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Testing the Equality of Normal
Distributed and Independent Groups’
Means Under Unequal Variances by doex
Package

by Mustafa Cavus and Berna Yazici

Abstract In this paper, we present the doex package contains the tests for equality of normal dis-
tributed and independent group means under unequal variances such as Cochran F, Welch-Aspin,
Welch, Box, Scott-Smith, Brown-Forsythe, Johansen F, Approximate F, Alexander-Govern, Generalized
F, Modified Brown-Forsythe, Permutation F, Adjusted Welch, B2, Parametric Bootstrap, Fiducial
Approach, and Alvandi Generalized F-test. Most of these tests are not available in any package. Thus,
doex is easy to use for researchers in multidisciplinary studies. In this study, an extensive Monte-Carlo
simulation study is conducted to investigate the performance of the the tests for equality of normal
distributed group means under unequal variances in terms of Type I error probability and penalized
power. In the case of Type I error probability of the compared tests are different, the penalized power
is used which allows fair power comparisons. In this way, we conclude the performance of the tests by
taking into account two possible errors in hypothesis testing.

Introduction

Testing equality of normal distributed and independent groups’ means is a basic analysis in statistics
and related fields. The Fisher’s F-test is a powerful test to do this analysis with the assumptions of
variance homogeneity, normality, and statistical independency. Violation of the variance homogeneity
assumption is a commonly encountered statistical problem in a variety of application areas such
as agriculture, pharmacy, and biostatistics. There is number of methods improved because of the
negative effect of the violation of variance homogeneity assumption on the performance of Classical
F-test in terms of Type I error probability and power. These tests are, Cochran F (CF), Welch-Aspin
(WA), Welch (WE), Box (BX), Scott-Smith (SS), Brown-Forsythe (BF), Johansen (JF), Approximate F
(AF), Alexander-Govern (AG), Generalized F (GF), Modified Brown-Forsythe (MBF), Permutation F
(PF), Adjusted Welch (AW), B2, Parametric Bootstrap (PB), Fiducial Approach (FA) and Alvandi et al.
Generalized F (AGF) test, chronologically. The fact that the high number of methods in the literature
raises the problem of choosing the most appropriate method for researchers.

There are many articles to investigate the performance of the tests for equality of normal distributed
and independent group means under unequal variances in the literature. However, only some of the
tests are included in these studies. The results of these studies help researchers to solve the problem
of choosing the appropriate method for their work. Gamage and Weerahandi (1998) compared the
size performance of the GF test and four widely used procedures: CF, BF, and Welch test in case of
deviation from normality. The highly skewed Gamma distributions and Gamma distributions with
shapes close to being normal are considered. While the GF was found to have size not exceeding
the intended level, as heteroscedasticity becomes severe the others were found to have poor size
performance. Hartung et al. (2002) compared the CF, C, W, BF, MBF, AF, and AW tests under normal
populations, balanced-unbalanced sample sizes and an increasing number of populations. None of
the tests considered is uniformly dominating the others. The BF and the W test perform well over
a wide range of parameter configurations, the MBF test by Mehrotra keeps generally the level, but
other tests may also perform well, depending on the constellation of the parameters under study.
The W test becomes liberal when the sample sizes are small and the number of populations is large.
They propose a modified version of Welch's test that keeps the nominal level in these cases. With the
understanding that methods are unacceptable if they have Type I error rates that are too high, only
the testing procedure associated with the MBF test can be recommended, the modified Welch test
can also be recommended. Argac (2004) constructed a systematic pattern in simulations of the tests
for equality of normal distributed and independent group means under unequal variances. Classical
F, Cochran, Welch, modified Welch, Brown-Forsythe, modified Brown-Forsythe, and approximate F
test considered are divided into two groups, Cochran-Welch type tests and the Brown-Forsythe type
tests. There seems to be considerably higher variability in the power of C-W type tests in the balanced
case. In the unbalanced case, there does not appear to be a huge difference between the power of
the different tests. Sadooghi-Alvandi et al. (2012) proposed a new GF test and compared it with GF,
PB, Welch, and Cochran test in an extensive Monte-Carlo simulation study. According to results, it
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controls the Type I error probability better and its power closed to the others. Gokpinar and Gokpinar
(2012) compared the Type I error probability and power of CF, BE, GF, PB, and W test under different
variance heterogeneities and effect sizes for three and five groups. Their results indicate that PB is the
best control Type I error probability and has the highest power. In addition to these articles, the scope
of the other articles are not comprehensive in the literature (Hartung et al. (2002), Lee and Ahn (2003),
Lietal. (2011), Mutlu et al. (2017)). A comprehensive Monte-Carlo simulation study is conducted
under normal distribution in this article in order to fill this gap. Especially, the penalized power is
used which allows fair power comparisons when the Type I error probabilities are different. In this
way, we conclude the performance of the tests by taking into account two possible errors in hypothesis
testing.

