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KSPM: A Package For Kernel
Semi-Parametric Models

by Catherine Schramm, Sébastien Jacquemont, Karim Oualkacha, Aurélie Labbe and Celia M.T.
Greenwood

Abstract Kernel semi-parametric models and their equivalence with linear mixed models provide
analysts with the flexibility of machine learning methods and a foundation for inference and tests of
hypothesis. These models are not impacted by the number of predictor variables, since the kernel
trick transforms them to a kernel matrix whose size only depends on the number of subjects. Hence,
methods based on this model are appealing and numerous, however only a few R programs are
available and none includes a complete set of features. Here, we present the KSPM package to fit
the kernel semi-parametric model and its extensions in a unified framework. KSPM allows multiple
kernels and unlimited interactions in the same model. It also includes predictions, statistical tests,
variable selection procedure and graphical tools for diagnostics and interpretation of variable effects.
Currently KSPM is implemented for continuous dependent variables but could be extended to binary
or survival outcomes.

Introduction

In the last decades, the popularity and accessibility of machine learning has increased as a result
of both the availability of big data and technical progress in computer science. The flexibility of
machine learning methods enables avoidance of assumptions about functional relationships, such as
strong linear or additive hypotheses, that are often involved in classical statistical models. However,
this flexibility and adaptability also limits the capacity to interpret results or make inference. When
understanding and inference are required, simpler statistical models are often preferred, as they are
easy to understand and implement. Methods from the machine learning field might better model
complex relationships, and yet would be more attractive if the results could be made interpretable.
With this goal in mind, Liu et al. (2007) clearly demonstrated the under-appreciated equivalence
between a machine learning tool and a classical statistic model through the link between kernel
semi-parametric models — developed first in the machine learning field — and more classical linear
mixed models. This equivalence allows analysts to take advantage of knowledge advances in both
the machine learning domain and the traditional statistical inference domain, including hypotheses
testing, when using kernel semi-parametric models (Table 1).

Features of kernel models

from traditional statistical models from machine learning models
¢ Inference, confidence/prediction inter- e No need to explicitly define
vals outcome-predictors relationship
¢ Tests, p values ¢ May deal with a large amount of

. . ) . data (big data and fat data)
¢ Information criteria (variable selection)

e Potential for reinforcement learn-

¢ Interpretation via estimation of func- ing

tional form of variable effects on out-
come

Table 1: Features of kernel models combine features from traditional statistical models and features
from machine learning models.

The kernel semi-parametric model assumes that the outcome is related to the set of variables
through an unknown smooth function, which is simply approximated by computing the similarity
matrix between subjects according to the set of variables and a chosen kernel function (i.e., the kernel
trick). Matrix size depends only on the number of subjects, making kernel models particularly suited
to datasets where the number of features is very large (p >> n). The equivalence between kernel
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semi-parametric models and linear mixed models motivates a score test, which is simple to implement,

for the simultaneous effect of all variables on the outcome.
Methods based on the kernel semi-parametric model and its extensions are appealing and nu-

merous, but only a few programs are available, and none includes a complete set of the features that
correspond to recent developments. Table 2 gives some examples of existing R packages according to

their features of interest.
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Table 2: Features incorporated in KSPM (Schramm, 2020), as well as in several other R packages for
kernel nonparametric or semiparametric models: coxme (Therneau, 2018), SKAT (Lee et al., 2017),
KRLS (Hainmueller and Hazlett, 2017), €1071 (Meyer et al., 2018) and SPA3G (Li and Cui, 2012a).
Adjustment refers to models including a kernel for adjusting the model on correlation structure
similarly to a random factor. User’s own kernel refers to a kernel function explicitly defined by the
user of the package, in contrast to traditional kernel functions that are already implemented in the
package. Single kernel test refers to the test of the joint effect of a set of variables on the outcome.
Test of interaction refers to the interaction between two sets of variables and its effect on the outcome.
Predictions refers to the possibility of displaying predictions with confidence and prediction intervals.
Interpretation plot refers to graphical tools for interpretation of individual effects of each variable in
the kernel on the outcome. Diagnostic plots refers to graphical tools based on residuals and leverage
measures to check the validity conditions of a model and identify outlier samples. Variable selection

refers to the implementation of a variable selection procedure.

Several packages in Table 2 were developed in the genetics field where interest often lies in testing
the contribution of a group of variables (variants) simultaneously, notably through the sequence
kernel association test (SKAT) for single nucleotide polymorphisms (Wu et al., 2011; Chen et al., 2016).
Extensions from single to multiple kernel model were motivated by (i) interaction tests (Li and Cui,

2012b; Wang et al., 2017; Ge et al., 2015; Marceau et al., 2015) and (ii) estimating the conditional effect
of one set of variables after adjusting for another set of variables, or after adjusting for population
structure (Oualkacha et al., 2013). The latter goal may be achieved easily using the Imekin() function
from the coxme package under mixed model theory where kinship matrix corresponds to the kernel
matrix measuring similarity between subjects, and defines the covariance matrix of the random effect

term.
predictions and they focus on a single kernel function. Traditionally, model interpretation has remained

an outstanding challenge of the machine learning field. However it has been recently demonstrated
that the kernel semi-parametric models can be used to interpret effects of variables on the outcome
through a graphical tool based on derivatives (Hainmueller and Hazlett, 2013) and this is implemented
in the KRLS package. When the kernel function and the corresponding approximated smooth function
are differentiable with respect to the variable of interest, pointwise derivatives capture the effect of

In the machine learning field, packages like e1071 have been developed to perform accurate

this variable on the outcome.
Since researchers may be interested in all of these features, we have consolidated them in the
R package KSPM. The package and a vignette including detailed examples are available from the
comprehensive R archive network (CRAN) at https:/ /CRAN.R-project.org/package=KSPM. Our
package, currently designed for continuous outcomes and normal errors, fits kernel semi-parametric
models and their extensions in a unified framework incorporating all the previously described model
fitting features and tests. It allows multiple kernels and unlimited interactions in the same model.
Although most popular kernel functions are available in the package, the user also has the option of
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designing and using his/her own kernel functions. Furthermore, whenever interest lies in prediction
or making inference from the model, diagnostic assessments of the model may be performed through
graphical tools to detect data points with large residuals or high leverage that may greatly influence
the results. Finally, we have also included a variable selection procedure based on Akaike’s and
Bayesian information criteria (AIC and BIC). These last two options are not included in other software
packages.

The KSPM package is a new tool for semi-parametric regression. It is not competing with other R
packages for semi- or non-parametric regression models since either our methods or our objectives are
different. Indeed, the estimation method involved in KSPM is based on regularized least squares in
the kernel Hilbert space and should not be confused with local kernel smoothing based on Nadaraya-
Watson estimator (np package, Racine and Hayfield (2020)). Similarly, KSPM is also different from
other smoothing methods connecting regression segments through knots among which we may cite
splines (mgcv package, Wood (2020)).

However, since the kernel semi-parametric model is equivalent to a linear mixed effect model,
our package could be compared to Ime4 (Bates et al., 2019) or nlme (Pinheiro et al., 2019) packages
for linear mixed effect models. Although it is possible to obtain similar inference from any variables
involved in a linear part of each model, and to obtain similar predictions from both overall models, loss
function maximization are different. Moreover, KSPM has the advantage of being easier-to-use as the
user does not need to compute kernel matrix nor matrix of interactions and provides interpretations
for variable effects that cannot be obtained with traditional packages.

Kernel semi-parametric models

Single kernel semi-parametric model

LetY = (Yq,.., Yn)T be a n x 1 vector of continuous outcomes where Y; is the value for subject i
(i=1,..,n),and X and Z are n x p and n x q matrices of predictors, such that Y depends on X and
Z = (z1,..,2.q) as follows:

Y=XB+h(Z)+e (1)

where B is a p x 1 vector of regression coefficients for the linear parametric part, /(.) is an unknown
smooth function and e is an n x 1 vector of independent and homoscedastic errors such as ¢; ~
N (0,02). Throughout this article, X8 will be referred to as the linear part of the model and we assume
that X contains an intercept. h(Z) will be referred to as the kernel part. The function /(.) need not be
explicitly specified but it is assumed to lie in Hy, the function space generated by a kernel function
k(.,.) which is, by definition, symmetric and positive definite. We note that K, the n x n Gram matrix
of k(.,.) such that K;; = k(z; , zj.), represents the similarity between subjects i and j according to Z. Of
note, in the estimation process, /(.) will be expressed as a linear combination of k(., .) (see Equation (7)).
See "Fitting the kernel semi-parametric model with kspm" for straightforward coding.

