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A Fast and Scalable Implementation
Method for Competing Risks Data with
the R Package fastcmprsk
by Eric S. Kawaguchi, Jenny I. Shen, Gang Li, and Marc A. Suchard

Abstract Advancements in medical informatics tools and high-throughput biological experimentation
make large-scale biomedical data routinely accessible to researchers. Competing risks data are typical
in biomedical studies where individuals are at risk to more than one cause (type of event) which can
preclude the others from happening. The Fine and Gray (1999) proportional subdistribution hazards
model is a popular and well-appreciated model for competing risks data and is currently implemented
in a number of statistical software packages. However, current implementations are not computation-
ally scalable for large-scale competing risks data. We have developed an R package, fastcmprsk, that
uses a novel forward-backward scan algorithm to significantly reduce the computational complexity
for parameter estimation by exploiting the structure of the subject-specific risk sets. Numerical studies
compare the speed and scalability of our implementation to current methods for unpenalized and
penalized Fine-Gray regression and show impressive gains in computational efficiency.

Introduction

Competing risks time-to-event data arise frequently in biomedical research when subjects are at risk for
more than one type of possibly correlated events or causes and the occurrence of one event precludes
the others from happening. For example, one may wish to study time until first kidney transplant
for kidney dialysis patients with end-stage renal disease. Terminating events such as death, renal
function recovery, or discontinuation of dialysis are considered competing risks as their occurrence
will prevent subjects from receiving a transplant. When modeling competing risks data the cumulative
incidence function (CIF), the probability of observing a certain cause while taking the competing risks
into account, is oftentimes a quantity of interest.

The most commonly-used model to draw inference about the covariate effect on the CIF and
to predict the CIF dependent on a set of covariates is the Fine-Gray proportional subdistribution
hazards model (Fine and Gray, 1999). Various statistical packages for estimating the parameters of the
Fine-Gray model are popular within the R programming language (Ihaka and Gentleman, 1996). One
package, among others, is the cmprsk package. The riskRegression package, initially implemented
for predicting absolute risks (Gerds et al., 2012), uses a wrapper that calls the cmprsk package to
perform Fine-Gray regression. Scheike and Zhang (2011) provide timereg that allows for general
modeling of the cumulative incidence function and includes the Fine-Gray model as a special case.
The survival package also performs Fine-Gray regression but does so using a weighted Cox (Cox,
1972) model. Over the past decade, there have been several extensions to the Fine-Gray method that
also result in useful packages. The crrSC package allows for the modeling of both stratified (Zhou
et al., 2011) and clustered (Zhou et al., 2012) competing risks data. Kuk and Varadhan (2013) propose a
stepwise Fine-Gray selection procedure and develop the crrstep package for implementation. Fu et al.
(2017) then introduce penalized Fine-Gray regression with the corresponding crrp package.

A contributing factor to the computational complexity for general Fine-Gray regression implemen-
tation is parameter estimation. Generally, one needs to compute the log-pseudo likelihood and its first
and second derivatives with respect to its regression parameters for optimization. Calculating these
quantities is typically of order O(n2), where n is the number of observations in the dataset, due to the
repeated calculation of the subject-specific risk sets. With current technological advancements making
large-scale data from electronic health record (EHR) data systems routinely accessible to researchers,
these implementations quickly become inoperable or grind-to-a-halt in this domain. For example,
Kawaguchi et al. (2020) reported a runtime of about 24 hours to fit a LASSO regularized Fine-Gray
regression on a subset of the United States Renal Data Systems (USRDS) with n = 125, 000 subjects
using an existing R package crrp. To this end, we note that for time-to-event data with no competing
risks, Simon et al. (2011), Breheny and Huang (2011), and Mittal et al. (2014), among many others, have
made significant progress in reducing the computational complexity for the Cox (1972) proportional
hazards model from O(n2) to O(n) by taking advantage of the cumulative structure of the risk set.
However, the counterfactual construction of the risk set for the Fine-Gray model does not retain the
same structure and presents a barrier to reducing the complexity of the risk set calculation. To the best
of our knowledge, no further advancements in reducing the computational complexity required for
calculating the subject-specific risk sets exists.
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The contribution of this work is the development of an R package fastcmprsk which implements
a novel forward-backward scan algorithm (Kawaguchi et al., 2020) for the Fine-Gray model. By taking
advantage of the ordering of the data and the structure of the risk set, we can calculate the log-pseudo
likelihood and its derivatives, which are necessary for parameters estimation, in O(n) calculations
rather than O(n2). As a consequence, our approach is scalable to large competing risks datasets and
outperforms competing algorithms for both penalized and unpenalized parameter estimation.

The paper is organized as follows. In the next section, we briefly review the basic definition of the
Fine-Gray proportional subdistribution hazards model, the CIF, and penalized Fine-Gray regression.
We highlight the computational challenge of lineaizing estimation for the Fine-Gray model and intro-
duce the forward-backward scan algorithm of Kawaguchi et al. (2020) in Section 2.3. Then in Section
2.4, we describe the main functionalities of the fastcmprsk package that we developed for R which
utilizes the aforementioned algorithm for unpenalized and penalized parameter estimation and CIF
estimation. We perform simulation studies in Section 2.5 to compare the performance of our proposed
method to some of their popular competitors. The fastcmprsk package is readily available on the
Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=fastcmprsk.

Preliminaries

Data structure and model

We first establish some notation and the formal definition of the data generating process for competing
risks. For subject i = 1, . . . , n, let Ti, Ci, and εi be the event time, possible right-censoring time,
and cause (event type), respectively. Without loss of generality assume there are two event types
ε ∈ {1, 2} where ε = 1 is the event of interest (or primary event) and ε = 2 is the competing risk.
With the presence of right-censoring we generally observe Xi = Ti ∧ Ci, δi = I(Ti ≤ Ci), where
a ∧ b = min(a, b) and I(·) is the indicator function. Letting zi be a p-dimensional vector of time-
independent subject-specific covariates, competing risks data consist of the following independent
and identically distributed quadruplets {(Xi, δi, δiεi, zi)}n

i=1. Assume that there also exists a τ such
that 1) for some arbitrary time t, t ∈ [0, τ] ; 2) Pr(Ti > τ) > 0 and Pr(Ci > τ) > 0 for all i = 1, . . . , n,
and that for simplicity, no ties are observed.