Another problem experienced by the researchers is most of these tests are not available in any
R package. However, some R packages contain the tests for equality of normal distributed and
independent group means under unequal variances, asbio by Aho (2018), coin by Hothorn et al.
(2008), lawstat by Hui et al. (2008), onewaytests by Dag et al. (2018), welchADF by Villacorta (2017),
WRS2 by Mair and Wilcox (2018). These packages contain only the Brunner-Dette-Munk, Permutation
F, Kruskal-Wallis, Brown-Forsythe, Alexander-Govern, James Second Order, Welch test. In particular,
the performance of the tests such as the GF, PB, FA, and AGF test by Monte-Carlo simulations prevents
the easy use of these tests. Clearly, a package should contain these tests. We propose the package doex
provides the tests for equality of normal distributed group means under unequal variances which
previously have not been implemented in any R package such as AF, AGF, B2, FA, JF, MBF, MW, PB,
and PE. Also, it consists of the modified Generalized F-test (MGF) which is proposed by Cavus et al.
(2017) to test the equality of group means under heteroscedasticity and non-normality caused by
outliers. It is a useful procedure for non-normal distributed groups and Cavus et al. (2018) showed in
a real data application.

The following sections detail the tests for equality of normal distributed and independent group
means under unequal variances considered in doex. The performance of these tests is investigated in
terms of penalized power and Type I error probability. Finally, we conclude with a brief summary and
future works.

Tests for Testing Equality of Normal Distributed Groups’ Means under
Unequal Variance

The linear model within the context of a one-way independent group design for testing the equality of
groups’ means is given in (1) .

Yij = pi + €5 1)

where Y; i is the dependent variable associated with the ith observation in the jth group fori = 1,2, ..., n;
and j = 1,2,.., k. p; is the group mean for the ith group, and ¢;; is the random error component
associated with Yj;. The null hypothesis Hy : p1 = pa = ... = i is tested as the Classical F-test
assumed that the ¢;;’s are independent, normally distributed, and have an equal variance o? for
each group of k. Type I error probability of Classical F-test inflates and its power decreases in case
of the violation of variance homogeneity assumption. There are many procedures improved in the
literature to solve this problem. In this section, the tests for equality of normal distributed and
independent group means under unequal variances, considered in doex and discussed in the Monte-
Carlo simulation study, are introduced. These tests are, Alexander-Govern, Alvandi et al. generalized
F, Approximate F, Box F, Brown-Forsythe, B2, Cochran F, Fiducial Approach, Generalized F, Johansen,
Modified Brown-Forsythe, Adjusted Welch, Parametric Bootstrap, Permutation F, Scott-Smith, Welch,
Welch-Aspin test.

Alexander-Govern (AG) test

Alexander and Govern (1994) improved a test using the Hill’s normality transformation to the Student’s
t variables. Consider X1, Xjp, ..., Xjy, ~ N (yi,aiz) and the standard deviations of normal groups
computed as in (2).

_ Zé{:1 27;1 (Xij - Xi)2
" ni(n; —1)

Sx (2)
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The weights are computed using the Sg. asin (3).
1/8%
Wi= & 5 ®3)
21':1 1 /sz

The weight mean is computed using the w; in (4).

X =Y wX; 4)

The values of t; = (X; — X*)/S %, ~ Ip;—1 are transformed using the following transformation.

