantiles
argument to ten. Suppose now that we wish to form deciles in simdata87$X.bdl. The first 100 BDL
values are placed in the first decile, while the remaining 900 are evenly spread out in the remaining
nine deciles (900/9 = 100).

> q <- make.quantile.matrix(simdata87$X.bdl, n.quantiles = 10, verbose = TRUE)

#> All BDLs are placed in the first quantile

##> Summary of Quantiles
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]

0 100 100 100 100 100 100 100 100 100 100 100 100 100 100
1 100 100 100 100 100 100 100 100 100 100 100 100 100 100
2 100 100 100 100 100 100 100 100 100 100 100 100 100 100
3 100 100 100 100 100 100 100 100 100 100 100 100 100 100
4 100 100 100 100 100 100 100 100 100 100 100 100 100 100
5 100 100 100 100 100 100 100 100 100 100 100 100 100 100
6 100 100 100 100 100 100 100 100 100 100 100 100 100 100
7 100 100 100 100 100 100 100 100 100 100 100 100 100 100
8 100 100 100 100 100 100 100 100 100 100 100 100 100 100
9 100 100 100 100 100 100 100 100 100 100 100 100 100 100
##> Total Number of NAs--Q1 (The first row) should match.
100 100 100 100 100 100 100 100 100 100 100 100 100 100

The BDLQ1 method has been used in single-chemical analyses (Metayer et al., 2013; Ward et al.,
2014, 2009) and WQS (Hargarten and Wheeler, 2020). However, it has not been coded in other WQS
packages to the best of our knowledge.

WQS analysis

The BDLQ1 method works because WQS regression uses quantile scores from each chemical in
the mixture. At this step, the estimate.wqs() function calls the make.quantile.matrix() function.
Setting the argument place.bdls.in.Q1 to TRUE allows us to use the WQS regression in conjunction
with the BDLQ1 method. Yet, if the X argument contains any missing values, the BDLQ1 approach is
automatically used. The incomplete data X.bdl is now assigned to the chemical mixture X argument.
The remaining arguments in estimate.wqs() are the same as in Example 1. Printing the resulting
object answers the research questions of interest. The research aims are to determine the association of
the mixture with cancer and to find the important chemicals (if the association exists).
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> set.seed(50679)
> wqs.BDL <- estimate.wqs(
+ y = simdata87$y.scenario, X = simdata87$X.bdl, Z = simdata87$Z.sim,
+ proportion.train = 0.5,
+ n.quantiles = 4,
+ place.bdls.in.Q1 = TRUE,
+ B = 100,
+ b1.pos = TRUE,
+ signal.fn = "signal.converge.only",
+ family = "binomial",
+ verbose = FALSE
+ )

#> All BDLs are placed in the first quantile

> wqs.BDL

Odd Ratios & 95% CI (N.valid = 500)
Odds Ratio SE.OR 95% CI P-value

(Intercept) 0.214 1.52 0.214 (0.094, 0.483) <0.001
Age 0.952 1.05 0.952 (0.858, 1.057) 0.356
Female 0.926 1.21 0.926 (0.636, 1.349) 0.688
Hispanic 1.560 1.22 1.558 (1.052, 2.306) 0.027
Non.Hispanic_Others 1.050 1.24 1.052 (0.687, 1.612) 0.816
WQS 2.360 1.21 2.358 (1.626, 3.420) <0.001
AIC: 677.0172

1 bootstrap(s) have failed to converged. Those are:
[1] 60

Weights Adjusted by signal.converge.only using N.train = 500 observations:
pcb_105 pentachlorophenol gamma.chlordane alpha.chlordane
0.2575 0.2548 0.1622 0.0699

pcb_153 pcb_138 ddt lindane
0.0658 0.0606 0.0378 0.0349

methoxychlor pcb_118 dde pcb_170
0.0180 0.0128 0.0075 0.0066

dieldrin pcb_180
0.0065 0.0051

Important chemicals defined as mean weights > 1/14~0.071.

An increase in one-quartile of the chemical mixture is associated with an increase in the odds
of obtaining cancer by 2.36. Compared to the complete case analysis, PCB 105 and alpha-chlordane
are still important, but DDT, PCB 170, and methoxychlor are also important in the BDLQ1 analy-
sis. As we forced some complete concentrations simdata87$X.true to be BDL values in creating
simdata87$X.bdl, we used AIC to compare fit between the two WQS models in Examples 1 and 2.
Intuitively, a WQS model using the BDLQ1 approach (AIC: 677) fits the data worse than a WQS model
using complete data (AIC: 661).

Example 3: Bootstrapping interval-censored data

An alternative to the BDLQ1 approach is to perform multiple imputation of the missing chemical
values by bootstrapping (Lubin et al., 2004). Given completely observed covariates zi1, . . . zik in
i = 1, ...n subjects exposed to j = 1, ...c chemicals, an independent log-normal distribution for each
chemical j with mean µj and variance σ2

j is assumed:

log(xij)|z1 · · · zp ∼indep N
(

µj = z′i · γj, σ2
j

)
.