The CIF for the primary event conditional on the covariates z = (z1, . . . , zp) is F1(t; z) = Pr(T ≤
t, ε = 1|z). To model the covariate effects on F1(t; z), Fine and Gray (1999) introduced the now
well-appreciated proportional subdistribution hazards (PSH) model:

h1(t|z) = h10(t) exp(z′β), (1)

where

h1(t|z) = lim
∆t→0

Pr{t ≤ T ≤ t + ∆t, ε = 1|T ≥ t ∪ (T ≤ t ∩ ε 6= 1), z}
∆t

= − d
dt

log{1− F1(t; z)}

is a subdistribution hazard (Gray, 1988), h10(t) is a completely unspecified baseline subdistribution
hazard, and β is a p× 1 vector of regression coefficients. As Fine and Gray (1999) mentioned, the risk
set associated with h1(t; z) is somewhat unnatural as it includes subjects who are still at risk (T ≥ t)
and those who have already observed the competing risk prior to time t (T ≤ t ∩ ε 6= 1). However,
this construction is useful for direct modeling of the CIF.

Parameter estimation for unpenalized Fine-Gray regression

Parameter estimation and large-sample inference of the PSH model follows from the log-pseudo
likelihood:

l(β) =
n

∑
i=1

∫ ∞

0

[
z′i β− ln

{
∑
k

ŵk(u)Yk(u) exp
(
z′kβ
)}]

ŵi(u)dNi(u), (2)

where Ni(t) = I(Xi ≤ t, εi = 1), Yi(t) = 1− Ni(t−), and ŵi(t) is a time-dependent weight based
on the inverse probability of censoring weighting (IPCW) technique (Robins and Rotnitzky, 1992).
To parallel Fine and Gray (1999), we define the IPCW for subject i at time t as ŵi(t) = I(Ci ≥
Ti ∧ t)Ĝ(t)/Ĝ(Xi ∧ t), where G(t) = Pr(C ≥ t) is the survival function of the censoring variable C
and Ĝ(t) is the Kaplan-Meier estimate for G(t). We can further generalize the IPCW to allow for
dependence between C and z.
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Let β̂mple = arg minβ{−l(β)} be the maximum pseudo likelihood estimator of β. Fine and
Gray (1999) investigate the large-sample properties of β̂mple and prove that, under certain regularity
conditions,

√
n(β̂mple − β0)→ N(0, Ω−1ΣΩ−1), (3)

where β0 is the true value of β, Ω is the limit of the negative of the partial derivative matrix of the
score function evaluated at β0, and Σ is the variance-covariance matrix of the limiting distribution of
the score function. We refer readers to Fine and Gray (1999) for more details on Ω and Σ. This variance
estimation procedure is implemented in the cmprsk package.

Estimating the cumulative incidence function

An alternative interpretation of the coefficients from the Fine-Gray model is to model their effect
on the CIF. Using a Breslow-type estimator (Breslow, 1974), we can obtain a consistent estimate for
H10(t) =

∫ t
0 h10(s)ds through

Ĥ10(t) =
1
n

n

∑
i=1

∫ t

0

1
Ŝ(0)(β̂, u)

ŵi(u)dNi(u),

where Ŝ(0)(β̂, u) = n−1 ∑n
i=1 ŵi(u)Yi(u) exp(z′i β̂). The predicted CIF, conditional on z = z0, is then

F̂1(t; z0) = 1− exp
{∫ t

0
exp(z′0 β̂)dĤ10(u)

}
.

We refer the readers to Appendix B of Fine and Gray (1999) for the large-sample properties of F̂1(t; z0).
The quantities needed to estimate

∫ t
0 dĤ10(u) are already precomputed when estimating β̂. Fine and

Gray (1999) proposed a resampling approach to calculate confidence intervals and confidence bands
for F̂1(t; z0).

Penalized Fine-Gray regression for variable selection

Oftentimes reserachers are interested in identifying which covariates have an effect on the CIF. Pe-
nalization methods (Tibshirani, 1996; Fan and Li, 2001; Zou, 2006; Zhang et al., 2010) offer a popular
way to perform variable selection and parameter estimation simultaneously through minimizing the
objective function

Q(β) = −l(β) +
p

∑
j=1

pλ(|β j|), (4)

where l(β) is defined in (2), pλ(|β j|) is a penalty function where the sparsity of the model is controlled
by the non-negative tuning parameter λ. Fu et al. (2017) recently extend several popular variable
selection procedures - LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001), adaptive LASSO (Zou,
2006), and MCP (Zhang, 2010) - to the Fine-Gray model, explore its asymptotic properties under
fixed model dimension, and develop the R package crrp (Fu, 2016) for implementation. Parameter
estimation in the crrp package employs a cyclic coordinate algorithm.

The sparsity of the model depends heavily on the choice of the tuning parameters. Practically,
finding a suitable (or optimal) tuning parameter involves applying a penalization method over a
sequence of possible candidate values of λ and finding the λ that minimizes some metric such as the
Bayesian information criterion (Schwarz, 1978) or generalized cross validation measure (Craven and
Wahba, 1978). A more thorough discussion on tuning parameter selection can partially be found in
Wang et al. (2007); Zhang et al. (2010); Wang and Zhu (2011); Fan and Tang (2013); Fu et al. (2017); Ni
and Cai (2018).

Parameter estimation in linear time

Whether interest is in fitting an unpenalized model or a series of penalized models used for variable
selection, one will need to minimize the negated log-pseudo (or penalized log-pseudo likelihood.
While current implementations can readily fit small to moderately-sized datasets, where the sample
size can be in the hundreds to thousands, we notice that these packages grind to a halt for large-scale
data such as, electronic health records (EHR) data or cancer registry data, where the number of
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observations easily exceed tens of thousands, as illustrated later in Section 2.5.1 (Table 2) on some
simulated large competing risks data.