3 4+3c  4c7 4 33¢5 4 240¢® + 855¢

- 5
HECt T 1062 + 8bc* + 10005 ®
where a = v; — 0.5,¢c = \/aln(1 + %’21) and b = 4842. The test statistic of AG test is computed as in (6).
£ 2
TAG = ZZi (6)
i=1

The Hj is rejected when T4 > X%kfl)w'

Alvandi et. al. Generalized F (AGF) test

Sadooghi-Alvandi et al. (2012) proposed the test statistic in 8 as an alternative of Weerahandi’s
Generalized F-test. B
Eh mXi/SH?

/S 7)

2 @2 £ nj
TG(Sl,S XD 272
l

i=1

Tacr =3 "1 (%, _ g xp
AGE =Y, (Xi — qiX) ®)
izl

ni/s?
):i'(:l ni/ 5,‘2
simulations with Algorithm 1.

where q; = and X = Zle g;X;. The p-value of AGF test computed using Monte-Carlo

Algorithm 1. Computation of Monte-Carlo estimate of the AGF test

1. Compute the vectors of (%1, X2, ..., ¥) and (s%,s%, ...,si) for k groups

2. Compute the T using the vectors in Step 1
3. forjin{l,..r}do
Generate U; ~ leifl random samples
Compute the T4gr using generated random samples
Set the counter Q; = 1 when Tagr > Tg
end for
4. Compute the Monte-Carlo estimate of p-value as X, Qj/r

Approximate F (AF) test

Asiribo and Gurland (1990) proposed a modification to the F-test as in (9).

Taor =N

Thg ni(Xi — X.)?
s ”

T (N
where X = Z{-‘zl X;and N = Zle n;. The Hy is rejected when T4 > Fy1 2,4 The degrees of freedom
of the AF test statistic is computed in (10).

[Th (1 —ni/N)SF? _ [EE (- ni/N)*SEP

01 = ’ Uy =
S E i S? /N2 -2k miSE/N Y5 (n;—1)8%

(10)
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Box (BX) test

Box (1954) proposed the test statistic in (11).

N
Tso = N (11)
( -1 Z (n; 71)5
The Hy is rejected when Tgp > Fy,,p,;,0 Where
o — [Ty (N — i) SP? oy = [Zizt (1 15D a2
[Ty miSF? + N T (N —2m,) S Lia(n = 1)8]

Brown-Forsythe (BF) test
Brown and Forsythe (1974) proposes the following test statistic.

Zz 1 n,(X,- - X.A)Z

Z,‘:1 (1 - "i/N)Siz =

Tgr =

where X = Zif:l X;and N = Zi‘(:l n;. The Hy is rejected when Tgr > F;_1) ;. The degrees of
fredom of the test statistic computed as in (14).
(S il % — X

(1—n;/N)25}

Z (ni—1)

v =

(14)

The B2 test

Ozdemir and Kurt (2006) proposed the following procedure using the Bailey’s normality transforma-
tion to the Student’s t variables. Consider X1, Xjo, ..., Xin, ~ N(p;, ‘71‘2) and the standard deviations of
normal groups computed as in (15).

LTI (X - X)?

°% = ni(ni —1) (49
The weights computed using the S %, as in (16).
1/5%
wi:zfﬁiff§§§; (16)
The weighed mean computed using the w;’s as in (17).
k
X =) wX;. (17)
i=1

The values of t; = (X; — X*)/S %, ~ tn;—1 are transformed using Bailey’s (1980) normality transforma-

tion.
40 + M 2
z:444447;§ viln(1+ L) ~ N(0,1) (18)
402 + v; + 5 Ui

where zc = Z, /» ~ N(0,1) and the test statistic of B> test computed as in (19).

4U + 5(222+3)
HK—ZZ ——————7ﬂ (19)
s e R TR e

The Hy is rejected when Tpg > X%k—l)‘uc'
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Cochran (CF) test

Cochran (1937) proposes the test statistic in (20).

k k
TC = Z w,-(X,- — Z h]X])2 (20)
i=1 j=1

where w; = n,-/si2 and h; = w;/ Zé‘:l w;. The Hy is rejected when T > X%k—l)}lx.