Let f (.) denote the normal probability density function and F(.) denote its cumulative distribution
function. For each chemical j, the dataset is bootstrapped K times to form K complete datasets. As each
bootstrap b is sampled with replacement from the original data, the number of times the ith subject is
selected for jth chemical is represented by wij. The log likelihood function for the bootstrap data in jth

chemical is given by:
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l(γj, σ2
j ) =

n0j

∑
i=1

wij ∗ log
[

P
(

0 < Xij < DLj; z′i · γj, σ2
j

)]
+

n

∑
i=n0j+1

log
[

f (xij; z′i · γj, σ2
j )
]

,

where n0j represents the number of BDL values for chemical j. The estimates that maximize the log

likelihood are
(

γ̃j, σ̃2
j

)
. Then, the BDL values are imputed by the following method. We generate an

independent and identically distributed uniform sample between zero and F
(

log(DLj); z′i · γ̃j, σ̃2
j

)
.

Then, we assign value F−1 (uij
)

for each missing value xij below the detection limit of the jth chemical
DLj (Lubin et al., 2004). These imputed values are joined with the observed ones to form one complete
set of exposures for the jth chemical. The impute.Lubin() function performs multiple imputation by
bootstrapping for one chemical. For instance, suppose we wish to impute the dieldrin concentrations
BDL twice (K = 2) in simdata87 by bootstrapping using the following covariates: childhood age,
sex, and child race/ethnicity. The dieldrin concentrations are found in the first column of X.bdl
in simdata87 dataset (e.g. simdata87$X.bdl[ ,1]), and the detection limit of dieldrin is in the first
entry in DL element (e.g. simdata87$DL[1]). The chemcol argument is a numeric vector of chemical
concentrations that we wish to impute (e.g. simdata87$X.bdl[ ,1]). The dlcol argument is the
detection limit of the chemical (e.g. simdata87$DL[1]). The Z argument contains any covariates used
in the imputation (e.g. simdata87$Z.sim and simdata87$y.scenario). We included the outcome in
the imputation of BDL values because its omission assumes that it is not associated with the BDL
values and thereby bias the subsequent WQS coefficients towards zero (Forer, 2014; Barnard et al.,
2015). The K argument is the number of imputed datasets (e.g. 2).

> set.seed(472195)
> answer <- impute.Lubin(
+ chemcol = simdata87$X.bdl[, 1],
+ dlcol = simdata87$DL[1],
+ Z = cbind(simdata87$y.scenario, simdata87$Z.sim),
+ K = 2
+ )
> summary(answer$imputed_values)

Imp.1 Imp.2
Min. : 0 Min. : 0
1st Qu.: 11 1st Qu.: 11
Median : 125 Median : 125
Mean : 44099 Mean : 44099
3rd Qu.: 1682 3rd Qu.: 1682
Max. :17354723 Max. :17354723

The answer$imputed_values is a matrix with rows of 1000 subjects and two columns consisting of
the imputed dieldrin concentrations. Since most concentrations are observed, the summaries of the
two datasets should look the same. However, if we look at BDL values, the two imputed datasets are
different, and both are under the detection limit (0.924).

> cat("Summary of BDL Values \n")
> imp <- answer$imputed_values[, 1] < simdata87$DL[1]
> summary(answer$imputed_values[imp, ])

Summary of BDL Values
Imp.1 Imp.2

Min. :0.00124 Min. :0.001417
1st Qu.:0.04579 1st Qu.:0.057819
Median :0.22420 Median :0.201560
Mean :0.32314 Mean :0.272618
3rd Qu.:0.59102 3rd Qu.:0.444859
Max. :0.91690 Max. :0.854974

More than one chemical often needs to be imputed in many studies. To implement the bootstrap
approach, we use the impute.boot() function, which repeatedly executes the impute.Lubin() function.
In simdata87, now suppose that we wish to impute the X.bdl matrix twice by bootstrapping using the
covariates (Z) of age, sex, and race/ethnicity. The X argument takes a matrix with incomplete data,
like simdata87$X.bdl. The next argument, DL, takes the detection limits of X as a numeric vector, like
simdata87$DL. The K and Z arguments are exactly the same as in impute.Lubin(). A seed is set before
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the function to ensure that the same bootstrap samples are selected for each chemical. The function
returns a list l.boot.

> set.seed(472195)
> l.boot <- impute.boot(
+ X = simdata87$X.bdl,
+ DL = simdata87$DL,
+ Z = cbind(simdata87$y.scenario, simdata87$Z.sim),
+ K = 2
+ )

#> Check: The total number of imputed values that are above the detection limit is 0.

> results.Lubin <- l.boot$X.imputed

The X.imputed element of l.boot saves the imputed chemical values as an array, where the first
dimension is the number of subjects (n), the second is the number of chemicals (c), and the third is the
number of imputed datasets (K). The sample minima, fifth percentile (P.5), means, and maxima of the
chemicals are calculated in each imputed dataset (by the function f()). As the two imputed datasets
are different, the application of MI should yield different parameter estimates.