The primary computational bottleneck for estimating the parameters of the Fine-Gray model
is due to the calculation of the log-pseudo likelihood and its derivatives, which are required for
commonly-used optimization routines. For example, the cyclic coordinate descent algorithm requires
the score function

l̇j(β) =
n

∑
i=1

I(δiεi = 1)zij −
n

∑
i=1

I(δiεi = 1)
∑k∈Ri

zkjw̃ik exp(ηk)

∑k∈Ri
w̃ik exp(ηk)

, (5)

and the Hessian diagonals

l̈jj(β) =
n

∑
i=1

I(δiεi = 1)

∑k∈Ri
z2

kjw̃ik exp(ηk)

∑k∈Ri
w̃ik exp(ηk)

−
{

∑k∈Ri
zkjw̃ik exp(ηk)

∑k∈Ri
w̃ik exp(ηk)

}2
 , (6)

where
w̃ik = ŵk(Xi) = Ĝ(Xi)/Ĝ(Xi ∧ Xk), k ∈ Ri,

Ri = {y : (Xy ≥ Xi) ∪ (Xy ≤ Xi ∩ εy = 2)} and ηk = z′kβ for optimization. While the algorithm
itself is quite efficient, especially for estimating sparse coefficients, direct evaluation of (5) and (6)
will require O(n2) operations since for each i such that δiεi = 1 we must identify all y ∈ {1, . . . , n}
such that either Xy ≥ Xi or (Xy ≤ Xi ∩ εy = 2). As a consequence, parameter estimation will be
computationally taxing for large-scale data since runtime will scale quadratically with n. We verify
this in Section 2.5 for the cmprsk and crrp packages. To the best of our knowledge, prior to Kawaguchi
et al. (2020), previous work on reducing the computational of parameter estimation from O(n2) to a
lower order has not been developed.

Before moving forward we will first consider the Cox proportional hazards model for right-
censored data, which can be viewed as a special case of the Fine-Gray model when competing risks
are not present (i.e. Ri = {y : Xy ≥ Xi}, w̃ik = 1 for all k ∈ Ri, and εi = 1 whenever δi = 1). Again,
direct calculation of quantities such as the log-partial likelihood and score function will still require
O(n2) computations; however, one can show that when event times are arranged in decreasing order,
the risk set is monotonically increasing as a series of cumulative sums. Once we arrange the event
times in decreasing order, these quantities can be calculated in O(n) calculations. The simplicity of the
data manipulation and implementation makes this approach widely adopted in several R packages
for right-censored data including the survival, glmnet, ncvreg, and Cyclops packages.

Unfortunately, the risk set associated with the Fine-Gray model does not retain the same cumulative
structure. Kawaguchi et al. (2020) propose a novel forward-backward scan algorithm that reduces the
computational complexity associated with parameter estimation from O(pn2) to O(pn), allowing for
the analysis of large-scale competing risks data in linear time. Briefly, the risk set Ri partitions into two
disjoint subsets: Ri(1) = {y : Xy ≥ Xi} and Ri(2) = {y : (Xy ≤ Xi ∩ εy = 2)}, were Ri(1) is the set of
observations that have an observed event time after Xi and Ri(2) is the set of observations that have
observed the competing event before time Xi. Since Ri(1) and Ri(2) are disjoint, the summation over
k ∈ Ri can be written as two separate summations, one over Ri(1) and one over Ri(2). The authors
continue to show that the summation over Ri(1) is a series of cumulative sums as the event times
decrease while the summation over Ri(2) is a series of cumulative sums as the event times increase.
Therefore, by cleverly separating the calculation of both summations, (5), (6), and consequently (2)
are available in O(n) calculations. We will show the computational advantage of this approach for
parameter estimation over competing R packages in Section 2.5.

The fastcmprsk package

We utilize this forward-backward scan algorithm of Kawaguchi et al. (2020) for both penalized and un-
penalized parameter estimation for the Fine-Gray model in linear time. Furthermore, we also develop
scalable methods to estimate the predicted CIF and its corresponding confidence interval/band. For
convenience to researchers and readers, a function to simulate two-cause competing risks data is also
included. Table ?? provides a summary of the currently available functions provided in fastcmprsk.
We briefly detail the use of some of the key functions below.

Simulating competing risks data

Researchers can simulate two-cause competing risks data using the simulateTwoCauseFineGrayModel
function in fastcmprsk. The data generation scheme follows a similar design to that of Fine and
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Function name Basic description
Modeling functions
fastCrr Fits unpenalized Fine-Gray regression and

returns an object of class "fcrr"
fastCrrp Fits penalized Fine-Gray regression and

returns an object of class "fcrrp"

Utilities
Crisk Creates an object of class "Crisk" to be used as the

response variable for fastCrr and fastCrrp
varianceControl Options for bootstrap variance for fastCrr.
simulateTwoCauseFineGrayModel Simulates two-cause competing risks data

S3 methods for "fcrr"
AIC Generic function for calculating AIC
coef Extracts model coefficients
confint Computes confidence intervals for parameters in the model
logLik Extracts the model log-pseudo likelihood
predict Predict the cumulative incidence function given newdata

using model coefficients.
summary Print ANOVA table
vcov Returns bootstrapped variance-covariance matrix

if variance = TRUE.

S3 methods for "fcrrp"
AIC Generic function for calculating AIC
coef Extracts model coefficients for each tuning parameter λ.
logLik Extracts the model log-pseudo likelihood for each tuning

parameter λ.
plot Plot coefficient path as a function of λ

Table 1: Currently available functions in fastcmprsk (v.1.1.0).

Gray (1999) and Fu et al. (2017). Given a design matrix Z = (z′1, . . . , z′n), β1, and β2, let the cu-
mulative incidence function for cause 1 (the event of interest) be defined as F1(t; zi) = Pr(Ti ≤
t, εi = 1|zi) = 1 − [1 − π{1 − exp(−t)}]exp(z′i β1), which is a unit exponential mixture with mass
1− π at ∞ when zi = 0 and where π controls the cause 1 event rate. The cumulative incidence
function for cause 2 is obtained by setting Pr(εi = 2|zi) = 1 − Pr(εi = 1|zi) and then using
an exponential distribution with rate exp(z′i β2) for the conditional cumulative incidence function
Pr(Ti ≤ t|εi = 2, zi). Censoring times are independently generated from a uniform distribution
U(umin, umax) where umin and umax control the censoring percentage. Appendix .1 provides more details
on the data generation process. Below is a toy example of simulating competing risks data where
n = 500, β1 = (0.40,−0.40, 0,−0.50, 0, 0.60, 0.75, 0, 0,−0.80), β2 = −β1, umin = 0, umax = 1, π = 0.5,
and where Z is simulated from a multivariate standard normal distribution with unit variance. This
simulated dataset will be used to illustrate the use of the different modeling functions within fastcm-
prsk. The purpose of the simulated dataset is to demonstrate the use of the fastcmprsk package and
its comparative estimation performance to currently-used packages for unpenalized and penalized
Fine-Gray regression. Runtime comparisons between the different packages are reported in Section
2.5.