Fiducial Approach (FA) test
Lietal. (2011) proposed the test statistic in (21).
ko, (T )
Tea= ) 87— 1,{75”1 1)
i=1 Li-1g

The p-value of the FA test can be computed using Monte-Carlo simulations with Algorithm 2.

Algorithm 2. Computation of Monte-Carlo estimate of the FA test

1. Compute the vectors of (%1, X, ..., ) and (s%,s%, ...,si) for k groups

2. Compute the T using the vectors in Step 1
3. forjin{l,..r}do
Generate Z; ~ N(0,1) and U; ~ X%fl random samples
Compute the Tpy using generated random samples
Set the counter Q; = 1 when Tpy > Tg
end for
4. Compute the Monte-Carlo estimate of p-value as Z?:l Qj/r

Generalized F (GF) test
Weerahandi (1995) proposed the test statistic in (22) using the generalized p-value approach.

Ter = i(nu-/vz)x2 _ [E (il o) w2
[ 1 i

(22)
= g nill;/o?

where 2212 = (n; — 1)512. The p-value of GF test can be computed using Monte-Carlo simulations with

Algorithm 3.

Algorithm 3. Computation of Monte-Carlo estimate of the GF test

1. Compute the vectors of (%1, ¥, ..., ) and (s%,s%, ...,s%) for k groups

2. Compute the T; using the vectors in Step 1
3. forjin{l,..r}do
Generate U; ~ X%ll-—l random samples
Compute the Tgr using generated random samples
Set the counter Q; = 1 when Tgr > T
end for
4. Compute the Monte-Carlo estimate of p-value as Z?:l Qj/r

Johansen (JF) test
Johansen (1980) proposed an approximate solution to the W test as in (23).

Zlg 5%2 e XS
T, — i=1g; i 1/82
] C

(23)
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where ¢ = (k—1)+2A —6A/(k+1),v = (k—1)(k+1)/3Aand A = ¥¥_ (1 —w;/w)?/(n; — 1)
The Hy is rejected when T} > F_1 4.4

Modified Brown-Forsythe (MBF) test

Mehrotra (1997) proposed the test statistic in (24), which is a modification of BF, to well-performing in
case of small sample size.

Zz 1 (X X)
Yi.a —n,-/N)SZ

where X = Zf.(:l X;and N = Zf.(:l n;. The Hy is rejected when Tmpr>F, .-
of the MBF test statistics is computed as in (25).

Tmpr = (24)

. The degrees of freedom

[T, (0 =i/ N)SE? 25, (1= ni/N)2S2P2
o= 2 2 l k 4 / 2 = (1— ./N>2S4l (25)
Vi1 Sf 4 (T mST/N) =250, miSt/N R

Adjusted Welch (AW) test

Hartung et al. (2002) proposed an adjustment to the Welch test. The test statistic of adjusted Welch test
is computed as in (26).

Zf 1 W7 (% — ZJ 1h] x])

Tw =
" k- > T3y B

(26)

where w} = [ . The Hy is rejected when Tyy > F(x_y) o,,- The degrees of

e and i =
freedom of the test statistic computed in (27).

V= —3 . (27)

Parametric Bootstrap (PB) test

Krishnamoorthy et al. (2007) proposed a procedure to test the equality of group means under het-

eroscedasticity.
k . 7G212
c o n; X; /S5
Tg(83,83,...,S Z ’iz - —Zl*kl iXi/ 21] (28)
i=15; i1 ni/S;
Assume Z; ~ N(0,1) and U; ~ X%ﬁl random samples, the test statistic of the PB test is computed as
in (29).
2@ a2 nﬁl X, vmiZi(n = 1) /85Uy
TPB(51/SZI S = Z l = (29)

Tisg ni(n —1)/S7U;
The Hj is rejected when Tpp > Tg. The p-Value of PB test is computed using Monte-Carlo simulations
with Algorithm 4.