> apply(results.Lubin, 2:3, f)

, , Imp.1

alpha-chlordane dieldrin gamma-chlordane lindane methoxychlor
min 1.239744e-03 5.214163e-02 14.85745 3.122209 16.13658
P.5 2.257984e-01 2.016689e+00 25.79766 7.147067 35.19478
mean 4.409885e+04 4.331448e+02 49.38257 17.214769 83.45674
max 1.735472e+07 4.867330e+04 139.33689 75.360498 316.07141

dde ddt pentachlorophenol pcb_105 pcb_118
min 4.500939e-02 1.532625 1.604183 0.1372503 0.4547588
P.5 8.736265e-01 3.544432 3.923535 1.1031301 1.4373202
mean 2.546607e+03 16.122825 20.262419 16.4815577 9.7025958
max 3.835674e+05 178.853960 285.229348 400.3601114 142.2619560

pcb_138 pcb_153 pcb_170 pcb_180
min 0.08042499 0.03363274 0.7155792 0.1741525
P.5 0.80147195 0.47230663 2.5599230 0.7335900
mean 12.63094227 13.82089093 11.6125246 8.4248157
max 269.09903138 383.79850341 115.2060922 203.8593938

, , Imp.2

alpha-chlordane dieldrin gamma-chlordane lindane methoxychlor
min 1.417111e-03 0.117659 14.57128 3.690147 15.35223
P.5 2.024978e-01 2.276511 25.50909 6.751412 36.11395
mean 4.409884e+04 433.153356 49.36521 17.201076 83.39251
max 1.735472e+07 48673.296171 139.33689 75.360498 316.07141

dde ddt pentachlorophenol pcb_105 pcb_118
min 3.502864e-02 0.9292443 1.299465 0.1512212 0.4144885
P.5 9.079915e-01 3.3656892 3.959147 1.0578307 1.3154884
mean 2.546614e+03 16.1134725 20.250618 16.4788855 9.6934267
max 3.835674e+05 178.8539599 285.229348 400.3601114 142.2619560

pcb_138 pcb_153 pcb_170 pcb_180
min 0.2291489 0.08258941 0.4825019 0.05475401
P.5 0.8403295 0.52882557 2.5113298 0.69996133
mean 12.6359530 13.82390718 11.6064361 8.42308671
max 269.0990314 383.79850341 115.2060922 203.85939377

Next, we implement WQS regression on the two complete datasets, which are saved in the
results.Lubin object. Instead of performing WQS on one dataset as in Examples 1 and 2, the
do.many.wqs() function repeatedly executes WQS regression on each dataset. The arguments for
the do.many.wqs() function are the same as the estimate.wqs() function, with one exception. The
X.imputed argument now is an array of the imputed chemical values, which has three dimensions:
n subjects, c chemicals, and K imputed datasets. This array is the output from the impute.boot()
function: results.Lubin.
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> set.seed(50679)
> boot.wqs <- do.many.wqs(
+ y = simdata87$y.scenario, X.imputed = results.Lubin, Z = simdata87$Z.sim,
+ proportion.train = 0.5,
+ n.quantiles = 4,
+ B = 100,
+ b1.pos = TRUE,
+ signal.fn = "signal.converge.only",
+ family = "binomial"
+ )

#> Sample size: 1000; Number of chemicals: 14;
Number of completed datasets: 2; Number of covariates modeled: 4

The do.many.wqs() function returns list and matrix versions of the output generated from the
estimate.wqs() function. The wqs.imputed.estimates element of the boot.wqs list is a three-dimensional
array that gives the WQS estimates for each imputed dataset. The first dimension consists of the total
number parameters in the WQS model. The second dimension consists of two columns: the mean and
standard deviation of estimates. The third dimension is the K imputation draws.

> formatC(boot.wqs$wqs.imputed.estimates, format = "fg", flag = "#", digits = 3)

, , Imputed.1

Estimate Std.Error
alpha.chlordane "0.00285" "0.0285"
dieldrin "0.00139" "0.0101"
gamma.chlordane "0.0138" "0.0442"
lindane "0.0200" "0.0525"
methoxychlor "0.00429" "0.0244"
dde "0.0339" "0.104"
ddt "0.391" "0.0936"
pentachlorophenol "0.0216" "0.0628"
pcb_105 "0.241" "0.129"
pcb_118 "0.0217" "0.0697"
pcb_138 "0.101" "0.131"
pcb_153 "0.0344" "0.0986"
pcb_170 "0.110" "0.149"
pcb_180 "0.00236" "0.0114"
(Intercept) "-1.95" "0.415"
Age "-0.0516" "0.0540"
Female "-0.0546" "0.195"
Hispanic "0.456" "0.204"
Non.Hispanic_Others "0.0333" "0.221"
WQS "1.30" "0.222"

, , Imputed.2

Estimate Std.Error
alpha.chlordane "0.00424" "0.0185"
dieldrin "0.0392" "0.0801"
gamma.chlordane "0.00843" "0.0257"
lindane "0.00191" "0.0119"
methoxychlor "0.0103" "0.0518"
dde "0.0767" "0.114"
ddt "0.148" "0.159"
pentachlorophenol "0.272" "0.163"
pcb_105 "0.156" "0.114"
pcb_118 "0.0102" "0.0302"
pcb_138 "0.213" "0.193"
pcb_153 "0.0136" "0.0513"
pcb_170 "0.0180" "0.0526"
pcb_180 "0.0291" "0.0625"
(Intercept) "-1.70" "0.363"
Age "0.0367" "0.0539"
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Female "-0.199" "0.192"
Hispanic "0.577" "0.200"
Non.Hispanic_Others "0.235" "0.223"
WQS "0.762" "0.163"

As expected, the weights and WQS parameter estimates are different across the two imputed
datasets. Finally, the pool.mi() function implements the pooling rules discussed in Rubin 1987 (Rubin,
1987) in order to form one estimate (Dong and Peng, 2013; Rubin, 1987; White et al., 2011). The
to.pool argument takes an array with rows referring to the number of parameters, columns referring
to the mean and standard error, and the third dimension referring to the number of imputed datasets.
This describes the WQS output, boot.wqs$wqs.imputed.estimates, from the do.many.wqs() function.
The second argument of pool.mi(), n, is the sample size, which is the number of rows in original
data (i.e. nrow(simdata87$X.bdl)). The additional Boolean argument prt allows the user to print out
selective parts of the pool.mi object, if desired.