The multiple kernel semi-parametric model

Now suppose there are L matrices Zy, ..., Z} of dimension n X gy, ..., n X g respectively. Keeping a
similar notation, Y can be assumed to depend on X and Z, ..., Z as follows:

L
Y=XB+ Y h(Z)+e 2
(=1

where V¢ € {1, .., L}, hy is an unknown smooth function from #,, the function space generated
by a kernel function k/(.,.) whose Gram matrix is noted K;. We assume V¢ # m, hy(Zy) # hm(Zy)
either because Zy # Zy, or k¢(.,.) # km/(.,.) or both. Note that when L = 1, the model corresponds to
Equation (1).

Suppose there is an interaction between two sets of variables represented by Z; and Z,, n x g1 and
n X g matrices, and Y depends on X, Z; and Z; as follows:

Y =XB+h(Z1) +ha(Zy) + hia(Z1,Zy) +e 3)

where hy(.), ho(.) and hy5(.,.) are unknown smooth functions from Hy, , Hy, and Hy,, respectively.
The h15(.,.) function represents the interaction term if its associated kernel function k15(.,.) is defined
as the product of kernel functions k1 (.,.) and ky(.,.) as follows:

k1o ((Zl,Zz)i/ (erZZ)j) = k1(2z1i., Z15.) ¥ ka(22i, 22j.) 4)
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such that K1, = Kj ® Ky where © is the Hadamard product (Ge et al., 2015). Model (3) is a particular
case of the multiple kernel semi-parametric model (2) with L = 3, Z3 = (Z1,Z23), q3 = q1 + g2 and k3
= hyp. Of notes, in KSPM, different kernel choices can be made for k1(.,.) and k;(.,.). Obviously, this
2-way interaction model could be generalized to higher order interaction terms in a similar manner.

Link with linear mixed models

As shown by Liu et al. (2007), model (2) is equivalent, without additional conditions, to the following
linear mixed model:

L
Y=XB+ Y hy+e 5)
(=1
where V¢ € {1,...,.L}, hy ~ N (0, 7yK;) with K, is a matrix of similarity between subjects as defined
in model (2). Throughout the paper, we denote the variance parameters as 6 = (1, ..., TL,(T2) and

L
Y9 = Y. 1K, + 0?1, the variance-covariance matrix of Y, where I is the n x n identity matrix.
(=1

Estimation of parameters

The parameter estimates can be obtained either by maximizing the penalized log-likelihood associated
with the kernel semi-parametric model (2), or the log-likelihood derived from the corresponding linear
mixed model (5) (Liu et al., 2007). Even though the latter option may be computationally less time-
consuming, we implemented the KSPM package using a penalized log-likelihood associated with the
kernel semi-parametric model, because this method leads to an estimation of & useful for prediction,
and also leads to suitable approaches for interpretation through kernel derivatives. Estimation of
parameters is obtained by maximizing the penalized log-likelihood function:

n L 2 L
=51 (Y,- -xp- Y% hmi)) g LB, ©

where Aq, ..., Ap are tuning parameters associated with each smooth function #4(.), ..., hp(.) and
Il - H%_[A defines the inner product on Hy, space. According to the Representer theorem (Kimeldorf
<t

and Wahba, 1971), the functions hy, ..., hy satisfying Equation (6) can be expressed as:
n
Vee{1,.,L}, he() =) aik(,Zsy) @)
i=1

where V¢ € {1,...,.L}, ay = (&1, ..., a¢,) | is a n x 1 vector of unknown parameters. Estimating the
kernel semi-parametric model parameters consists in estimating a1, ...,y and . Then, estimators of
hi(.), ..., hp(.) are deduced from &;, ..., &;.

In KSPM, we estimate penalization parameters by minimizing the mean sum of squares of the
leave-one-out errors (LOOE). An advantage of LOOE compared to other cross-validation methods is
that we do not need to recompute new model(s), because its value may be derived directly from the
primary model parameters:

Y -,

Vi€ {1 n},  LOOEi(Ay,.Ar) = 7"
— Iy

®)

where Hj; is the it" diagonal element of the Hat matrix H such as Y = HY.

Penalization parameters and tuning parameters, if applicable, are estimated simultaneously during
the optimization algorithm, by minimizing the LOOE. If only one parameter needs to be estimated,
the convexity of the function to be minimized makes the problem easier and the convergence faster. In
that case, KSPM uses the standard optimize() function from the basic R package, based on the golden
section search algorithm (Brent, 2013). When several hyperparameters need to be estimated, the
resulting function to be minimized may not be convex. Hence, more complex optimization algorithms
should be envisaged, and KSPM uses the DEoptim() function from the DEoptim package (Ardia et al.,
2020) based on the differential evolution algorithm (Mullen et al., 2009). Given the random nature of
the algorithm, it would be safe to apply the algorithm several times to ensure convergence toward the
global minimum.
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Tests of hypotheses in KSPM

For either a single kernel or a multiple kernel semi-parametric model, a standard test of interest is
Hy : hy(.) =0, i.e., there is no effect, singly or jointly, of a set of variables on the outcome. Following
Liu et al. (2007), this test is equivalent to Hy : 7y = 0, a test of the variance component in the linear
mixed model (5) using the REML-based score test. The corresponding test statistic Q, follows a mixture
of independent chi-square distributions with one degree of freedom (Zhang and Lin, 2003). The KSPM
package uses exact distribution of Q, in single kernel model but in multiple kernel model, we use
Davies’ method to approximate this distribution (Davies, 1980). Based on similar methodology, KSPM
also provides the global test for multiple kernel semi-parametric models Hy : h1(.) = ... = hp(.) =0
ie., HQ = =1, = 0.

Interpretation of variable effects

A kernel represents similarity between subjects through combining a set of variables in a possibly
complex way, that may include their possible interactions. Hence the general effect of a kernel on an
outcome is hard to see and difficult to interpret. Nevertheless, the marginal effect of each variable
in the kernel may be illustrated using a partial derivative function (Hainmueller and Hazlett, 2013).
Indeed, the derivative measures how the change in a variable of interest impacts the outcome in an
intuitively understandable way. When a variable’s effect is linear, the interpretation is straightforward
since the derivative corresponds to standard slope (B) coefficients. In kernel semi-parametric models,
we are simultaneously modeling a set of variables. Therefore, when exploring the effect of any one
variable of interest, the other variables in the kernel must be taken into account. Thus, plotting
pointwise derivatives of the prediction for each subject against the value of the variable of interest
may help in interpreting the effect of this variable on the outcome. Although a variable-level summary
statistic may be obtained by averaging the pointwise derivatives across subjects (Hainmueller and
Hazlett, 2013), we did not implement this option in KSPM because the average can mask relevant
variability. For example, when positive and negative derivatives occur for the same variable, the
average may be zero.

The choice of kernel functions

In any kernel semi-parametric model, the smooth unknown function k,(.) is approximated using basis
functions from Hy,. Since the inner product of the basis functions corresponds to the kernel function
ky(.,.), the choice of the kernel determines the function space used to approximate /;(.). The KSPM
package includes the most popular kernel functions, described below. The linear kernel function
k(Z;,Zj) = ZIT Z; assumes that variables have a linear effect on outcome. It generates a linear function

space so that the kernel semi-parametric model leads to a penalized multiple linear model using an L?
norm (equivalent to a ridge regression). The polynomial kernel function k(Z;, Z]-) = (p ZiT Zi+ 'y)d
assumes that d*"-order products of the variables have a linear effect on the outcome, and is equivalent
to a d"-order interaction model. The Gaussian kernel function k(Z;, Zj) = exp(— || Zi = Z 112
/p) generates the infinite function space of radial basis functions. The sigmoid kernel function
k(Z;,Z;) = tanh(p ZZ-TZj + ) and the inverse quadratic kernel k(Z;, Z;) = (|| Z; — Z; |2 +7)"1/? are
also often cited in the literature. Finally, we propose also the equality kernel k(Z;, Z;) = 1 if Z; =
Z; and 0 otherwise. Of note, users can define their own kernel function in KSPM by providing the
corresponding kernel matrix. Some kernel functions, such as the linear or polynomial kernels, make
assumptions about the shape of the effect of the variables on the continuous outcome, whereas other
kernels like the gaussian may, in theory, handle all types of effects, regardless of their complexity.
Indeed, in contrast to the linear and polynomial kernels, the gaussian kernel function captures a kernel
space of infinite size leading to higher flexibility for approximation of k(.). If true effects are linear,
the linear kernel and gaussian kernel should converge toward similar results. However, in practice, if
sample size is low or noise is large, the gaussian kernel will tend to retain a sinusoidal shape to the fit
even when the truth is linear.