Algorithm 4. Computation of Monte-Carlo estimate of the PB test

1. Compute the vectors of (%1, X, ..., ¥) and (s%,s%, ...,si) for k groups

2. Compute the T using the vectors in Step 1
3. forjin{l,..r}do
Generate Z; ~ N(0,1) and U; ~ Xi-fl random samples
Compute the Tpp using generated random samples
Set the counter Q; = 1 when Tpg > T
end for
4. Compute the Monte-Carlo estimate of p-value as Z;‘:l Qj/r
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Permutation F (PF) test

Berry and Mielke (2002) proposed the test statistic in (30) as the permutational alternative of F-test.

;o (T-NX)/(k-1)
PE="(vZT)/(N=k)

(30)

where T = Y¥ ;¥ 2?, X* = 1/NLn%jand V = Y5, Z}il XIZJ The Hj is rejected when Tpr >
Fr—1,N-ka-
Scott-Smith (SS) test
Scott and Smith (1971) proposed the test statistic in (31).
k e 7 )2
n(X; — X
T =) L et D (31)
1= 1

where S;“z = Z:—:;Sf The Hy is rejected when Tgc > 7(%;0(.

Welch (WE) test

Welch (1951) improved the test statistic in 32 based on the weighted group variance as an alternative
to the F-test under heteroscedasticity.

oo Ewil® T ) 2
YT 2R (k2 »
k+1 ~i=1 n;—1 1

where w; = n;/s? and h; = w;/ Zf-‘:l w;. The Hy is rejected when Tyy > Fg_1) oy The degrees of
freedom of the Welch test computed as in 33.
(k2 —-1)/3

= S (33)
Zz 1 n—-1

Welch-Aspin (WA) test

Aspin (1948) proposed the test statistic in (34) with a modification to the degrees of freedom of Welch
test.

(34)

)
where A = Zé‘:l[(l —w;)?/w;], v1 = k—1and v, = (k* —1)/3A. The Hy is rejected when
Twa > Fojopa-

Using doex package

The doex package provides to perform several tests for equality of normal distributed and indepen-
dent distributed group means under unequal variances. These tests are called a function with the
initials of their name which are given in the previous sections. In particular, the following tests are not
included in any R package or statistical package program: AF, AGF, B2, FA, JF, MBE, MW, PB, and PF.
In this section, the examples are given how to use these tests by using doex. After the explanatory
data analysis, the variance homogeneity assumption must be checked to move on to the next stage
(Noguchi and Gel, 2010; Erps and Noguchi, 2019). The Levene Test is used to this, and we did not
include it in the package is because it is included in many R package such as car by Fox and Weisberg
(2019), rstatix by Kassambara (2020), lawstat by Gastwirth et al. (2020), inferr by Hebbali (2018). We
want to stick with the idea of creating a package that includes tests not included in the CRAN.

Example 1: The data are inputted to the functions with two parts: observations and the group labels.
As an example hybrid data from Weerahandi (1995) is given in the package. It consists of two parts:
data are observations and species are the labels of species of the corn hybrids.
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# Call the doex package

> library(doex)

# print hybrid data of Weerahandi (1995)
> hybrid

data species
7.

0 NO O wWw N =

_
N

N O N0 O N0 0N NN,

W oo O WA OOUINDWOOS OOLW=NU = N3O h

OO oToToTooOoOoOOOO0O0OTWmwww>»>>>> > >

# observations of the hybrid data
> hybrid$data
[117.46.6 6.7 6.16.57.27.17.36.86.97.06.86.36.46.76.56.86.46.97.66.87.3

# group labels of the hybrid data
> hybrid$species
[TIAAAAAABBBBBCCCCCCDDDDD
Levels: ABCD

# The ggplot2 package can be used to plot the box plot of the data in Figure 1.
> ggplot(hybrid, aes(x = species, y = data)) +

> geom_boxplot() +

> ylab("Yield") +

> xlab("Corn Species")

H+

Look at the summary statistics of the data before using the tests.
Use psych package to obtain the descriptive statistics of the hybrid data
library(psych)

(VAR

++

Describe the hybrid data by species using describe.by(.) function
describe.by(hybrid$data, hybrid$species)

Vv

#The output of the describe.by function as follows:

Descriptive statistics by group
group: A

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 16 6.75 0.48 6.65 6.75 0.52 6.1 7.4 1.3 0.1 -1.7 0.19
group: B

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 157.020.19 7 7.02 0.15 6.8 7.3 0.5 0.28 -1.72 90.09
group: C

vars n mean sd median trimmed mad min max range skew kurtosis se
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Figure 1: Boxplot of the data in Example 1.