R> #### Need the following packages to run the examples in the paper
R> install.packages("cmprsk")
R> install.packages("crrp")
R> install.packages("doParallel")
R> install.packages("fastcmprsk")
R> ###

R> library(fastcmprsk)
R> set.seed(2019)
R> N <- 500 # Set number of observations

R> # Create coefficient vector for event of interest and competing event
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R> beta1 <- c(0.40, -0.40, 0, -0.50, 0, 0.60, 0.75, 0, 0, -0.80)
R> beta2 <- -beta1

R> # Simulate design matrix
R> Z <- matrix(rnorm(nobs * length(beta1)), nrow = N)

R> # Generate data
R> dat <- simulateTwoCauseFineGrayModel(N, beta1, beta2,
+ Z, u.min = 0, u.max = 1, p = 0.5)

R> # Event counts (0 = censored; 1 = event of interest; 2 = competing event)
R> table(dat$fstatus)

0 1 2
241 118 141

R> # First 6 observed survival times
R> head(dat$ftime)

[1] 0.098345608 0.008722629 0.208321175 0.017656904 0.495185038 0.222799124

fastCrr: Unpenalized parameter estimation and inference

We first illustrate the coefficient estimation from (1) using the Fine-Gray log-pseudo likelihood. The
fastCrr function returns an object of class "fcrr" that estimates these parameters using our forward-
backward scan algorithm and is syntactically similar to the coxph function in survival. The formula
argument requires an outcome of class "Crisk". The Crisk function produces this object by calling
the Surv function in survival, modifying it to allow for more than one event, and requires four
arguments: a vector of observed event times (ftime), a vector of corresponding event/censoring
indicators (fstatus), the value of fstatus that denotes a right-censored observation (cencode) and the
value of fstatus that denotes the event of interest (failcode). By default, Crisk assumes that cencode
= 0 and failcode = 1. The variance passed into fastCrr is a logical argument that specifies whether
or not the variance should be calculated with parameter estimation.

# cmprsk package
R> library(cmprsk)
R> fit1 <- crr(dat$ftime, dat$fstatus, Z, failcode = 1, cencode = 0,
+ variance = FALSE)

# fastcmprsk package
R> fit2 <- fastCrr(Crisk(dat$ftime, dat$fstatus, cencode = 0, failcode = 1) ~ Z,
+ variance = FALSE)

R> max(abs(fit1$coef - fit2$coef)) # Compare the coefficient estimates for both methods

[1] 8.534242e-08

As expected, the fastCrr function calculates nearly identical parameter estimates to the crr function.
The slight difference in numerical accuracy can be explained by the different methods of optimization
and convergence thresholds used for parameter estimation. Convergence within the cyclic coordinate
descent algorithm used in fastCrr is determined by the relative change of the coefficient estimates.
We allow users to modify the maximum relative change and maximum number of iterations used for
optimization within fastCrr through the eps and iter arguments, respectively. By default, we set eps
= 1E-6 and iter = 1000 in both our unpenalized and penalized optimization methods.

We now show how to obtain the variance-covariance matrix for the parameter estimates. The
variance-covariance matrix for β̂ via (3) can not be directly estimated using the fastCrr function. First,
the asymptotic expression requires estimating both Ω and Σ, which can not be trivially calculated
in O(pn) operations. Second, for large-scale data where both n and p can be large, matrix calcula-
tions, storage, and inversion can be computationally prohibitive. Instead, we propose to estimate
the variance-covariance matrix using the bootstrap (Efron, 1979). Let β̃(1), . . . β̃(B) be bootstrapped
parameter estimates obtained by resampling subjects with replacement from the original data B times.
Unless otherwise noted, the size of each resample is the same as the original data. For j = 1, . . . , p and
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k = 1, . . . , p, we can estimate the covariance between β̂ j and β̂k by

Ĉov(β̂ j, β̂k) =
1

B− 1

B

∑
b=1

(β̃
(b)
j − β̄ j)(β̃

(b)
k − β̄k), (7)

where β̄ j =
1
B ∑B

b=1 β̃
(b)
j . Therefore, with σ̂2

j = Ĉov(β̂ j, β̂ j), a (1− α)× 100% confidence interval for β j
is given by

β̂ j ± z1−α/2σ̂j, (8)

where z1−α/2 is the (1− α)× 100th percentile of the standard normal distribution. Since parameter
estimation for the Fine-Gray model is done in linear time using our forward-backward scan algorithm,
the collection of parameter estimates obtained by bootstrapping can also be obtained linearly. The
varianceControl function controls the parameters used for bootstrapping, that one then passes into
the var.control argument in fastCrr. These arguments include B, the number of bootstrap samples
to be used, and seed, a non-negative numeric integer to set the seed for resampling.

R> # Estimate variance via 100 bootstrap samples using seed 2019.
R> vc <- varianceControl(B = 100, seed = 2019)
R> fit3 <- fastcmprsk::fastCrr(Crisk(dat$ftime, dat$fstatus) ~ Z, variance = TRUE,
+ var.control = vc,
+ returnDataFrame = TRUE)
# returnDataFrame = TRUE is necessary for CIF estimation (next section)

R> round(sqrt(diag(fit3$var)), 3) # Standard error estimates rounded to 3rd decimal place

[1] 0.108 0.123 0.085 0.104 0.106 0.126 0.097 0.097 0.104 0.129

The accuracy of the bootstrap variance-covariance matrix compared to the asymptotic expression
depends on several factors including the sample size and number of bootstrap samples B. Our
empirical evidence in Section 2.5.1 show that B = 100 bootstrap samples provided a sufficient estimate
of the variance-covariance matrix for large enough n in our scenarios. In practice, we urge users to
increase the number of bootstrap samples until the variance is stable if they can computationally afford
to. Although this may hinder the computational performance of fastCrr for small sample sizes, we
find this to be a more efficient approach for large-scale competing risks data.