> boot.est <- pool.mi(
+ to.pool = boot.wqs$wqs.imputed.estimates,
+ n = nrow(simdata87$X.bdl),
+ prt = FALSE
+ )

#> Pooling estimates from 2 imputed analyses for 20 parameters.

pooled.mean pooled.total.se se.within se.between
alpha.chlordane 0.004 0.024 0.024 0.001
dieldrin 0.020 0.066 0.057 0.027
gamma.chlordane 0.011 0.036 0.036 0.004
lindane 0.011 0.041 0.038 0.013
methoxychlor 0.007 0.041 0.041 0.004
dde 0.055 0.115 0.109 0.030
ddt 0.269 0.247 0.130 0.172
pentachlorophenol 0.147 0.250 0.123 0.177
pcb_105 0.198 0.143 0.122 0.061
pcb_118 0.016 0.055 0.054 0.008
pcb_138 0.157 0.191 0.165 0.079
pcb_153 0.024 0.081 0.079 0.015
pcb_170 0.064 0.137 0.112 0.065
pcb_180 0.016 0.051 0.045 0.019
(Intercept) -1.828 0.447 0.390 0.178
Age -0.007 0.094 0.054 0.062
Female -0.127 0.230 0.193 0.102
Hispanic 0.517 0.228 0.202 0.086
Non.Hispanic_Others 0.134 0.282 0.222 0.143
WQS 1.030 0.504 0.195 0.379

frac.miss.info CI.1 CI.2 p.value
alpha.chlordane 0.005 -0.044 0.051 0.883
dieldrin 0.327 -0.119 0.160 0.762
gamma.chlordane 0.019 -0.060 0.083 0.761
lindane 0.181 -0.072 0.094 0.791
methoxychlor 0.019 -0.073 0.087 0.859
dde 0.125 -0.174 0.284 0.632
ddt 0.836 -0.850 1.388 0.395
pentachlorophenol 0.859 -1.099 1.393 0.624
pcb_105 0.359 -0.109 0.506 0.187
pcb_118 0.037 -0.091 0.123 0.770
pcb_138 0.337 -0.250 0.564 0.424
pcb_153 0.057 -0.135 0.183 0.766
pcb_170 0.454 -0.249 0.378 0.652
pcb_180 0.273 -0.089 0.120 0.759
(Intercept) 0.314 -2.770 -0.885 0.001
Age 0.795 -0.373 0.358 0.943
Female 0.392 -0.631 0.378 0.593
Hispanic 0.276 0.044 0.989 0.034
Non.Hispanic_Others 0.509 -0.538 0.807 0.650
WQS 0.919 -2.441 4.501 0.233
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The pool.mi() function returns the statistics of the combined estimates for each WQS parameter.
While the standard error between the imputed sets, se.between, measures the uncertainty due to
the BDL values, the standard error within the imputed sets, se.within, measures the uncertainty
in the WQS regression. Using the pooled mean and standard error, 95% t~confidence intervals are
constructed in columns CI.1 and CI.2. The p~values from the t~test whether the regression coefficient
is zero are contained in the p.value column. The frac.miss.info column gives the fraction of missing
information, which estimates the proportion of variability due to the BDL values for each WQS
parameter. A larger fraction of missing information of any WQS parameter implies that we may need
to increase the number of imputations (K). Yet, finding the optimal number of imputations remains an
open area of research (Pan and Wei, 2016; Savalei and Rhemtulla, 2012). For instance, some covariates
have high fractions of missing information, such as 0.73 or 0.85, which suggests that more than two
imputations are needed.

The WQS pooled.mean estimate answers the question of whether a chemical mixture is associated
with cancer. To find the odds ratio, we can exponentiate the estimate and its 95% confidence interval
(CI) like: exp(boot.est["WQS",c(1,7:8)]). A one-quartile increase in the chemical mixture is (95%
CI: ) times as likely to obtain cancer. The first 14 rows of boot.est give us summary statistics about
the weight estimates. Using the criterion that the pooled mean of the weight estimate greater than
1/14 is important, the following chemicals have the largest contributions to the overall mixture.

> chemicals <- boot.est[1:14, ]
> row.names(chemicals)[chemicals$pooled.mean >= 1 / 14]

[1] "ddt" "pentachlorophenol" "pcb_105"
[4] "pcb_138"

We can also obtain an overall sense of how WQS model fits the data from bootstrapping imputation.
In a similar spirit in combining the WQS parameter estimates, we combine the AIC from the two
models. The combine.AIC() function takes the average and standard deviation of the individual AIC
estimates from the separate WQS models. The only argument, AIC, takes a numeric vector of AIC’s,
which is saved in a do.many.wqs() object (eg. boot.wqs$AIC).

> boot.wqs$AIC

[1] 660.7468 665.1193

> boot.AIC <- combine.AIC(boot.wqs$AIC)

Compared to Examples 1 and 2, the bootstrapped MI-WQS model (AIC: 662.9 +- 3.1) fits the data
similar to a WQS model using the BDLQ1 approach (AIC: 677.0) and worse than a WQS model using
complete data (AIC: 660.7).