X1 16 6.58 0.21 6.6 6.58 0.3 6.3 6.8 0.5 -0.13 -2.02 0.09
group: D

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 15 7 0.46 6.9 70.596.47.6 1.20.04 -1.84 0.21

# It is seen that the variances of the species are unequal

# Thus we need to use the tests for equality of the group means under unequal variances
#

# Examples of the use of the AF and GF tests on the hybrid data are given in the follows.
# The following code performs the Approximate F-test on the hybrid data.

\Y2

library(doex)
AF (hybrid$data, hybrid$species)

Vv

# This function returns a result matrix consists of a test statistic, degrees of freedom,
and p-value of Approximate F-test as follows:

Test Statistic df1 df2 p-value
Approximate F 1.8538 2 12 0.1943

# Following code performs the Generalized F-test.

> library(doex)
GF (hybrid$data, hybrid$species)

A\

The p-value of the GF test is computed Monte-Carlo estimates and its size is
controlled with the rept parameter in the function. It is implemented as
default rept=10000

This function returns the p-value of the Generalized F-test as follows:

H oH H

p-value
Generalized F 0.0492

# The results of the AF and GF tests are different at the nominal level 0.05.
# It is needed to investigate the performance of these tests in
# a Monte-Carlo simulation study.

Example 2: This example is provided an external data involves litter weights of mice born from
mothers assigned to three different dosage groups and a control. For the low dose group the dose
metameter is 5, for the medium dose group it is 50, and for the high dose group it is 500. In here, the
problem is testing the equality of mean of litter weights of mice born according to the used dose. The
dataset is available in the following repository: https://github.com/mcavs/doex_TheRJournal.
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Figure 2: Boxplot of the data in Example 2.

# Print born weight data using the data is given in GitHub repository.

weight_data dose
22.69

26.59

28.85

28.03

29.05

23.61

22.21

26.81

26.01

[} 25.98

—= W 0O NO Ul WN —
(SRS I RS RN RIS SN

70 26.31 500
71 30.61 500
72 26.48 500
73 24.31 500
74 27.98 500

# The ggplot2 package can be used to plot the box plot of the data in Figure 2.

> ggplot(born_weight_data, aes(x = dose, y = weight_data)) +
> geom_boxplot() +

> ylab("Born Weight (gr)") +

> xlab("Dose Treatment")

++

Describe the born weight data by species using describe.by(.) function
describe.by(born_weight_data$weight_data, born_weight_data$dose)

Vv

#The output of the describe.by function as follows:

Descriptive statistics by group
group: @

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 120 25.73 2.02 26.1 25.74 2.43 22.21 29.05 6.84 -0.1 -1.16 0.45
group: 5

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 119 23.52 3.9 22.75 23.51 4.28 16.34 30.95 14.61 0.01 -0.97 0.89
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group: 50

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 118 23.79 2.83 24.11 23.84 1.92 17.54 29.21 11.67 -0.28 0.03 0.67
group: 500

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 17 23.72 4.08 24.31 23.76 3.84 16.13 30.61 14.48 -0.4 -0.91 0.99

# It is seen that the variances of the dose groups may be unequal
To conclude whether the variance homogenity assumption is valid,
Levene test is used.

* 3

A\

library(car)
> car::LeveneTest(weight_data ~ dose)

# LeveneTest(.) function returns the test statistic and
# p-value of Levene variance homogeneity test as follows:

Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 3 3.3819 0.0229 *
Signif. codes:
Q@ ‘*x%’ 0.001 ‘x*’ 0.01 ‘*’ 0.05 ‘.’

The p-value of Levene test is lower than the nominal level .05,

so it is concluded that the variance homogeneity assumption is violated.
Thus we need to use the tests for equality of the group means under
unequal variances in doex.

* o o

++

The GF, AF, and PB are used to conclude there is a significance difference between
# the mean born weight of mice according to used dose group.