Kernel functions often involve tuning parameters; above, the parameters p and y were used to
indicate these kernel specific parameters. In practice, these tuning parameters are usually chosen by
the user. However, if user does not provide a value for these parameters, the KSPM package estimates
them at the same time as the penalization parameter(s), by minimizing the mean sum of squares of
LOOE. The choice of tuning parameters may strongly impact the results and modify the smoothness
of the fi(.) function leading to overfitting or underfitting. For example, with a p value that is too large,
the Gaussian kernel tends to lose its non-linear properties, whereas with p too small, it is very sensitive
to noise.

In general, the choice of tuning parameters may strongly impact the results With that in mind,
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sensitivity analyses may include a comparison of results obtained with different values for these
parameters. Also, comparing models based on information criteria such as AIC and BIC may help to
choose the kernel function and its tuning parameter(s).

Package presentation

The KSPM package provides an R interface to perform kernel semi-parametric models and is available
from the comprehensive R archive network (CRAN) at https:/ /CRAN.R-project.org/package=KSPM.
The package is called through the main function kspm() taking data and model hyperparameters as
inputs, fitting the model, and returning a model fit object of class "kspm".

Fitting the kernel semi parametric model with kspm

The main function of the package, kspm(), can fit the single or multiple kernel semi-parametric models
described in the earlier, as detailed below:

kspm(response, linear,kernel,data,...)

The argument response indicates a continuous outcome variable. It can be specified as a string
corresponding to the column name associated with the response in the dataset provided in the data
argument, as a vector of length 7, or as a 7 x 1 matrix containing the continuous values of the outcomes.
Of note, kspm does not deal with multivariate outcomes, and if an n x r (> 1) matrix is provided, only
the first column is used. Argument linear specifies the linear part of the model and could be either
a formula, a vector of length # if only one variable is included in the linear part, or an n x p design
matrix containing the p variables included in the linear part. By default, an intercept is added. To
remove the intercept term, the user should use the formula specification and add the term -1, as usual.
kernel specifies the kernel part of the model. Its argument should be a formula of Kernel object(s),
described below. For a multiple kernel semi-parametric model, Kernel objects are separated by the
usual signs "+", "*" and ": " to specify addition and interaction between kernels.

The Kernel object regroups all information about a kernel including the choice of kernel function
and its parameters. It is specified using the Kernel function as follows:

Kernel(x,kernel.function,scale,rho,gamma,d)

Argument x represents either the variables included in the kernel part of the model, or a kernel
Gram matrix. In the latter case, the user should specify kernel.function = "gram.matrix” and all
other arguments are not used. When x represents the variables included in the kernel part, it may be
specified as a formula, a vector, or a matrix, and kernel. function indicates which kernel function
should be used (e.g., "gaussian”, "polynomial”, ...). scale is a boolean indicating if variables should
be scaled before computing the gram matrix. The need for other arguments depends on the choice
of kernel function: rho and gamma are tuning parameters and d is the highest order in a polynomial
kernel function; these parameters correspond to the p, y and d introduced earlier. It is worth noting

that in a multiple kernel model, KSPM allows kernel objects to follow different formats.

Different options were considered for the interface with respect to specification of the linear and
kernel parts of the model. We decided to use an interface with separate formulae for the two parts.
This structure makes it straightforward to manage variables coming from different sources or data
structures within the package. For example, genetic data or high dimensional genomic data are often
provided in a matrix format, whereas other variables and phenotypes are saved in vectors or data
frames with meaningful variable names. This diversity of data source and format cannot be handled
by a unique formula. If data elements are assembled from different sources, they should include
the same individuals or observations (i = 1, .., n), with identical ordering; if not, kspm will return an
error. It is worth noting that the KSPM package does tolerate observations containing missing values,
although these observations will be removed prior to model fitting.

The function kspm returns an object of class "kspm” with summary () and plot() commands avail-
able, the first giving estimates and p-values and the second displaying diagnostic plots.

Methods applicable to objects of the class "kspm”

An object of class "kspm” results from a kernel semi-parametric model fit. It contains obviously
estimated coefficients, fitted values and residuals, but also information about kernels such as n x n
kernel matrices, hyperparameters, penalization parameters.

The "kspm"” object can be summarized or viewed using commands and methods very similar to
those implemented in "1m" or "glm".
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> methods(class = "kspm")
[1] case.names coef confint cooks.distance deviance
[6] extractAIC fitted loglik nobs plot
[11] predict print residuals rstandard sigma
[16] summary variable.names

see '?methods' for accessing help and source code

Predictions

A predict() command has been implemented for the class "kspm”.
predict.kspm(object,newdata.linear,newdata.kernel,interval,level)

where object refers to a "kspm” object. If a new dataset is not specified, predict. kspm will return
the fitted values from the original data. If predict.kspm is applied to a new dataset, all variables
used in the original model should be provided in the newdata.linear and newdata.kernel arguments.
newdata.linear should be a data frame, a vector or design matrix of variables used in the linear
part. newdata.kernel is a list containing data frames, vectors and /or design matrices for each kernel.
Formats depend on the ones previously used in model specification as shown in Table 3. For simplicity,
users may follow the list returned by the info.kspm() function.

kernel specifications new data specification

formula of g variables a data.frame with columns names corresponding to variables in-
cluded in the formula. Number of rows is n*, number of columns

isg
vector a vector of length n*
design matrix n x g a matrix n* X gq
kernel matrix n X n a matrix n* x n where cell 7, j represents the similarity between

new subject i and j* subject included in the model.

Table 3: How new data should be specified in predict.kspm, depending on original model specifica-
tions for n* new subjects. The first column refers to how the kernel is specified in the current model.
The second column refers to how the new data should be specified in the predict.kspm function.

In predict.kspm, interval can be either "none”, "confidence”, or "prediction” according to
whether the user wants a confidence or prediction interval. The level of confidence/prediction interval
is specified using the level argument. By default, level = 0.95 is used.

Variable selection procedures for the single kernel semi-parametric model

A variable selection procedure algorithm has been implemented for the class "kspm". It is similar to
the step() command existing for other regression packages.

stepKSPM(object,linear.lower,linear.upper,kernel.lower,kernel.lower,k,direction)

As before, object refers to a "kspm” object. However, in contrast to the generality allowed for fitting
a single kernel semi-parametric model, here the Kernel object should not be specified with the Gram
matrix option. The arguments of 1inear.lower, linear.upper, kernel.lower and kernel. lower are
formulae corresponding to the desired boundaries for the smallest and largest numbers of variables to
be included. As is standard in many R packages, all variables in the 1inear.lower and kernel.lower
formulae cannot be removed from the model and variables that are not in the linear.upper and
kernel.upper formulae cannot be added to the model. The procedure to select variables is based
on AIC or BIC depending on the value of k. If k is set to 2, AIC is used, if k is set to In(n), BIC is
used instead. The direction argument may be "forward” for a forward selection, "backward" for
a backward selection and "both"” for a stepwise selection. Our package was implemented so that
variable selection for the linear part and the kernel part of the model may be done simultaneously.
However, it is also possible to perform the variable selection procedure on each part separately by
giving the appropriate formula to 1inear.lower, linear.upper, kernel.lower and kernel.lower.

Of note, as for the standard stepAIC() function, this procedure can only be used on complete
observations. Thus missing data should be removed by the user prior to calling stepKSPM() so that
the number of observations is identical at each step.
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Graphical tools

The plot() method has been implemented for "kspm” and "derivatives.kspm" objects. The former
gives usual diagnostic plots including residual distribution, leverage, Cook’s distance,... The latter
gives interpretation plot from pointwise derivatives.

Example 1: the Movie ratings data

This first example illustrates the functions provided in KSPM included the model fit, the diagnotic
plot, the interpetation plot based on pointwise derivatives, the test of interaction as well as the variable
selection procedure.

The conventional and social media movies (CSM) dataset is available on the UCI machine learning
repository (https://archive.ics.uci.edu/ml/index.php) as well as in KSPM and is fully described
in Ahmed et al. (2015). It contains data on 232 movies from 2014 and 2015; the movies are described
in term of conventional features (sequel, budget in USD, gross income in USD, number of screens in
USA) as well as social media features (aggregate actor followers on Twitter, number of views, likes,
dislikes, comments of movie trailer on Youtube, sentiment score) in the aim of predicting ratings. In
all subsequent analyses, we used only the 187 entries without missing data.