Example 4: Univariate Bayesian multiple imputation of BDL values

Instead of using bootstrapping imputation, the impute.univariate.bayesian.mi() imputes the BDL
values using a Bayesian paradigm. The logs of the observed chemicals xij are assumed to independently
follow normal distributions with mean µj and standard error σj. We place a Jeffrey’s prior of the
univariate normal on the parameters. In order to sample from the posterior predictive density of
missing values (Xj,miss) given the observed values (Xj,obs), we run a Gibbs sampler of length T for
each chemical. In step t of the sampler:

(Step 0): Given complete data X = (X(t−1)
miss , Xobs), calculate the mean w̄ and variance S as:

w̄ =
1
n
·

n

∑
i=1

log (xi) and S =
1

n− 1
·

n

∑
i=1

(log(xi)− w̄)2 .

(Step 1): Simulate the posterior variance σ2(t) given the mean and complete data from the inverse
gamma distribution:

σ2|µ(t−1), log (Xobs) , log
(

X(t−1)
miss

)
∼ IG

(
n− 1

2
,

n− 1
2
∗ S
)

.

(Step 2): Simulate the posterior mean µ(t) given the variance and complete data from the normal
distribution:

µ|σ2(t), log (Xobs) , log
(

X(t−1)
miss

)
∼ N

(
w̄, sd =

σ(t)
√

n

)
.
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(Step 3): Using current parameter estimates, impute log(X(t)
miss,i) from the normal distribution

truncated between 0 and DLj, or:

log
(
Xmiss,i

)
|µ(t), σ2(t) ∼ TruncNorm

(
µ(t), σ2(t), a = 0, b = DLj

)
.

for i = 1 · · · n0j, where n0j is the total number of BDL values for the jth chemical. We assessed
convergence using Gelman-Rubin’s R statistics (Gelman and Rubin, 1992). To construct approximately
independent sets of complete concentrations, we join the observed values with the imputed values
taken every tenth state from the end of the missing value chain. This Gibbs Sampler is repeated for all
chemicals.

The impute.univariate.bayesian.mi() function applies this Bayesian algorithm to our dataset.
The X argument takes a matrix with incomplete data, like simdata87$X.bdl. The DL argument takes
the detection limits of X, which must be a numeric vector, like simdata87$DL. Bayesian imputation
currently does not use covariate information. The T argument specifies the length of the Gibbs sampler
(like 6000), and the n.burn argument specifies the burn-in (like 400). The K argument gives the number
of imputed datasets generated (like 2). The impute.univariate.bayesian.mi() function returns a list
consisting of three categories: a series of checks, the imputed array, and the MCMC (Markov chain
Monte Carlo) chains.

> set.seed(472195)
> result.imputed <- impute.univariate.bayesian.mi(
+ X = simdata87$X.bdl,
+ DL = simdata87$DL,
+ T = 6000,
+ n.burn = 400,
+ K = 2
+ )

#> Start MCMC Data Augmentation Algorithm...

#> Checking for convergence with 2nd chain ...

gelman.stat is.converge
Min. :0.9998 Mode:logical
1st Qu.:1.0001 TRUE:1428
Median :1.0004
Mean :1.0010
3rd Qu.:1.0013
Max. :1.0182
#> Evidence suggests that all 1428 parameters have converged.
#> Draw 2 Multiple Imputed Set(s) from states
[1] 6000 5990
#> Check: Indicator of # of missing values above detection limit
[1] 0

The impute.univariate.bayesian.mi() function returns a check of convergence in convg.table
and a check of correct imputation in indicator.miss. To check for convergence, a summary of a data
frame convg.table is shown above. The first column consists of the Gelman-Rubin statistics of the
MCMC variables. (In the dataset simdata87, there are (100 + 2) ∗ 14 = 1428 MCMC variables, as
each chemical has 102 MCMC variables: 100 missing values, mean, and variance.) The is.converge
column of convg.table is a logical vector that specifies whether each MCMC variable has converged.
This occurs if its Gelman-Rubin statistic is less than 1.1. In our example, the chains give evidence of
convergence. The "Indicator of # missing values above the detection limit" shown above,
represented with indicator.miss, is included to check if the imputation scheme occurred correctly.
It should be zero, which it is shown above. The indicator.miss sums a logical vector of length c, in
which an entry is TRUE if the imputed values are above the detection limit.

The element X.imputed of result.imputed list saves the imputed chemical values as an array,
where the first dimension is the number of subjects (n), the second is the number of chemicals (c),
and the third is the number of imputed datasets generated (K). Sample minima, means, and maxima
(calculated by function f()) between two imputed datasets indicate that datasets are different; so
when MI is applied, the parameter estimates should be different. Note that low values from Bayesian
imputation differ from low bootstrap values as in Example 3.

> apply(result.imputed$X.imputed, 2:3, f)
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, , Imputed.1

alpha-chlordane dieldrin gamma-chlordane lindane methoxychlor
min 2.359430e-03 3.086685e-01 1.691056 1.215282 1.540713
P.5 5.242831e-01 3.183691e+00 3.610778 2.600923 4.182447
mean 4.409886e+04 4.332269e+02 47.283406 16.800662 80.420552
max 1.735472e+07 4.867330e+04 139.336894 75.360498 316.071414

dde ddt pentachlorophenol pcb_105 pcb_118
min 2.768024e-02 0.482848 0.7046569 0.09017045 0.09142874
P.5 1.543214e+00 2.237090 2.7680096 1.16068653 1.30752584
mean 2.546653e+03 16.013644 20.1570964 16.48534459 9.68569878
max 3.835674e+05 178.853960 285.2293482 400.36011141 142.26195601

pcb_138 pcb_153 pcb_170 pcb_180
min 0.01173117 0.02468827 0.7360772 2.164636e-03
P.5 0.68685631 0.38681360 2.0959549 5.996663e-01
mean 12.61938196 13.81475010 11.5772453 8.412071e+00
max 269.09903138 383.79850341 115.2060922 2.038594e+02