> doex: :GF(weight_data, dose)

p-value
Generalized F 0.0331

> doex: :AF(weight_data, dose)

Test Statistic df1 df2 p-value
Approximate F 1.9408 3 57 0.1484

> doex: :PB(weight_data, dose)

p-value
Parametric Bootstrap 0.0366

# The results of the GF and PB tests indicate that there is a significant difference,
# while the result of the AF indicates that there is no significant difference between
# the mean born weight of mice according to used dose group.

# It is also needed to investigate the performance of these tests in

# a Monte-Carlo simulation study.

Monte-Carlo simulation study

’

In this section, the performance of the tests for equality of normal distributed and independent groups
means under unequal variances are investigated in terms of Type I error probability and penalized
power of the test. We used the penalized power instead of the classical power of the test, because
any comparison of the powers is invalid when Type I error probabilities are different in Monte-Carlo
simulation studies. Zhang and Boos (1994) and Lloyd (2005) proposed alternatives for the power of
the tests have some deficiencies. To overcome this problem, Cavus et al. (2019) proposed the penalized
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Figure 3: Type I error probability of the tests for k = 3.

power of the test in (35) to compare the power of the test even if Type I error probabilities are different.

y=— 1P (35)

1+‘1—ﬂ

&0

where B is Type II error rate, a; is Type I error of the test, and «( is the nominal level. Penalized
power adjusts the power function with the square root of the percentile deviation between type I error
probability and the nominal level. Thus, penalized power is used to compare the power of the tests in
the simulation studies. An extensive Monte-Carlo simulation study is conducted to investigate the
performance of the tests in terms of Type I error probability and penalized power. Firstly, the ability
of the tests to control the Type I error probability is examined. Then, the penalized power of the test
which controls the Type I error probability in the Bradley (1978)’s robustness limits are compared.
In this way, we conclude the performance of the tests by taking into account two possible errors in
hypothesis testing. The sample size, design type, variance heterogeneity, and effect sizes are used
as configuration factors beyond this part of the study. The R code used in this simulation study is
available in the following repository: https://github.com/mcavs/doex_TheRJournal.

The properties of the tests to control the Type I error probability

Type I error probabilities of the tests are investigated in an extensive Monte-Carlo simulation study
under balanced and unbalanced design with small, moderate, and large sample sizes in this section.
Also, the number of the groups is fixed as k = 3, 5,7, and different heteroscedasticity setups are also
used. Hereby, the properties of the tests to control the Type I error probability are revealed under
various scenarios.

The boxplots in Figs. 3,4,5 are constructed for several heteroscedasticity scenarios. In this way, the
ability of the tests to control the Type I error probability are obtained. According to the Fig.3, AF, AG,
B2, GE, JE, MBF, PB, WA and WE test controls the Type I error probability in the Bradley (1978) limits
which are shown with dashed red lines. However, the AGEF, CF, PF, and SS test could not control the
Type I error probability for k = 3. The GF test controls the Type I error probability unlike in the case of
k = 3in Fig.4. The AF, AG, B2, MBF, PB, and WA test control Type I error probability for k = 7. When
the results are summarized, it is concluded that the AGF, BF, BX, CF, MW, PF, and SS test could not
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control the Type I error probability for each of the k’s. Thus, the tests only which control Type I error
probability in the limits are considered in the next section for power comparisons to avoid making a
wrong decision.

The results of the penalized powers

In this section, the penalized power results are given under four configuration factors are sample size,
design type, effect size, heteroscedasticity level for k = 3,5, 7. The samples follows normal distribution
with the parameters (;, U’iz) as given in Tables 1, 2, 3. The mean parameter of the samples are shown
as the effect size A; in each line. This means that the mean parameter of the samples are zero except
the last sample is A;.

When the effect of the configuration factors on the power are examined, it is observed that the
larger sample size increase, the higher level of heteroscedasticity decrease, and the higher effect sizes
increase the power of all tests as expected. Also, some interesting results are obtained such as the
penalized power of all tests are higher in the unbalanced designs. The performances of the AF and
MBEF, the AG and B2, the JF and WE tests are very close to each other in terms of penalized power.
Thus, these tests may be used interchangeably.