> data("csm")
> head(csm)

Year Ratings Gross Budget Screens Sequel Sentiment  Views Likes
1 2014 6.3 9130 4.0e+06 45 1 @ 3280543 4632
2 2014 7.1 192000000 5.0e+07 3306 2 2 583289 3465
3 2014 6.2 30700000 2.8e+Q7 2872 1 0 304861 328
4 2014 6.3 106000000 1.1e+08 3470 2 @ 452917 2429
5 2014 4.7 17300000 3.5e+06 2310 2 @ 3145573 12163
7 2014 6.1 42600000 4.0e+07 3158 1 @ 3013011 9595
Dislikes Comments Aggregate.Followers
1 425 636 1120000
2 61 186 12350000
3 34 47 483000
4 132 590 568000
5 610 1082 1923800
7 419 1020 8153000

Predict ratings using conventional features

In our first model, we assume a gaussian kernel function to fit the joint effect of the conventional
features on ratings. Here we do not provide any value for the p parameter. It will be estimated at the
same time as the penalization parameter by minimizing the LOOE. We also do not provide a linear
argument, meaning that only an intercept will be included in the linear part of the model.

> csm.fit1 <- kspm(response = "Ratings”, kernel = ~Kernel(~Gross + Budget +
+ Screens + Sequel, kernel.function = "gaussian”), data = csm)
> summary(csm.fit1)

Call:

kspm(response = "Ratings”, kernel = ~Kernel(~Gross + Budget +
Screens + Sequel, kernel.function = "gaussian"),
data = csm)

Sample size:

n = 187
Residuals:
Min Q1 Median Q3 Max

-3.0066 -0.4815 0.0109 0.5534 2.1228
Coefficients (linear part):

Estimate Std. Error t value Pr(>|tl)
(Intercept) 6.297723  1.058707 5.948505 1.427565e-08
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Score test for non-parametric kernel:
lambda tau p-value
Ker1 ©.04804093 16.13793 5.625602e-06

Residual standard error: .88 on 175.82 effective degrees of freedom
Multiple R-squared: 0.2643, Adjusted R-squared: 0.2217

The summary output gives information about the sample size used in the model, the residual
distribution, the coefficient for the linear part (similar to other regression R packages), and the
penalization parameter and score test associated with the kernel part. The kernel results indicate that
the conventional features are strongly associated with ratings. In such a complex model, the number
of free parameters — i.e., the standard definition of the degrees of freedom of a model - is undefined,
and we use instead the effective degrees of freedom of the model, which is not necessarily a whole
number. However, our definition for effective degrees of freedom is similar to the one used in linear
regression models and depends on the trace of the hat matrix. The p parameter may be extracted using
the following code:

> csm.fit1$kernel.info$Ker1$rho

pari
61.22

This value alone may not provide much information about linearity of the kernel function. How-
ever interpretation is feasible when comparing gaussian kernel functions with different p parameter
values, or when comparing the gaussian and linear kernel functions.

The plot () command may be applied to the model to display diagnostic plots. Figure 1 has been
generated using the following code:

> par(mfrow = c(2,2), mar = c(5, 5, 5, 2))

> plot(csm.fit1, which = c(1, 3, 5), cex.lab = 1.5, cex = 1.3, id.n =7)
> hist(csm$Ratings, cex.lab = 1.5, main = "Histogram of Ratings", xlab =
+ "Ratings")

Outlier points are annotated and we can see movie 134 (Jurassic World) has high leverage. Also
of note, the lower tail of the residuals distribution is not as expected for a Normal distribution. The
histogram of ratings shows that the deviation could be due to the left skewed distribution of the
response variable.

The derivative function may help to interpret the effect of each variable individually on the
outcome. Indeed, the sign of the derivatives captures variational changes of the effect of the variable
on the outcome. To illustrate this feature, Figure 2 displays the derivatives for Gross income, Budget
and Screens. It has been generated with the following code:

according to Number of Screens \n and Sequel”)
legend("topleft”, fill = palette()[1:7]1, legend = 1:7, title = "Sequel”,
horiz = TRUE)

> par(mfrow = c(1,2), mar = c(5,5,5,2))

> plot(derivatives(csm.fitl1), subset = "Gross", cex.lab = 1.5, cex = 1.3,
+ main = "Pointwise derivatives according to Gross Income")

> plot(derivatives(csm.fit1), subset = "Screens"”, col = csm$Sequel,

+ cex.lab = 1.5, cex = 1.3, pch = 16, main = "Pointwise derivatives

+

>

+

By default, the X-axis label gives the name of the variable and, in brackets, the kernel in which it is
included. When only one kernel is included in the kernel, it is named Ker1. Because genre and sequel
variables, even if they are numeric, refer to categorical variables, it is possible to easily highlight some
patterns of interaction between these variables and the others. Derivatives according to Gross income
are mostly positive meaning that higher Gross income is associated with higher ratings. However
the slope of this effect decreases as the gross income grows. It is difficult to interpret the derivatives
for Gross income higher than 2.5e+08 since this category includes only a few movies. Based on the
display in the right panel, whether a movie has sequels seems to interact with the effect of the number
of screens on the ratings. Indeed when the movie is the first or second release (Sequel = 1 or 2), the
derivatives are always negative meaning that as the number of screens on which the movie is released
increases, the ratings tend to decrease. However, this relationship seems to be stronger for the first
release than the second. No clear pattern can be observed for subsequent sequels. It is difficult to
know if this reveals an absence of effect or whether there are simply too few movies past sequel 2 in
these data.
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Figure 1: Diagnostic plots of CSM data. Plots at the top left, top right and bottom left were obtained
with plot.kspm. They represent respectively residuals against fitted values, the normal Q-Q plot of
residuals and residuals against leverage with the Cook’s distance information. Plot at the bottom right
represents the distribution of ratings in the database.
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Figure 2: Derivative plots on CSM data obtained with plot.derivatives. Each point corresponds to
an observation. Plot on the left represents the pointwise derivatives according to the Gross income
variable. Plot on the right represents the pointwise derivatives according to the Screens variable and
are colored according Sequel variable showing a probable interaction between Screens and Sequel.

To help in the choice of the kernel function, we may compare several models by using information
criteria. As an example, we fit a second model assuming a polynomial kernel function with fixed
tuning parameters (p = 1, ¥ = 1 and d = 2). This model can be compared to the previous one using
information criteria such as the AIC or BIC. By default the extractAIC() command gives the AIC.

> csm.fit2 <- kspm(response = "Ratings”, kernel = ~Kernel(~Gross + Budget +
+ Screens + Sequel, kernel.function = "polynomial”, rho = 1, gamma = 1,
+ d = 2), data = csm, level = 0)

> extractAIC(csm.fit1)

[1] 941.4521
> extractAIC(csm.fit2)
[1] 944.4618

Here, we concluded that gaussian kernel function fits our data better than the polynomial kernel
function, given the tuning parameters we considered.

Adding social media features to the model: a model with kernel interaction

Now, we assume a model with two kernel parts, one for conventional features and one for social
media features, as well as their interaction. We propose to use the gaussian kernel function for each
set of features, although different kernels could be used. The hyperparameters we chose are those
obtained for each kernel separately.

> csm.fit3 <- kspm(response = "Ratings”, linear = NULL, kernel = ~Kernel(~

+ Gross + Budget + Screens + Sequel, kernel.function = "gaussian”,

+ rho = 61.22) * Kernel(~ Sentiment + Views + Likes + Dislikes + Comments +
+ Aggregate.Followers, kernel.function = "gaussian”, rho = 1.562652),

+ data = csm)

While the model is running, R returns a summary of the kernel part(s) and interaction(s) included
in the model.

The model includes the following kernels:
Ker1

Ker?2

Ker1:Ker2
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Details:

Ker1: ~Kernel(~Genre + Gross + Budget + Screens + Sequel,
kernel.function = "gaussian”, rho = 55.5897)

Ker2: ~Kernel(~Sentiment + Views + Likes + Dislikes + Comments +
Aggregate.Followers, kernel.function = "gaussian”, rho = 1.562652)

As defined by model (4), the summary () command will return the p value of tests Hy : h1(.) =0,
Hy : hp(.) = 0and Hy : h1p(.) = 0. By default all tests are performed. However, if our interest lies only
in the test of interaction, the kernel. test option may be used to choose the test of interest and reduce
the computation time. If interest lies in the global test Hy : 1 (.) = ha(.) = h12(.) = 0, the global . test
option should be set at TRUE.