, , Imputed.2

alpha-chlordane dieldrin gamma-chlordane lindane methoxychlor
min 8.514882e-03 4.098326e-01 1.462564 1.089740 1.425771
P.5 4.664125e-01 3.332290e+00 3.418596 2.638882 4.321919
mean 4.409886e+04 4.332296e+02 47.258091 16.797956 80.424921
max 1.735472e+07 4.867330e+04 139.336894 75.360498 316.071414

dde ddt pentachlorophenol pcb_105 pcb_118
min 5.568180e-02 0.9352681 0.297144 3.085055e-03 5.716621e-03
P.5 1.580193e+00 2.5371056 2.670481 1.110512e+00 1.215440e+00
mean 2.546663e+03 16.0346907 20.148387 1.648278e+01 9.684614e+00
max 3.835674e+05 178.8539599 285.229348 4.003601e+02 1.422620e+02

pcb_138 pcb_153 pcb_170 pcb_180
min 9.471776e-03 3.198244e-03 0.5399104 0.00652091
P.5 7.249506e-01 4.114339e-01 2.1037311 0.58501721
mean 1.262209e+01 1.381682e+01 11.5786930 8.41077395
max 2.690990e+02 3.837985e+02 115.2060922 203.85939377

The impute.univariate.bayesian.mi() function also returns the three entire MCMC chains: the
means of components, the standard errors, and the imputed missing values. The coda package, which
“provides functions for summarizing and plotting the output from . . . MCMC simulations”, saved
these MCMC chains as MCMC objects (Plummer et al., 2006).

Using the imputed datasets saved in array result.imputed$X.imputed, the do.many.wqs() func-
tion implements WQS regression on both datasets with a binary outcome, as in Example 3. The setup
is the same as before, but we are using Bayesian imputed datasets, as in result.imputed$X.imputed.
Similar to Example 3, the element, wqs.imputed.estimates, in the resulting bayes.wqs list contains
the WQS parameter estimates for each imputed dataset.

> set.seed(50679)
> bayes.wqs <- do.many.wqs(
+ y = simdata87$y.scenario, X.imputed = result.imputed$X.imputed,
+ Z = simdata87$Z.sim,
+ proportion.train = 0.5,
+ n.quantiles = 4,
+ B = 100,
+ b1.pos = TRUE,
+ signal.fn = "signal.converge.only",
+ family = "binomial"
+ )
> wqs.imputed.estimates <- bayes.wqs$wqs.imputed.estimates

#> Sample size: 1000; Number of chemicals: 14;
Number of completed datasets: 2; Number of covariates modeled: 4

Lastly, we can combine the multiple WQS estimates using the pool.mi() function, exactly as in
Example 3. The output, given in bayesian.est, returns the statistics of the combined estimates for
each WQS parameter and answers the research questions of interest (Table 2).
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> bayesian.est <- pool.mi(
+ to.pool = bayes.wqs$wqs.imputed.estimates,
+ n = nrow(simdata87$X.bdl),
+ prt = TRUE
+ )

#> Pooling estimates from 2 imputed analyses for 20 parameters.
pooled.mean pooled.total.se frac.miss.info CI.1 CI.2

alpha.chlordane 0.004 0.024 0.005 -0.044 0.051
dieldrin 0.020 0.066 0.327 -0.119 0.160
gamma.chlordane 0.011 0.036 0.019 -0.060 0.083
lindane 0.011 0.041 0.181 -0.072 0.094
methoxychlor 0.007 0.041 0.019 -0.073 0.087
dde 0.055 0.115 0.125 -0.174 0.284
ddt 0.269 0.247 0.836 -0.850 1.388
pentachlorophenol 0.147 0.250 0.859 -1.099 1.393
pcb_105 0.198 0.143 0.359 -0.109 0.506
pcb_118 0.016 0.055 0.037 -0.091 0.123
pcb_138 0.157 0.191 0.337 -0.250 0.564
pcb_153 0.024 0.081 0.057 -0.135 0.183
pcb_170 0.064 0.137 0.454 -0.249 0.378
pcb_180 0.016 0.051 0.273 -0.089 0.120
(Intercept) -1.828 0.447 0.314 -2.770 -0.885
Age -0.007 0.094 0.795 -0.373 0.358
Female -0.127 0.230 0.392 -0.631 0.378
Hispanic 0.517 0.228 0.276 0.044 0.989
Non.Hispanic_Others 0.134 0.282 0.509 -0.538 0.807
WQS 1.030 0.504 0.919 -2.441 4.501

P.value
alpha.chlordane 0.883
dieldrin 0.762
gamma.chlordane 0.761
lindane 0.791
methoxychlor 0.859
dde 0.632
ddt 0.395
pentachlorophenol 0.624
pcb_105 0.187
pcb_118 0.770
pcb_138 0.424
pcb_153 0.766
pcb_170 0.652
pcb_180 0.759
(Intercept) <0.001
Age 0.943
Female 0.593
Hispanic 0.034
Non.Hispanic_Others 0.650
WQS 0.233

Looking at the WQS estimate in bayesian.est, the odds ratio of the overall chemical mixture on
cancer is 2.8 with a 95% confidence interval between 0.09 and 90.15. The following chemicals, in which
their weight estimates are greater than 1/14, are considered an important and may be associated with
increased cancer risk.