We adopt several S3 methods that work seamlessly with the "fcrr" object that is outputted from
fastCrr. The coef method returns the estimated regression coefficient estimates β̂:

R> coef(fit3) # Coefficient estimates

[1] 0.192275755 -0.386400287 0.018161906 -0.397687129 0.105709092 0.574938015
[7] 0.778842652 -0.006105756 -0.065707434 -0.996867883

The model pseudo log-likelihood can also be extracted via the logLik function:

R> logLik(fit3) # Model log-pseudo likelihood
[1] -590.3842

Related quantities to the log-pseudo likelihood are information criteria, measures of the quality
of a statistical model that are used to compare alternative models on the same data. These criterion
are computed using the following formula: −2l(β̂) + k× |β̂|0, where k is a penalty factor for model
complexity and |β̂|0 corresponds to the number of parameters in the model. Information criteria can
be computed for a fcrr object using AIC and users specify the penalty factor using the k argument. By
default k = 2 and corresponds to the Akaike information criteria (Akaike, 1974).

R> AIC(fit3, k = 2) # Akaike's Information Criterion
[1] 1200.768

R> # Alternative expression of the AIC
R> -2 * logLik(fit3) + 2 * length(coef(fit3))
[1] 1200.768

If the variance is set to TRUE for the fastCrr model fit, we can extract the bootstrap variance-
covariance matrix using vcov. Additionally, conf.int will display confidence intervals, on the scale of
β̂, and the level argument can be used to specify the confidence level. By default level = 0.95 and
corresponds to 95% confidence limits.
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R> vcov(fit3)[1:3, 1:3] # Variance-covariance matrix for the first three estimates

[,1] [,2] [,3]
[1,] 0.0116785745 0.0031154634 0.0007890851
[2,] 0.0031154634 0.0150597898 0.0004681825
[3,] 0.0007890851 0.0004681825 0.0072888011

R> confint(fit3, level = 0.95) # 95 % Confidence intervals

2.5% 97.5%
x1 -0.01953256 0.4040841
x2 -0.62692381 -0.1458768
x3 -0.14916899 0.1854928
x4 -0.60197206 -0.1934022
x5 -0.10199838 0.3134166
x6 0.32827237 0.8216037
x7 0.58798896 0.9696963
x8 -0.19610773 0.1838962
x9 -0.26995659 0.1385417
x10 -1.24897861 -0.7447572

Lastly, summary will return an ANOVA table for the fitted model. The table presents the log-
subdistribution hazard ratio (coef), the subdistribution hazard ratio (exp(coef)), the standard error
of the log-subdistribution hazards ratio (se(coef)) if variance = TRUE in fastCrr, the corresponding
z-score (z value), and two-sided p-value (Pr(|z|)). When setting conf.int = TRUE, the summary
function will also print out the 95% confidence intervals (if variance = TRUE when running fastCrr).
Additionally the pseudo log-likelihood for the estimated model and the null pseudo log-likelihood
(when β̂ = 0) are also reported below the ANOVA table.

R> # ANOVA table for fastCrr
R> summary(fit3, conf.int = TRUE) # conf.int = TRUE allows for 95% CIs to be presented

Fine-Gray Regression via fastcmprsk package.

fastCrr converged in 24 iterations.

Call:
fastcmprsk::fastCrr(Crisk(dat$ftime, dat$fstatus) ~ Z, variance = TRUE,

var.control = vc, returnDataFrame = TRUE)

coef exp(coef) se(coef) z value Pr(>|z|)
x1 0.19228 1.212 0.1081 1.779 7.5e-02
x2 -0.38640 0.679 0.1227 -3.149 1.6e-03
x3 0.01816 1.018 0.0854 0.213 8.3e-01
x4 -0.39769 0.672 0.1042 -3.816 1.4e-04
x5 0.10571 1.111 0.1060 0.997 3.2e-01
x6 0.57494 1.777 0.1259 4.568 4.9e-06
x7 0.77884 2.179 0.0974 7.998 1.3e-15
x8 -0.00611 0.994 0.0969 -0.063 9.5e-01
x9 -0.06571 0.936 0.1042 -0.631 5.3e-01
x10 -0.99687 0.369 0.1286 -7.750 9.1e-15

exp(coef) exp(-coef) 2.5% 97.5%
x1 1.212 0.825 0.981 1.498
x2 0.679 1.472 0.534 0.864
x3 1.018 0.982 0.861 1.204
x4 0.672 1.488 0.548 0.824
x5 1.111 0.900 0.903 1.368
x6 1.777 0.563 1.389 2.274
x7 2.179 0.459 1.800 2.637
x8 0.994 1.006 0.822 1.202
x9 0.936 1.068 0.763 1.149
x10 0.369 2.710 0.287 0.475
Pseudo Log-likelihood = -590
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Null Pseudo Log-likelihood = -675
Pseudo likelihood ratio test = 170 on 10 df.

Since standard error estimation is performed via bootstrap and resampling, it is easy to use multiple
cores to speed up computation. Parallelization is seamlessly implemented using the doParallel
package (Calaway et al., 2019). Enabling usage of multiple cores is done through the useMultipleCores
argument within the varianceControl function. To avoid interference with other processes, we allow
users to set up the cluster on their own. We provide an example below.