> summary(csm.fit3, kernel.test = "Ker1:Ker2", global.test = TRUE)

Call:

kspm(response = "Ratings”, linear = NULL, kernel = ~Kernel(~Gross +
Budget + Screens + Sequel, kernel.function = "gaussian”,
rho = 61.22) * Kernel(~Sentiment + Views + Likes + Dislikes +
Comments + Aggregate.Followers, kernel.function = "gaussian”,
rho = 1.562652), data = csm)

Sample size:

n = 187
Residuals:
Min Q1 Median Q3 Max

-1.4185 -0.3396 0.0112 0.3291 1.3597

Coefficients (linear part):
Estimate Std. Error t value Pr(>|t])
(Intercept) 4.548524 1.256813 3.619095 0.0004324838

Score test for non-parametric kernel:
lambda tau p-value
Ker1:Ker2 187 ©.00208359 0.7376828

Global test: p-value = 6e-04

Residual standard error: .62 on 121.17 effective degrees of freedom
Multiple R-squared: 0.7452, Adjusted R-squared: 0.6089

Adding social media features to the model improved the predictions as indicated by the adjusted
R2. However the smooth function associated with the kernel interaction does not significantly differ
from the null, leading to the conclusion that there is no interaction effect between conventional and
social media features on the ratings.

Suppose now, we want to predict the ratings that will be attributed to the three artificial movies
described in tables 4 and 5 below, according to the model csm. fit3.

Gross Budget Screens Sequel

Moviel 5.0e+07 1.8e+08 3600 2
Movie 2 50000 5.2e+05 210 1
Movie 3 10000 1.3e+03 5050 1

Table 4: The conventional features of three artificial movies. Rows represent the new movies and
columns represent the features.

> newdata.Ker1l <- data.frame(Gross = c(5.0e+07, 50000, 10000),

+ Budget = c(1.8e+08, 5.2e+05, 1.3e+03), Screens = c(3600, 210, 5050),
+ Sequel = c(2, 1, 1))

> newdata.Ker2 <- data.frame(Sentiment = c(1, 2, 10), Views = c(293021,

+ 7206, 5692061), Likes = c(3698, 2047, 5025), Dislikes = c(768, 49,
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Sentiment Views Likes Dislikes Comments Aggregate.Followers

Movie 1 1 293021 3698 768 336 4530000
Movie 2 2 7206 2047 49 70 350000
Movie 3 10 5692061 5025 305 150 960000

Table 5: The social media features of three artificial movies. Rows represent the new movies and
columns represent the features.

+ 305), Comments = c(336, 70, 150), Aggregate.Followers = c(4530000,
+ 350000, 960000))
> predict(csm.fit3, newdata.kernel = list(Ker1l = newdata.Kerl, Ker2 =
+ newdata.Ker2), interval = "prediction”)

fit lwr upr

1 4.682560 3.147755 6.217365
2 6.401853 5.100309 7.703396
3 6.128641 4.395417 7.861864

The output of the predict() function gives the predicted values (fit) and the lower (1wr) and
upper (upr) bounds of prediction intervals.

We may obtain the predictions for the original data directly from the model or from the predict()
function. With the latter, confidence intervals may be additionally obtained.

pred <- csm.fit3$fitted.value
pred <- predict(csm.fit3, interval = "confidence")
plot(csm$Ratings, pred$fit, xlim = c(2, 10), ylim = c(2, 10),
xlab = "Observed ratings”, ylab = "Predicted ratings"”, cex.lab = 1.3)
abline(a = @, b =1, col = "red", 1ty = 2)

vV + V V V

10

Predicted ratings

Observed ratings

Figure 3: Predicted versus observed ratings in CSM dataset. Red dotted line represents a perfect
concordance between predictions and observations.

Figure (3) shows that for smaller values, the model overestimates the outcome. This is again
probably due to the left skewness of the outcome distribution.

An example of the variable selection procedure

Suppose we fit a single kernel semi-parametric model with a gaussian kernel to adjust the social media
features in the CSM data. The kernel part contains the set of social media features. We want to select
the relevant variables to be included in the kernel. We therefore can perform a stepwise variable
selection procedure based on AIC, while letting p vary at each iteration. To do so, we first fit the full
model including all features.
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> csm.fit4 <- kspm(response = "Ratings"”, kernel = ~Kernel(~ Sentiment + Views
+ + Likes + Dislikes + Comments + Aggregate.Followers, kernel.function =
+ "gaussian”), data = csm)

Then, we apply the stepKSPM() command on the full model as follows.

> stepKSPM(csm.fit4, kernel.lower = ~1, kernel.upper = ~ Sentiment + Views
+ + Likes + Dislikes + Comments + Aggregate.Followers, direction = "both",
+ k = 2, kernel.param = "change"”, data = csm)

At each iteration, R returns the current model, and the list of variables that may be added or
removed.

Start: AIC = 913.2

Linear part: ~ 1

Kernel part: ~ Sentiment + Views + Likes + Dislikes + Comments +
Aggregate.Followers

Part AIC
- Sentiment kernel 910.8282
<none> 913.1769
- Views kernel 913.9753
- Likes kernel 917.6532
- Comments kernel 921.2163
- Aggregate.Followers kernel 925.4491
- Dislikes kernel 969.4304

Step: AIC = 910.8
Linear part: ~ 1
Kernel part: ~ Views + Likes + Dislikes + Comments + Aggregate.Followers

Part AIC
- Views kernel 905.2908
<none> 910.8282
+ Sentiment kernel 913.1769
- Aggregate.Followers kernel 915.5481
- Likes kernel 916.8125
- Comments kernel 921.9627
- Dislikes kernel 970.3804

Step: AIC = 905.3
Linear part: ~ 1
Kernel part: ~ Likes + Dislikes + Comments + Aggregate.Followers

Part AIC
<none> 905.2908
+ Views kernel 910.8282
+ Sentiment kernel 913.9753
- Aggregate.Followers kernel 916.0224
- Comments kernel 917.8758
- Likes kernel 925.0230
- Dislikes kernel 968.2502

The final model includes the variables Likes, Dislikes, Comments and Aggregate.Followers.

Example 2: Consumption of energy data

Our second example illustrates how KSPM may be efficient with complex data as time series and
show how the choice of tuning parameters impacts the results.

The energy data is a set of data on energy consumption each hour on Ouessant island (France) from
September the 13th, 2015 to October the 4th, 2015, that were made publicly available by Electricité de
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France at https:/ /iles-ponant-edf-sei.opendatasoft.com. The data set also contains corresponding me-
teorologic data such as temperature (Celsius degrees), pressure (Pa) and humidity rate (g/ m?). These
measures are collected by Meteo France every 3 hours and are publicly available on www.infoclimat.fr.
We obtained hourly values by linear interpolation. In total the data set contains 504 measurements.

> data("energy")
> head(energy)

power date T P HR hour hour.num
1 526.1667 2015-09-13 12.43333 1007.933 81.66667 0@1h 1
2 495.0000 2015-09-13 12.36667 1007.167 82.33333 0@2h 2
3 446.1667 2015-09-13 12.30000 1006.400 83.00000 03h 3
4 365.8333 2015-09-13 12.30000 1005.833 82.66667 04h 4
5 341.0000 2015-09-13 12.30000 1005.267 82.33333 05h 5
6 352.3333 2015-09-13 12.30000 1004.700 82.00000 06h 6

These data demonstrate strong periodicity depending on time of day (Figure 4). Of note, if data had
been collected for a period longer than one year, a second periodicity would be visible corresponding
to seasons.
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Figure 4: Pattern of energy consumption over the entire data set from Ouessant island (Left) and on
the three first days (Right). The power is observed each hour and show a one day periodicity.

We will consider the 408 first measurements (17 days) as the training set. The others 4 days will be
used as a test set, where we want to predict the energy consumption.

> energy_train_ <- energy[1:408, ]
> energy_test_ <- energy[409:504, ]

Modeling

We fit a single kernel semi-parametric model to the training data. We assume that energy depends
linearly on temperature (T), and therefore this variable is included in the linear part of the model. The
other meteorologic data, as well as hours in 24-hour numeric format, are included in the kernel part of
the model. We used a gaussian kernel and we left the p parameter free to be estimated by the model.

> energy.fitl <- kspm(response = "power"”, linear = ~T, kernel = ~Kernel(~
+ hour.num + P + HR, kernel.function = "gaussian"”) , data = energy_train_)
> energy.fit1$kernel.info$Ker1$rho

parl
0.7028723
Impact of the p parameter on derivatives and predictions

We recomputed the model using other values for the p parameter to explore sensitivity of the results
to this key kernel parameter. Values were chosen tenfold larger and smaller than the estimated value
of 0.70 in energy. fit1.