> chemicals <- bayesian.est[1:14, ]
> row.names(chemicals)[chemicals$pooled.mean >= 1 / 14]

[1] "ddt" "pentachlorophenol" "pcb_105"
[4] "pcb_138"

To get an overall sense of how the Bayesian-imputed WQS models fit the data, the combine.AIC()
function combines the AIC calculated from Bayesian MI-WQS models (bayes.wqs$AIC).

> bayes.wqs$AIC
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[1] 660.7468 665.1193

> miWQS::combine.AIC(bayes.wqs$AIC)

[1] "662.9 +- 3.1"

The Bayesian MI-WQS model (AIC: 662.9 +- 3.1) has the same fit as the bootstrapped MI-WQS
(Example 3, AIC: 662.9 +- 3.1).

Recommendations in using miWQS package

We have integrated WQS regression into the MI framework in a flexible R package called miWQS
to meet a wide variety of needs (Figure 6). The data used in this package consist of a mixture of
correlated components that share a common outcome while adjusting for other covariates. The
correlated components in the set, X, may be complete or interval-censored between zero and low
thresholds, or detection limits, that may be different across the components. The common outcome, y,
may be modeled as binary, continuous, count-based, or rate-based and can be adjusted by the family
and offset arguments of estimate.wqs().

Additional covariates, Z, may be used in the bootstrap imputation and WQS models. However,
the univariate Bayesian model does not include covariate information in imputing the BDL values.
This makes any covariate confounders uncorrelated with the imputed concentrations BDL. Thereby,
the WQS regression coefficients, such as the weights and overall mixture effect, may be biased towards
zero (Forer, 2014; Little, 1992).

Another limitation of the univariate Bayesian and bootstrap imputation models is that the X’s are
imputed independently while the actual X’s are correlated. This makes the correlations among the
imputed BDL values of different components biased towards zero. One concern is that the mixture
with independently imputed BDL values may introduce some bias in the health effect estimate if a
large amount of BDL values is present. As an alternative, an imputation model could take advantage
of the correlations to impute a potentially more precise estimate (Dong and Peng, 2013; Little, 1992).
One such approach is the multivariate Bayesian regression imputation model, which we are evaluating
in ongoing work (Hargarten and Wheeler, 2020).

If X is interval-censored, the choice of the imputation technique depends on the majority vote
of BDL values among the components (Hargarten and Wheeler, 2020) (Figure 6). Previous literature
suggests ignoring any chemicals that have greater than 80% of its values BDL (Helsel, 2012, pg. 93)
(Bolks et al., 2014, pg. 14). When most chemicals have 80% of its values BDL, we suggest using the
BDLQ1 approach (Hargarten and Wheeler, 2020). When most chemicals have less than 80% of its
values BDL, the user should perform Bayesian or bootstrapping multiple imputation (Hargarten and
Wheeler, 2020). The miWQS package, though, still allows the user to perform single imputation.
Regardless of the technique used, researchers may use the miWQS package in order to detect an
association between the mixture and the outcome and to identify the important components in that
mixture.

Conclusion

Although environmental exposures data motivated us to develop the miWQS package, the package
may be applied to other areas in public health and medicine. Wheeler et al. (Wheeler et al., 2019a)
recently used WQS regression to estimate the effect of a SES index on childhood blood lead risk and
to find which socioeconomic variables are important. The correlated SES variables considered were
of these types: educational achievement, race, income, health, housing, and employment. The five
most important variables found were: percent of homes built before 1940, percent of not using Social-
Security income, percent of renter-occupied housing, percent unemployed, and percent of the African
American population (Wheeler et al., 2019a, pg.974). Other similar studies may be analyzed using the
miWQS package. To our knowledge, WQS has not yet been applied in analyzing a high-throughput
gene expression dataset. For instance, a GWAS is conducted to find genetic risks for complex disease
and to identify specific genes. Given that SNPs are correlated with each other (Ferber and Archer,
2015) and a binary or continuous health outcome, the miWQS package may be used to conduct a WQS
regression to address these research aims. In the years to come, researchers may add other imputation
models to our established computational structure in order to find components that impact human
health.
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Figure 6: A decision tree to help researchers in using the miWQS package. The package is flexible
and can meet a wide range of needs.

Computational details

The functions in miWQS package relied upon code developed in other packages on CRAN. The steps in
the estimate.wqs() function also relied upon other packages: the solnp() function in Rsolnp package
(Ghalanos and Theussl, 2015), the glm2() function in glm2 package (Marschner and Donoghoe, 2011,
pg. 2), the list.merge() function in rlist package (Ren, 2016), the format.pval() in Hmisc package
(Harrell, 2020), the gather() function from tidyr package (Wickham and Henry, 2020), and the ggplot2
package (Wickham, 2016). The impute.Lubin() function used the survival package (Therneau and
Lumley, 2015). The impute.univariate.bayesian.mi() function used: the rinvgamma() function in
the invgamma package (Kahle and Stamey, 2017), the rtruncnorm() function in truncnorm package
(Mersmann et al., 2020), the possibly() function in the purrr package (Henry and Wickham, 2020) and
the coda package (Plummer et al., 2006). Additionally, the ggcorr() function in the GGally produced
the heat map in Figure 2 (Schloerke et al., 2020).