R> library(doParallel)

R> n.cores <- 2 # No. of cores
R> myClust <- makeCluster(n.cores)

R> # Set useMultipleCores = TRUE to enable parallelization
R> vc = varianceControl(B = 1000, useMultipleCores = TRUE)

R> registerDoParallel(myClust)
R> fit3 <- fastCrr(Crisk(dat$ftime, dat$fstatus) ~ Z, variance = TRUE,
+ var.control = vc)
R> stopCluster(myClust)

Cumulative incidence function and interval/band estimation

The CIF is also available in linear time in the fastcmprsk package. Fine and Gray (1999) propose a
Monte Carlo simulation method for interval and band estimation. We implement a slightly different ap-

proach using bootstrapping for interval and band estimation in our package. Let F̃(1)
1 (t; z0), . . . , F̃(B)

1 (t; z0)
be the bootstrapped predicted CIF obtained by resampling subjects with replacement from the original
data B times and let m(·) be a known, monotone, and continuous transformation. In our current im-
plementation we let m(x) = log{− log(x)}; however, we plan on incorporating other transformations
in our future implementation. We first estimate the variance function σ2(t; z0) of the transformed CIF
through

σ̂2(t; z0) =
1
B

B

∑
b=1

[
m{F̃(b)

1 (t; z0)} − m̄{F̃1(t; z0)}
]2

, (9)

where m̄{F̃1(t; z0)} = 1
B ∑B

b=1 m{F̃(b)
1 (t; z0)}. Using the functional delta method, we can now construct

(1− α)× 100% confidence intervals for F1(t; z0) by

m−1 [m{F̂1(t; z0)} ± z1−α/2σ̂(t; z0)
]

. (10)

Next we propose a symmetric global confidence band for the estimated CIF F̂1(t; z0), t ∈ [tL, tU ]
via bootstrap. We first determine a critical region C1−α(z0) such that

Pr

 sup
t∈[tL ,tU ]

|m{F̂1(t; z0)} −m{F1(t; z0)}|√
V̂ar[m{F̂1(t; z0)}]

≤ C1−α(z0)

 = 1− α. (11)

While Equation (9) estimates V̂ar[m{F̂1(t; z0)}] we still need to find C1−α(z0) by the bootstrap (1− α)th

percentile of the distribution of the supremum in the equation above. The algorithm is as follows:

1. Resample subjects with replacement from the original data B times and estimate F̃(b)
1 (t; z0) for

b = 1, . . . , B and σ̂2(t; z0) using (9).
2. For the bth bootstrap sample , b ∈ {1, . . . , B}, calculate

C(b) = sup
t∈[tL ,tU ]

|m{F̃(b)
1 (t; z0)} −m{F̂1(t; z0)}|

σ̂(t; z0)
.

3. Estimate C1−α(z0) from the sample (1− α)th percentile of the B values of C(b), denoted by
Ĉ1−α(z0).

Finally, the (1− α)× 100% confidence band for F1(t; z0), t ∈ [tL, tU ] is given by

m−1 [m{F̂1(t; z0)} ± Ĉ1−α(z0)σ̂(t; z0)
]

. (12)
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Figure 1: Estimated CIF (solid line) and corresponding 95% confidence intervals (dotted lines) between
tL = 0.2 and tU = 0.9 given a covariate vector z0 using the coefficient and baseline estimates from our
toy example.

Similar to estimating the variance-covariance matrix for the coefficient estimates β̂, specifying
the number of bootstrap samples, seed for reputability, and multicore functionality for estimating
the variance of the CIF can be done through the varianceControl function. One can perform CIF
estimation and interval/band estimation using the predict function by specifying a vector z0 in
the newdata argument and the fitted model from fastCrr. To calculate the CIF, both the Breslow
estimator of the cumulative subdistribution hazard and the (ordered) model data frame need to be
returned values within the fitted object. This can be achieved by setting both the getBreslowJumps and
returnDataFrame arguments within fastCrr to TRUE. Additionally, for confidence band estimation
one must specify a time interval [tL, tU ]. The user can specify the interval range using the tL and
tU arguments in predict. Figure 1 illustrates the estimated CIF and corresponding 95% confidence
interval, obtained using 100 bootstrap samples, over the range [0.2, 0.9] given covariate entries z0
simulated from a standard random normal distribution.

R> set.seed(2019)
R> # Make sure getBreslowJumps and returnDataFrame are set to TRUE
R> fit4 <- fastCrr(Crisk(dat$ftime, dat$fstatus, cencode = 0, failcode = 1) ~ Z,
+ variance = FALSE,
+ getBreslowJumps = TRUE, # Default = TRUE
+ returnDataFrame = TRUE) # Default is FALSE for storage purposes

R> z0 <- rnorm(10) # New covariate entries to predict
R> cif.point <- predict(fit4, newdata = z0, getBootstrapVariance = TRUE,
+ type = "interval", tL = 0.2, tU = 0.9,
+ var.control = varianceControl(B = 100, seed = 2019))

R> plot(cif.point) # Figure 1 (Plot of CIF and 95% C.I.)

fastCrrp: Penalized Fine-Gray regression in linear time

We extend our forward-backward scan approach for for penalized Fine-Gray regression as described
in Section 2.2.4. The fastCrrp function performs LASSO, SCAD, MCP, and ridge (Hoerl and Kennard,
1970) penalization. Users specify the penalization technique through the penalty argument. The
advantage of implementing this algorithm for penalized Fine-Gray regression is two fold. Since the
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Figure 2: Path plot for LASSO-penalized Fine-Gray regression using our toy example. The tuning
parameter λ varies between the log-spaced interval [0.001, 0.1]. The y-axis corresponds to the estimated
value for β̂ j and the x-axis corresponds to λ (on the log10 scale).

cyclic coordinate descent algorithm used in the crrp function calculates the gradient and Hessian
diagonals in O(pn2) time, as opposed to O(pn) using our approach, we expect to see drastic differences
in runtime for large sample sizes. Second, as mentioned earlier, researchers generally tune the strength
of regularization through multiple model fits over a grid of candidate tuning parameter values. Thus
the difference in runtime between both methods grows larger as the number of candidate values
increases. Below we provide an example of performing LASSO-penalized Fine-Gray regression using
a prespecified grid of 25 candidate values for λ that we input into the lambda argument of fastCrrp.
If left untouched (i.e. lambda = NULL), a log-spaced interval of λ will be computed such that the
largest value of λ will correspond to a null model. Figure 2 illustrates the solution path for the
LASSO-penalized regression, a utility not directly implemented within the crrp package. The syntax
for fastCrrp is nearly identical to the syntax for crrp.