> energy.fit2 <- kspm(response = "power”, linear = ~T, kernel = ~Kernel(~
+ hour.num + P + HR, kernel.function = "gaussian”, rho = 7) , data =
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+ energy_train_)

> energy.fit3 <- kspm(response = "power”, linear = ~T, kernel = ~Kernel(~

+ hour.num + P + HR, kernel.function = "gaussian”, rho = 0.07) , data =
+ energy_train_)

Figure 5 displays the predictions obtained on both the training and test data sets, as well as the
derivatives, as a function of the hours variable, for the three models energy.fit1, energy.fit2 and
energy.fit3 that differ only on the value of the tuning parameter p.
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Figure 5: Predictions and derivatives obtained for different values of p in the energy dataset. Predic-
tions on training data set are displayed with confidence intervals, whereas predictions on test data
set are displayed with prediction intervals. The first row corresponds to the model energy.fit1 with
estimated p = 0.7. The second row corresponds to a tenfold smaller p = 0.07 (overfitting) and third
row corresponds to a tenfold larger p = 7 (underfitting). The last column shows how the choice of p
impacts the derivatives.

The first row of Figure 5 corresponds to the model with the value of p estimated by the model.
Predictions fit well for both the training and the test sets. The derivative graph shows that between
6h00 and 12h00 and between 18h00 and 23h00 the derivatives are positive. This result is coherent
with the increase of energy consumption during these times of the day (Figure 4-Right). Inversely
between 0h00 and 6h00 and between 12h00 and 18h00, the energy consumption decreases as showed
by negative values of derivatives. One might have expected that derivative values should be close
between 0h00 and 23h00 but the peak consumption observed at 23h00 everyday (Figure 4) is probably
associated with a sudden change in derivative values that is difficult to smooth accurately.

This example shows how a gaussian kernel function may handle complex functional data. However
the choice of the p parameter may influence the results. A higher p leads to a smoother approximation
of hi(.) and worsens the predictions. Indeed, a higher p may perfectly fit the training data set, but
this corresponds to a case of model overfitting, which results in biased predictions in the test set. In
contrast, a lower p may lead to underfitting of training and test data sets. The choice of the p parameter
also impacts the derivatives; indeed a higher p induces more noise among the derivatives.

Example 3: Gene-gene interaction

This example shows how the interaction test may be applied to gene-gene interaction using standard
linear kernel and SNPs involved in genes.
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We simulated a data of 300 subjects and 9 SNPs, 6 belonging to gene A and 3 belonging to gene B,
using the glSim() function into the adegenet R package (Jombart and Ahmed, 2011). SNPs are coded
0, 1 or 2 according to the number of alleles of each type carried by the subject. A continuous outcome
was simulated as a linear combination of the interaction terms between the 6 SNPs of gene A and the
three SNPs of gene B, where the weight coefficients where randomly and uniformly chosen in the
interval [—2;0]. We added an intercept of 100 and a normally distributed error of mean 0 and standard
deviation 15. Code details are available in Supplement S1.

Let y be the vector of continuous outcomes, geneA be the 300 x 6 matrix of SNPs belonging to gene
A and geneB be the 300 x 3 matrix of SNPs belonging to gene B.

We test the interaction between the genes using the code below. Of note, in this example, the data
are specified using vector and design matrices instead of using formulae and data frame as in previous
examples.

> gene.fit <- kspm(response =y, kernel = ~ Kernel(geneA, kernel = "linear")

+ * Kernel(geneB, kernel = "linear"))

> summary(gene.fit, kernel.test = "Ker1:Ker2")

Call:

kspm(response =y, kernel = ~Kernel(geneA, kernel = "linear"”) *
Kernel(geneB, kernel = "linear"))

Sample size:

n = 300
Residuals:
Min Q1 Median Q3 Max

-34.1111 -8.7300 -1.1659 9.7299 38.6887

Coefficients (linear part):
Estimate Std. Error t value Pr>|tl])
(Intercept) 88.80183 ©.8178659 108.5775 2.531469e-231

Score test for non-parametric kernel:
lambda tau p-value
Ker1:Ker2 199.4587 ©0.9862838 0.006646781

Residual standard error: 14.03 on 280.74 effective degrees of freedom
Multiple R-squared: ©.2387, Adjusted R-squared: 0.1892

The result suggests that genes A and B impact the continuous outcome y through their interaction.

Summary

This new KSPM package provides a flexible implementation of the kernel semi-parametric model and
its extensions in a unified framework, using nomenclatures similar to other regression R packages.
Thanks to the kernel trick, such a model is useful when interest lies in prediction and our predict()
command makes this easy. Nevertheless, inference is also possible through the confidence intervals
and tests provided by the package, such as through the summary () command. Moreover, we have pro-
vided many options for model diagnostics (residuals, leverage, ...), model interpretation (derivatives,
...) and model comparisons (AIC, stepwise, ...).

Model estimation for multiple kernel model is based on an iterative estimation of regression
parameters we develop and prove in Supplement S2. Penalization and tuning parameter estimation
involves optimize() and DEoptim() functions. The both integrate C code ensuring a faster convergence
of the algorithms. However, the overall KSPM algorithm includes inversion of n X n matrices, thereby
resulting in slower optimization as 1 increases. It would improve KSPM’s performance to combine
matrix inversion code and optimization code in a single efficient set of C code and we are considering
this for a future implementation. It is worth noting, however, that computation time is not severely
impacted by the number of predictors evenif n << g.

In the KRLS package, Hainmueller and Hazlett (2013) proposed a marginal test for the individual
effect of each variable included in the kernel. We decided not to implement this test in our package since
the marginal effect may mask interesting but symmetric effects of a variable on the continuous outcome.
However, we have implemented a test of hypothesis based on variance components to test the joint
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effect of a set of variables on the continuous outcome. The distribution of this test statistic follows
a mixture of x? distributions that we approximated using Davies’ method (Davies, 1980), available
through the CompQuadForm package (de Micheaux, 2017; Duchesne and de Micheaux, 2010). The
distribution can also be approximated by a scaled chi-squared distribution using Satterthwaite’s
method where parameters are computed by moment matching. Schifano et al. (2012) compared the
two approximation methods on the type-I error rate in a single kernel semi-parametric model and
showed that the rate is inflated with Satterthwaite’s method when the a-level is low, and therefore
we recommend the Davies method. To assess global testing of multiple kernels, we implemented a
sum of the L single-kernel test statistics as an overall test statistic. In general, the computation of the
p value of this overall test involves the joint distribution of (Q1, ... Qr). To derive analytical values for
the overall p value, one can use techniques similar to those used in Sun et al. (2019), which relied on a
copula-based model to approximate this joint distribution. This last option is not yet implemented in
KSPM.

For all our tests, the model has to be re-estimated under the null hypothesis for the kernel of
interest. If the resulting null model still contains one or more kernel part(s), we made the choice
to recompute penalization parameter(s), since this choice ensures an optimized model under the
null hypothesis. However, we have also decided to leave the kernel tuning parameters fixed when
re-estimating under the null. Indeed, a change in tuning parameters induces a change in the choice of
kernel functions - and thus in model assumptions - and hence, keeping the tuning parameters fixed
ensures comparability of model assumptions under the null and the alternative hypotheses.

In our KSPM package, we have also included an algorithm for selection of variables based on
these information criteria. Backward, forward or stepwise approaches can be chosen for single kernel
semi-parametric models. Although these concepts may be easily extended to the case of multiple
kernel models, such analyses require large computing times. Parallelization of such a process may
greatly increase the appeal of this procedure. For now, we recommend investigating variables within
a single kernel before starting to fit multiple kernel models.

In summary, the KSPM package is a flexible comprehensible option for studying the effects of
groups of variables on a continuous outcome. These tools may be extended to the case of binary or
survival outcomes in future work.

Acknowledgements

CS was supported by the Institute for Data Valorization (IVADO) fellowship. CG was supported
by the Ludmer Centre for Neuroinformatics and Mental Health, the Canadian Institutes for Health
Research, as well as the CIHR PJT 148620 grant. SJ is a recipient of a Canada Research Chair in
neurodevelopmental disorders, and a chair from the Jeanne et Jean Louis Levesque Foundation. This
research was enabled in part by support provided by Calcul Quebec (http://www.calculquebec.ca)
and Compute Canada (www.computecanada.ca). This work is supported by a grant from the Brain
Canada Multi-Investigator initiative and CIHR grant 159734 (SJ, CMTG). This work was also supported
by an NIH award U01 MH119690 granted (S]) and U01 MH119739.