This vignette is successfully processed using the following.

-- Session info ---------------------------------------------------

setting value
version R version 4.0.2 (2020-06-22)
os macOS 10.16
system x86_64, darwin17.0
ui X11
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language (EN)
collate en_US.UTF-8
ctype en_US.UTF-8
tz America/New_York
date 2021-01-20

-- Packages -------------------------------------------------------

package * version date lib source
coda 0.19-4 2020-09-30 [1] CRAN (R 4.0.2)
GGally * 2.0.0 2020-06-06 [1] CRAN (R 4.0.2)
ggplot2 * 3.3.3 2020-12-30 [1] CRAN (R 4.0.2)
glm2 1.2.1 2018-08-11 [1] CRAN (R 4.0.2)
gWQS 3.0.0 2020-06-23 [1] CRAN (R 4.0.2)
Hmisc 4.4-2 2020-11-29 [1] CRAN (R 4.0.2)
invgamma 1.1 2017-05-07 [1] CRAN (R 4.0.2)
knitr * 1.30 2020-09-22 [1] CRAN (R 4.0.2)
mi 1.0 2015-04-16 [1] CRAN (R 4.0.2)
mice 3.10.0 2020-07-13 [1] CRAN (R 4.0.2)
miWQS * 0.4.0 2020-07-27 [1] local
norm 1.0-9.5 2013-02-28 [1] CRAN (R 4.0.2)
purrr 0.3.4 2020-04-17 [1] CRAN (R 4.0.2)
rlist 0.4.6.1 2016-04-04 [1] CRAN (R 4.0.2)
rmarkdown 2.3 2020-06-18 [1] CRAN (R 4.0.2)
Rsolnp 1.16 2015-12-28 [1] CRAN (R 4.0.2)
rticles 0.16.1 2020-09-22 [1] Github (rstudio/rticles@b0bbbc0)
survival 3.1-12 2020-04-10 [1] CRAN (
tidyr 1.1.2 2020-08-27 [1] CRAN (R 4.0.2)
tinytex 0.26 2020-09-22 [1] CRAN (R 4.0.2)
truncnorm 1.0-8 2020-07-27 [1] Github (olafmersmann/truncnorm@eea186e)
wqs 0.0.1 2015-10-05 [1] CRAN (R 4.0.2)
yaml 2.2.1 2020-02-01 [1] CRAN (R 4.0.2)

[1] /Library/Frameworks/R.framework/Versions/4.0/Resources/library
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Abbreviations

• AIC: Akaike information criterion
• BDL: below the detection limit
• BDLQ1: placing the BDL values into the first quantile
• BMI: body mass index
• CRAN: the comprehensive R archive network
• DL: detection limit
• GWAS: genomic wide association study
• MCMC: Markov chain Monte Carlo
• MI: multiple imputation
• MI-WQS: multiple Imputation in connection with the weighted quantile sum regression
• SES: socioeconomic status
• SNPs: single nucleotide polymorphisms
• WQS: weighted quantile sum

Notation: + n sample size + c number of chemicals + K number of imputations
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Appendix

Deciding whether the overall mixture effect is positively or negatively related to the
outcome in WQS regression

A researcher must decide whether the overall mixture effect, β1, is positively or negatively related to
the outcome in WQS regression. One way is to perform a series of individual chemical regressions
and look at the sign of the regression coefficients. This is performed via the analyze.individually()
function. In each regression, the outcome y is regressed on the log of each chemical X and any
covariates Z using the glm2 package (Marschner and Donoghoe, 2011). Any missing values are
ignored. The arguments in analyze.individually() are the same as the arguments specified in
estimate.wqs(). In simdata87, our outcome is element y.scenario, the chemical mixture is X.true,
the covariates are contained in Z.sim. As the outcome in simdata87 is binary, we assign "binomial" to
the family argument. The analyze.individually() function returns a data frame that consists of: the
name of the chemical, the individual chemical effect estimate and its standard error, and an assessment
of the WQS model fit using the Akaike Information Criterion (AIC).

> analyze.individually(
+ y = simdata87$y.scenario, X = simdata87$X.true,
+ Z = simdata87$Z.sim, family = "binomial"
+ )

Chemical.Name Estimate Std.Error AIC
1 alpha-chlordane 0.128 0.018 1315.527
2 dieldrin 0.176 0.033 1339.606
3 gamma-chlordane 1.310 0.192 1319.118
4 lindane 0.817 0.139 1332.276
5 methoxychlor 1.056 0.150 1315.461
6 dde 0.169 0.025 1319.293
7 ddt 0.176 0.086 1365.064
8 pentachlorophenol 0.245 0.081 1360.018
9 pcb_105 -0.026 0.051 1368.984
10 pcb_118 0.332 0.072 1347.162
11 pcb_138 0.356 0.056 1325.112
12 pcb_153 0.308 0.046 1321.903
13 pcb_170 0.404 0.087 1346.696
14 pcb_180 0.311 0.059 1339.602

The sign of the estimates indicates whether the overall mixture effect should be positive or negative.
As most of the estimates are positive here, we will assume that the overall mixture is positively related
to the outcome. Then, we can set the b1.pos argument in estimate.wqs() to be TRUE. In terms of
model fit, the complete-data mixture WQS model in Example 1 with an AIC of 660 fits the data better
than any individual chemical model (see the AIC’s above).
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