R> library(crrp)
R> lam.path <- 10^seq(log10(0.1), log10(0.001), length = 25)

R> # crrp package
R> fit.crrp <- crrp(dat$ftime, dat$fstatus, Z, penalty = "LASSO",
+ lambda = lam.path, eps = 1E-6)

R> # fastcmprsk package
R> fit.fcrrp <- fastCrrp(Crisk(dat$ftime, dat$fstatus) ~ Z, penalty = "LASSO",
+ lambda = lam.path)

R> # Check to see the two methods produce the same estimates.
R> max(abs(fit.fcrrp$coef - fit.crrp$beta))

[1] 1.110223e-15

R> plot(fit.fcrrp) # Figure 2 (Solution path)
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Figure 3: Runtime comparison between fastCrr and crr with and without variance estimation. Axes
are on the log10 scale. Solid and dashed lines represent the crrp and fastcmprsk implementation,
respectively. Square, and circle symbols denote variance and without variance calculation, respectively.
Variance estimation for crr is performed using the asymptotic expression of the variance-covariance
estimator. Variance estimation for fastCrr is performed using 100 bootstrap samples. Reported
runtime are averaged over 100 Monte Carlo runs.

Simulation studies

This section provides a more comprehensive illustration of the computational performance of the
fastcmprsk package over two popular competing packages cmprsk and crrp. We simulate datasets
under various sample sizes and fix the number of covariates p = 100. We generate the design matrix,
Z from a p-dimensional standard normal distribution with mean zero, unit variance, and pairwise
correlation corr(zi, zj) = ρ|i−j|, where ρ = 0.5 simulates moderate correlation. For Section 2.5.1, the
vector of regression parameters for cause 1, the cause of interest, is β1 = (β∗, β∗, . . . , β∗), where β∗ =
(0.40,−0.40, 0,−0.50, 0, 0.60, 0.75, 0, 0,−0.80). For Section 2.5.2, β1 = (β∗, 0p−10). We let β2 = −β1.
We set π = 0.5, which corresponds to a cause 1 event rate of approximately 41%. The average censoring
percentage for our simulations varies between 30− 35%. We use simulateTwoCauseFineGrayModel to
simulate these data and average runtime results over 100 Monte Carlo replicates. We report timing on
a system with an Intel Core i5 2.9 GHz processor and 16GB of memory.

Comparison to the crr package

In this section, we compare the runtime and estimation performance of the fastCrr function to crr.
We vary n from 1, 000 to 500, 000 and run fastCrr and crr both with and without variance estimation.
We take 100 bootstrap samples, without parallelization, to obtain the bootstrap standard errors with
fastCrr. As shown later in the section (Tables 3 and 4), 100 bootstrap samples suffices to produce a
good standard error estimate with close-to-nominal coverage for large enough sample sizes in our
scenarios. In practice, we recommend users to increase the number of bootstrap samples until the
variance estimate becomes stable, when computationally feasible.

Figure 3 depicts how fast the computational complexities of fastCrr (dashed lines) and crr
(solid lines) increase as n increases as measured by runtime (in seconds). It shows clearly that the
computational complexity of crr increases quadratically (solid line slopes ≈ 2) while that of fastCrr
is linear (dashed line slopes ≈ 1). This implies that the computational gains of fastCrr over crr are
expected to grow exponentially as the sample size increases.

We further demonstrates the computational advantages of fastCrr over crr for large sample size
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Table 2: Runtime comparison of crr versus fasrCrr for large n scenarios. The dashes (“–") indicate
that runtime could not be completed within 72 hours. Variance estimation for fastCrr is calculated
using B = 100 bootstrap samples.

Sample size n
50,000 100,000 500,000

crr without variance 6 hours 24 hours –
crr with variance 54 hours – –
fastCrr without variance 5 seconds 12 seconds 50 seconds
fastCrr with variance 7 minutes 14 minutes 69 minutes

Table 3: Standard error estimates for various different values of β1j (j = 1, 2, 3). Empirical: Standard
deviation of the 100 Monte Carlo estimates of β̂1j; Bootstrap: The average of the 100 Monte Carlo
estimates of the bootstrap standard error for β̂1j using B = 100 bootstrap samples; Asymptotic: The
average of 100 Monte Carlo estimates of the standard error estimate for β̂1j using the asymptotic
variance-covariance matrix defined in (3).

Std. Err. Est. n = 1000 2000 3000 4000

β11 = 0.4 Empirical 0.06 0.05 0.04 0.03
Bootstrap 0.10 0.05 0.04 0.03
Asymptotic 0.07 0.04 0.03 0.03

β12 = −0.4 Empirical 0.10 0.05 0.04 0.03
Bootstrap 0.11 0.06 0.04 0.04
Asymptotic 0.08 0.05 0.04 0.03

β13 = 0 Empirical 0.09 0.06 0.04 0.03
Bootstrap 0.11 0.06 0.04 0.04
Asymptotic 0.07 0.05 0.04 0.03

data in Table 2 by comparing their runtime on a single simulated data with n varying from 50, 000
to 500, 000 using a system with an Intel Xeon 2.40GHz processor and 256GB of memory. It is seen
that fastCrr scales well to large sample size data, whereas crr eventually grinds to a halt as n grows
large. For example, for n = 500, 000, it only takes less than 1 minute for fastCrr to finish, while crr
did not finish in 3 days. Because the forward-backward scan allows us to efficiently compute variance
estimates through bootstrapping, we have also observed massive computational gains in variance
estimation with large sample size data (7 minutes for fastCrr versus 54 hours for crr). Furthermore,
since parallelization of the bootstrap procedure was not implemented in these timing reports, we
expect multicore usage to further decrease the runtime of the variance estimation for fastCrr

We also performed a simulation to compare the bootstrap procedure for variance estimation to the
estimate of the asymptotic variance provided in (3) used in crr. First, we compare the two standard
error estimates with the empirical standard error of β̂1. For the jth coefficient, the empirical standard
error is calculated as the standard deviation of β̂1j from the 100 Monte Carlo runs. For the standard
error provided by both the bootstrap and the asymptotic variance-covariance matrix, we take the
average standard error of β̂1j over the 100 Monte Carlo runs. Table 3 compares the standard errors for
β̂1j for j = 1, 2, 3. When n = 1000, the average standard error using the bootstrap is slightly larger than
the empirical standard error; whereas, the standard error from the asymptotic expression is slightly
smaller. These differences diminish and all three estimates are comparable when n ≥ 2000. This
provides evidence that both the bootstrap and asymptotic expression are adequate estimators of the
variance-covariance expression for large datasets.