Bibliography

M. Ahmed, M. Jahangir, H. Afzal, A. Majeed, and I. Siddiqi. Using crowd-source based features
from social media and conventional features to predict the movies popularity. In IEEE International
Conference on Smart City/Social Com/SustainCom (SmartCity), pages 273-278. IEEE, 2015. URL https:
//doi.org/10.1109/SmartCity.2015.83. [p89]

D. Ardia, K. Mullen, B. Peterson, and J. Ulrich. DEoptim: Global Optimization by Differential Evolution,
2020. URL https://CRAN.R-project.org/package=DEoptim. R package version 2.2-5. [p85]

D. Bates, M. Maechler, B. Bolker, and S. Walker. Ime4: Linear Mixed-Effects Models using 'Eigen’ and 54,
2019. URL https://CRAN.R-project.org/package=1me4. R package version 1.1-21. [p84]

R. P. Brent. Algorithms for Minimization without Derivatives. Prentice-Hall, Englewood Clifts, New
Jersey, 2013. [p85]

J. Chen, W. Chen, N. Zhao, M. C. Wy, and D. J. Schaid. Small sample kernel association tests for
human genetic and microbiome association studies. Genetic epidemiology, 40(1):5-19, 2016. URL
https://doi.org/10.1002/gepi.21934. [p83]

R. B. Davies. Distribution of a linear combination of chi-square random variables: Algorithm as 155.
Applied Statistics, 29(3):323-33, 1980. [p86, 99]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859


https://CRAN.R-project.org/package=CompQuadForm
https://doi.org/10.1109/SmartCity.2015.83
https://doi.org/10.1109/SmartCity.2015.83
https://CRAN.R-project.org/package=DEoptim
https://CRAN.R-project.org/package=lme4
https://doi.org/10.1002/gepi.21934

CONTRIBUTED RESEARCH ARTICLE 100

P. L. de Micheaux. CompQuadForm: Distribution Function of Quadratic Forms in Normal Variables, 2017.
URL https://CRAN.R-project.org/package=CompQuadForm. R package version 1.4.3. [p99]

P. Duchesne and P. L. de Micheaux. Computing the distribution of quadratic forms: Further compar-
isons between the Liu-Tang-Zhang approximation and exact methods. Computational Statistics and
Data Analysis, 54:858-862, 2010. URL https://doi.org/10.1016/].csda.2009.11.025. [p99]

T. Ge, T. E. Nichols, D. Ghosh, E. C. Mormino, J. W. Smoller, M. R. Sabuncu, and the Alzheimer’s
Disease Neuroimaging Initiative. A kernel machine method for detecting effects of interaction
between multidimensional variable sets: An imaging genetics application. Neuroimage, 109:505-514,
2015. URL https://doi.org/10.1016/j.neuroimage.2015.01.029. [p83, 85]

J. Hainmueller and C. Hazlett. Kernel regularized least squares: Reducing misspecification bias with a
flexible and interpretable machine learning approach. Political Analysis, 22(2):143-168, 2013. [p83,
86, 98]

J. Hainmueller and C. Hazlett. KRLS: Kernel-Based Regularized Least Squares, 2017. URL https://CRAN.R-
project.org/package=KRLS. R package version 1.0-0. [p83]

T. Jombart and I. Ahmed. Adegenet 1.3-1: New tools for the analysis of genome-wide SNP data.
Bioinformatics, 2011. URL https://doi.org/10.1093/bioinformatics/btr521. [p98]

G. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. Journal of mathematical
analysis and applications, 33(1):82-95, 1971. URL https://doi.org/10.1016/0022-247X(71)90184-3.
[p85]

S. Lee, with contributions from Larisa Miropolsky, and M. Wu. SKAT: SNP-Set (Sequence) Kernel
Association Test, 2017. URL https://CRAN.R-project.org/package=SKAT. R package version 1.3.2.1.

[p83]

S.Liand Y. Cui. SPA3G: R Package for the Method of Li and Cui (2012), 2012a. URL https://CRAN.R-
project.org/package=SPA3G. R package version 1.0. [p83]

S. Li and Y. Cui. Gene-centric gene-gene interaction: A model-based kernel machine method. The
Annals of Applied Statistics, 6(3):1134-1161, 2012b. URL https://doi.org/10.1214/12-A0AS545.

[p83]

D. Liu, X. Lin, and D. Ghosh. Semiparametric regression of multidimensional genetic pathway data:
Least-squares kernel machines and linear mixed models. Biometrics, 63(4):1079-1088, 2007. URL
https://doi.org/10.1111/3j.1541-0420.2007.00799.x. [pSZ, 85, 86, 105]

R. Marceau, W. Lu, S. Holloway, M. M. Sale, B. B. Worrall, S. R. Williams, F-C. Hsu, and J.-Y. Tzeng.
A fast multiple-kernel method with applications to detect gene-environment interaction. Genetic
epidemiology, 39(6):456—468, 2015. URL https://doi.org/10.1002/gepi.21909. [p83]

D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch. e1071: Misc Functions of the
Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien, 2018. URL https:
//CRAN.R-project.org/package=e1071. R package version 1.7-0. [p83]

K. M. Mullen, D. Ardia, D. L. Gil, D. Windover, and J. Cline. Deoptim: An R package for global
optimization by differential evolution. Journal of Statistical Software, 40(6):1-26, 2009. URL http:
//www. jstatsoft.org/v40/i06/. [p85]

K. Oualkacha, Z. Dastani, R. Li, P. E. Cingolani, T. D. Spector, C. ]. Hammond, J. B. Richards, A. Ciampi,
and C. M. Greenwood. Adjusted sequence kernel association test for rare variants controlling for
cryptic and family relatedness. Genetic epidemiology, 37(4):366-376, 2013. URL https://doi.org/10.
1002/gepi.21725. [p83]

J. Pinheiro, D. Bates, and R-core. nlme: Linear and Nonlinear Mixed Effects Models, 2019. URL https:
//CRAN.R-project.org/package=nlme. R package version 3.1-140. [p84]

J. S. Racine and T. Hayfield. np: Nonparametric Kernel Smoothing Methods for Mixed Data Types, 2020.
URL https://CRAN.R-project.org/package=np. R package version 0.60-10. [p84]

E. D. Schifano, M. P. Epstein, L. F. Bielak, M. A. Jhun, S. L. Kardia, P. A. Peyser, and X. Lin. SNP
set association analysis for familial data. Genetic epidemiology, 36(8):797-810, 2012. URL https:
//doi.org/10.1002/gepi.21676. [p99]

C. Schramm. KSPM: Kernel Semi-Parametric Models, 2020. URL https://CRAN.R-project.org/
package=KSPM. R package version 0.2.1. [p83]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859


https://CRAN.R-project.org/package=CompQuadForm
https://doi.org/10.1016/j.csda.2009.11.025
https://doi.org/10.1016/j.neuroimage.2015.01.029
https://CRAN.R-project.org/package=KRLS
https://CRAN.R-project.org/package=KRLS
https://doi.org/10.1093/bioinformatics/btr521
https://doi.org/10.1016/0022-247X(71)90184-3
https://CRAN.R-project.org/package=SKAT
https://CRAN.R-project.org/package=SPA3G
https://CRAN.R-project.org/package=SPA3G
https://doi.org/10.1214/12-AOAS545
https://doi.org/10.1111/j.1541-0420.2007.00799.x
https://doi.org/10.1002/gepi.21909
https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=e1071
http://www.jstatsoft.org/v40/i06/
http://www.jstatsoft.org/v40/i06/
https://doi.org/10.1002/gepi.21725
https://doi.org/10.1002/gepi.21725
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=np
https://doi.org/10.1002/gepi.21676
https://doi.org/10.1002/gepi.21676
https://CRAN.R-project.org/package=KSPM
https://CRAN.R-project.org/package=KSPM

CONTRIBUTED RESEARCH ARTICLE 101

J. Sun, K. Oualkacha, C. M. Greenwood, and L. Lakhal-Chaieb. Multivariate association test for rare
variants controlling for cryptic and family relatedness. Canadian Journal of Statistics, 47(1):90-107,
2019. URL https://doi.org/10.1002/cjs.11475. [p99]

T. M. Therneau. coxme: Mixed Effects Cox Models, 2018. URL https://CRAN.R-project.org/package=
coxme. R package version 2.2-10. [p83]

C. Wang, J. Sun, B. Guillaume, T. Ge, D. P. Hibar, C. M. Greenwood, A. Qiu, and the Alzheimer’s
Disease Neuroimaging Initiative. A set-based mixed effect model for gene-environment interaction
and its application to neuroimaging phenotypes. Frontiers in neuroscience, 11:191, 2017. URL
https://doi.org/10.3389/fnins.2017.00191. [p83]

S. Wood. mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation, 2020. URL
https://CRAN.R-project.org/package=mgcv. R package version 1.8-33. [p84]

M. C. Wy, S. Lee, T. Cai, Y. Li, M. Boehnke, and X. Lin. Rare-variant association testing for sequencing
data with the sequence kernel association test. The American Journal of Human Genetics, 89(1):82-93,
2011. URL https://doi.org/10.1016/j.ajhg.2011.05.029. [p83]

D. Zhang and X. Lin. Hypothesis testing in semiparametric additive mixed models. Biostatistics, 4(1):
57-74,2003. URL https://doi.org/10.1093/biostatistics/4.1.57. [p86]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859


https://doi.org/10.1002/cjs.11475
https://CRAN.R-project.org/package=coxme
https://CRAN.R-project.org/package=coxme
https://doi.org/10.3389/fnins.2017.00191
https://CRAN.R-project.org/package=mgcv
https://doi.org/10.1016/j.ajhg.2011.05.029
https://doi.org/10.1093/biostatistics/4.1.57

CONTRIBUTED RESEARCH ARTICLE 102

SUPPLEMENT

Supplement S1

We simulated a 300 x 9 matrix representing the number of minor allele (0, 1 or 2) of 300 subjects for 9
SNPs, 6 belonging to gene A and 3 belonging to gene B, using the glSim() function into the adegenet
R package.