Additionally, we present in Table 4 the coverage probability (and standard errors) of the 95%
confidence intervals for β11 = 0.4 using the bootstrap (fastCrr) and asymptotic (crr) variance estimate.
The confidence intervals are wider for the bootstrap approach when compared to confidence intervals
produced using the asymptotic variance estimator, especially when n = 1000. However, both methods
are close to the nominal 95% level as n increases. We observe similar trends across the other coefficient
estimates.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 56

Table 4: Coverage probability (and standard errors) of 95% confidence intervals for β11 = 0.4. Con-
fidence intervals for crr are calculated using the asymptotic expression of the variance-covariance
estimator. Confidence intervals for fasrCrr are calculated using the bootstrap variance-covariance
estimator using 100 bootstrap samples.

n = 1000 2000 3000 4000

crr 0.93 (0.03) 0.90 (0.03) 0.93 (0.03) 0.95 (0.02)
fastCrr 1.00 (0.00) 0.98 (0.02) 0.95 (0.02) 0.95 (0.02)
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Figure 4: Runtime comparison between the crrp and fastcmprsk implementations of LASSO, SCAD,
and MCP penalization. Solid and dashed lines represent the crrp and fastcmprsk implementation,
respectively. Square, circle, and triangle symbols denote the penalties MCP, SCAD, and LASSO,
respectively. Axes are on the log10 scale. Reported runtime are averaged over 100 Monte Carlo runs.

Comparison to the crrp package

As mentioned in Section 2.2.4, Fu et al. (2017) provide an R package crrp for performing penalized
Fine-Gray regression using the LASSO, SCAD, and MCP penalties. We compare the runtime between
fastCrrp with the implementation in the crrp package. To level comparisons, we modify the source
code in crrp so that the function only calculates the coefficient estimates and BIC score. We vary
n = 1000, 1500, . . . , 4000, fix p = 100, and employ a 25-value grid search for the tuning parameter.
Figure 4 illustrates the computational advantage the fastCrrp function has over crrp.

Similar to the unpenalized scenario, the computational performance of crrp (solid lines) increases
quadratically while fasrCrrp (dashed lines) increases linearly, resulting in a 200 to 300-fold speed up
in runtime when n = 4000. This, along with the previous section and a real data analysis conclusion
in the following section, strongly suggests that for large-scale competing risks datasets (e.g. EHR
databases), where the sample size can easily exceed tens to hundreds of thousands, analyses that may
take several hours or days to perform using currently-implemented methods are available within
seconds or minutes using the fastcmprsk package.

Discussion

The fastcmprsk package provides a set of scalable tools for the analysis of large-scale competing
risks data by developing an approach to linearize the computational complexity required to estimate
the parameters of the Fine-Gray proportional subdistribution hazards model. Multicore use is also
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implemented to further speed up methods that require bootstrapping and resampling. Our simulation
results show that our implementation results in a up to 7200-fold decrease in runtime for large sample
size data. We also note that in a real-world application, Kawaguchi et al. (2020) record a drastic
decrease in runtime (≈ 24 hours vs. ≈ 30 seconds) when comparing the proposed implementation
of LASSO, SCAD, and MCP to the methods available in crrp on a subset of the United States Renal
Data Systems (USRDS) where n = 125, 000. The package implements both penalized and unpenalized
Fine-Gray regression and we can conveniently extend our forward-backward algorithm to other
applications such as stratified and clustered Fine-Gray regression.

Lastly, our current implementation assumes that covariates are densely observed across subjects.
This is problematic in the sparse high-dimensional massive sample size (sHDMSS) domain (Mittal
et al., 2014) where the number of subjects and sparsely-represented covariates easily exceed tens of
thousands. These sort of data are typical in large comparative effectiveness and drug safety studies
using massive administrative claims and EHR databases and typically contain millions to hundreds
of millions of patient records with tens of thousands patient attributes, which such settings are
particularly useful for drug safety studies of a rare event such as unexpected adverse events (Schuemie
et al., 2018) to protect public health. We are currently extending our algorithm to this domain in a
sequel paper.
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Data generation scheme

We describe the data generation process for the simulateTwoCauseFineGrayModel function. Let n, p,
Zn×p, β1, β2, umin, umax and π be specified. We first generate independent Bernoulli random variables to
simulate the cause indicator ε for each subject. That is, εi ∼ 1 + Bern{(1− π)exp(z′i β1)} for i = 1, . . . , n.
Then, conditional on the cause, event times are simulated from

Pr(Ti ≤ t|εi = 1, zi) =
1− [1− π{1− exp(−t)}]exp(z′i β1)

1− (1− π)exp(z′i β1)

Pr(Ti ≤ t|εi = 2, zi) = 1− exp{−t exp(z′i β2)},

and Ci ∼ U(umin, umax). Therefore, for i = 1, . . . , n, we can obtain the following quadruplet {(Xi, δi, δiεi, zi)}
where Xi = min(Ti, Ci), and δi = I(Xi ≤ Ci). Below is an excerpt of the code used in simulateTwoCauseFineGrayModel
to simulate the observed event times, cause and censoring indicators.

#START CODE
...
...
...
# nobs, Z, p = pi, u.min, u.max, beta1 and beta2 are already defined.
# Simulate cause indicators here using a Bernoulli random variable
c.ind <- 1 + rbinom(nobs, 1, prob = (1 - p)^exp(Z %*% beta1))

ftime <- numeric(nobs)
eta1 <- Z[c.ind == 1, ] %*% beta1 #linear predictor for cause on interest
eta2 <- Z[c.ind == 2, ] %*% beta2 #linear predictor for competing risk

# Conditional on cause indicators, we simulate the model.
u1 <- runif(length(eta1))
t1 <- -log(1 - (1 - (1 - u1 * (1 - (1 - p)^exp(eta1)))^(1 / exp(eta1))) / p)
t2 <- rexp(length(eta2), rate = exp(eta2))
ci <- runif(nobs, min = u.min, max = u.max) # simulate censoring times

ftime[c.ind == 1] <- t1
ftime[c.ind == 2] <- t2
ftime <- pmin(ftime, ci) # X = min(T, C)
fstatus <- ifelse(ftime == ci, 0, 1) # 0 if censored, 1 if event
fstatus <- fstatus * c.ind # 1 if cause 1, 2 if cause 2
...
...
...
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