> library(adegenet)

> set.seed(78)

> SNPdata <- as.matrix(glSim(n.ind = 300, n.snp.nonstruc = 9, n.snp.struc = 0, k =1,
LD = FALSE, ploidy = 2))

We may deduce two matrices, one with data belonging to gene A and one with data belonging to gene
B.

> geneA <- SNPdata[,1:6]
> geneB <- SNPdata[,7:9]

Then we computed the matrix of interactions between SNPs from gene A and SNPs from geneB.

> SNPdataAB <- matrix(NA, nrow = 300, ncol = 6%3)
>k <=1
> for (1 in 1:6) {
for (j in 1:3) {
SNPdataAB[,k] <- SNPdataA[,i] * SNPdataB[, j]
k <- k+1
}
}

A continuous outcome was simulated as a linear combination of the interaction terms between the
6 SNPs of gene A and the three SNPs of gene B, where the weight coefficients where randomly and
uniformly chosen in the interval [—2; 0] using the following code.

> beta <- as.matrix(runif(6*3,-2,0), nrow = 300)
>y <- 100 + SNPdataAB %*% beta + rnorm(n, @, 15)

Of note, we added an intercept of 100 and a normally distributed error of mean 0 and standard
deviation 15.

Supplement S2

Estimating the kernel semi-parametric model parameters consists in estimating a1, ...,a and . Then,
estimators of 11 (.), ..., iy (.) are deduced from &1, ..., &7 . When there are multiple kernels, estimation is
iterative and so we proceed as follows. Partial derivatives of I(B, h) according to a1, ...,a and B lead
to the following equations:

L -1 L
B= {XT <1 -y K,gcélMé) X} xT (1 - KécélMg> Y )
(=1 (=1

vee{1,.., L}, & =G, M (Y- XB) (10)
where [ is the n x 1 identity matrix and V¢ € {1, ..., L}, G, and M, are computed using an iterative
process as described below:

e Re-order elements &y _;, Ki_; and A1_; such that the last is the ¢! element

¢ Note (1), - B(L)s K<1), .y K<L> and A(l), e A(L) the re-ordered elements with ay = o
K(L) = K[ and /\(L) = Ag

* Define iteratively Mg (1) and Gy, (1) by M) = I the n x n identity matrix and Vm €

{1,..,L}:
Gimy = Ayl + Mpn—1)Km)

_ -1
Mm) = (1 - M(m—wK(m)g(m)) Mm-1)
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¢ Compute Gy and M, as:
Gr =91
My = My

Whereas the parameter estimation for single kernel model has been largely demonstrated, the equa-
tions for computing multiple kernel parameters were not theoretically developed yet. Above, we
propose an iterative way to estimate the parameters for all kernel models. Below, we propose the
proof for equations (9) and (10).

Proof:

Partial derivatives of penalized likelihood (6) lead to equations below:

L
XT(Y - Xp— ¥ Kiag) =0
L a1
Y —Xp— Z Koty — App =0 V0 e {1,..,L}

m=1

L
Proposition 1: Vk € {1,.., L — 1} &) = g(_IjM(k—l) <Y - XB— ka1+1 K(m)tx(m)>

Proposition 2: if proposition 1 is true until k, then

k L
2 Kty = (1= M) (Y —Xp— L K(m)"‘(m)>
j=1 m=k+1
(Proofs of propositions 1 and 2 are given below.)
Now, suppose proposition 1 and proposition 2 are true.
L
(/11) = Y - XB— Z K(m)lx(m) */\(L)IX(L) =0
m=1
L-1
& Y= XB= Y Komaom ~ Ky = Ay =0
m=1
s Y= XB— (1= M 1) (Y = XB = Kpya) ) — Kiyeqey — Ay =0
=4 <)\(L)I+M(L71)K(L)>IX(L) fM(L,l)(Y—X[S) =0

Then, oy = a(p) = g(ll)M(L,l) (Y — XB). Let Gy and My the n x n matrix defined as G, = G and

My = M), thus ay = G[lMg (Y — XB). All this process is done for each ¢ € {1,...,L}.

Now, we can derive the estimate for j.

L
(11) = el (Y—Xﬁ—ZKw)zo
(=1
L
© x' <Y—X,B— EKnglMg(Y—Xﬁ)> =0
(=1
L L
& bdl <1 KgcglMé) y=x" <1 K,gcfflMé) XB
=1 =1
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T L -1 - T L -1
Thus g = { X 1= X KG'M ) X XT (1= ¥ KG "M, ) Y.

Proof of proposition 1:

o Proposition 1 is true for k = 1:

L
(11) = Y- XB— Z K(m)l)é(m) —/\<1)a(1) =0
m=1
L
“ Y= XB— Y, Kimy&m) — Kyray = Aqyaay =0
m=2
L
© M) <Y —Xp- mZZK m>“<m>) = (Amf + M<0)K<1>> &)
1 L
A 91)M) <Y - Xp— m;z K<m>“<m>> =)

o If proposition 1 is true for k, then proposition 1 is true for k + 1:

According to proposition 2:

L
= (I—Myy) <Y -Xp— ) K(m)f’é(m)) = (I = M) K g1y (k41)

L
(1) = Y = XB— Y Kimy®(m) = Mies1) (k1) =0
m=1
k L
& Y= XB— Y K@) — Korny)®ges) = 2o Ko ®(m) = M)y = 0
m=1 m=k+2

L
& - ((I—M(k)) <Y— Xg— ), K(m)“(m)> - (I_M(k))K(k+1)“(k+l)>
m=k+2
L
+Y = XB— Ky &) = 2 Koy ®(m) = Aka1)®(ks1) =0
m=k+2
L

© Mk (Y —Xp— ) K<m>“<m>> = Mo K1) & (1) = A1) ¥ ks1) = 0

m=k+2
L
< M) <Y —Xp- ) K<m>“<m>) = Glkern)¥(iern) =0
m=k+2
-1 L
© Gy M) (Y —Xp - m;ﬂ K(m)"‘(m)) = K(kp1)
Proof of proposition 2:

e Proposition 2 is true for k = 1:

L
Suppose 06(1) = ga%/\/{(o) <Y — Xﬁ — mgz K(m)OL(m)) .
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L
=Kw)G3, M) (Y XL K(m>“(m>>

L
(I*Mw) +M<0)1’<<1>Gf1ﬂ"<0>) (Yxﬁ D K<m>“<m>)

L

(1-Mqy) (Y — Xp - nz K(m)"%m))

=2

o If proposition 2 is true for k, then proposition 2 is true for k + 1:

Suppose proposition 1 is true until k + 1, then Vj € {1,....k + 1},

_ -1 L
agy =G M <Y —XB— L Kumym)

m=j+1
k+1 k
Zl Ky &(m) = 21 Ky () + Kes) 1)
m= m=
L
=(-Mgp) <Y - Xp— §+1 K(m)“(m)> + Ky 1) & (k11
L
= (I-Myy) (Y - XB— _Zk;rz K(m)’x(m)) + M K1) % (k1 1)
L = L
= (1= M) (Y - Xp- ) K<m>“<m>) + Mo K1) G sy Moy (Y —Xp— ) K<m>“<m>>
m=k+42 m=k+2
L
=(I- ./\/l(k) + MkK(k+1)g(7<iL1)Mk) (Y - XB— Zk ZK(,n)zx(m>>
m=k+
L
=(I-(I+ M(k)K(kH)g(kL))M(k)) <Y - Xp— §+z K(m)“(m))
L
= (I = My1)) (Y -Xp— ), K(m)a(m)>
m=k+2
O

Of note, for L = 1, equations (9) and (10) correspond to those provided in Liu et al. (2007).
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