The AF and MBF test are superior than others in most of the scenarios. In the lower level of
heteroscedasticity for all sample sizes, the penalized power of the tests are higher than 0.90 for
k = 3. It is the same situation for k = 5 except for a small sample-unbalanced design. In this case,
the penalized power of the AF and MGF is close to the 0.90, and the performance of the others is
unacceptable. For k = 7, the penalized power of the tests is higher than 0.90 except for small sample-
lower heteroscedasticity scenarios. In this case, the AF and MBF tests show acceptable performance
in terms of penalized power in only small sample-lower level heteroscedasticity. As a result, it
is clearly seen that the penalized power of the tests decreases dramatically in the higher level of
heteroscedasticity for k = 5,7.

Discussion

In this paper, an extensive Monte-Carlo simulation study is conducted to investigate the performance
of the tests for equality of normal distributed and independent groups’ means under unequal variances
under several scenarios. It is rather rare to encounter normally distributed data and Bono et al. (2017)
showed that the data obtained from health, educational, and social sciences research are often not
normally distributed. Blanca et al. (2013) discussed the negative effect of non-normality on the power
and Type I error probability of the parametric tests. It is reality that the normality assumption is crucial
for the considered tests in this study. Here, it is focused on the performance of the considered tests
under normality to fill the gap mentioned the introduction part. Firstly, the ability of the test to control
the Type I error probability is examined and the boxplots in Figs.3, 4 and 5 are used to summarize
the results. The tests which can control the Type I error probability are obtained as robust tests with
respect to the Bradley (1978)’s limits. Then, the penalized power of the robust tests is calculated. The
reason for using this method was to consider two possible types of error.

According to the results of the Monte-Carlo simulation study, the AF, AG, B2, MBF, PB, WA test
control the Type I error probability for k = 3,5,7 in the interval [0.0495,0.0505]. The GF can control
only for k = 3 and the WE test can control only for k = 3,5. Besides the controlling of the Type I
error probability of these tests, the penalized power properties are also investigated under similar
scenarios. The results are indicated that the AF and MBEF tests are superior than others in the higher
heteroscedasticity levels. Also, it is concluded that the penalized power of the other tests is quite close
to the intended level.

As a result of this study, the robust tests are obtained and can be used in most of the situations
except for a higher level of heteroscedasticity and small sample sizes. Using the results of the
simulation study, researchers can use appropriate tests for their studies.

Summary and Future works

The doex package contains the several tests for testing equality of normally distributed groups” means
under unequal variances. Most of these tests are not available in any R package. Thus, we fill this
gap by implementing the package in the statistical software literature. The fact that the package
contains tests such as the GF, PB, and FA with complex calculation steps provides a significant benefit
to multidisciplinary researchers. Furthermore, the performance of the considered tests is investigated
under normal distributions in detail in an extensive Monte-Carlo simulation study. Considering the
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number of methods discussed, this article is the most comprehensive performance investigation study
in the literature. Recommendations were made to the researchers by using the interesting outputs
from the simulation study.

It is always optimistic idea to encountered normal distribution in real life. The performance of
the considered tests can be also investigated under the various distributions or to focus the tests are
proposed for non-normal distributions. Thus, it is planned to expand the package by adding methods
used to test the equality of the log-normal (Tian and Wu, 2007) and inverse-Gaussian (Tian, 2006; Ma
and Tian, 2009) distributed and independent groups’ means in further studies.
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Table 1: Penalized powers for k = 3

n; o2 A AG AF B2 GF JF MBF  PB WE WA
(10,10,10) (0.1,02,03) 03 02232 02630 02236 02133 02314 02628 02306 02314 02128
08 09045 09391 09047 08915 09197 09390 09201 09197 0.8833
15 09910 09815 09911 09768 09921 09815 0.9941 09921 09614
(0.1,04,07) 03 01265 0.1491 01269 01277 01326 0.1490 0.1296 0.1326 0.1193
08 05962 0.6858 05978 0.6004 06129 0.6855 0.6089 0.6129 0.5829
15 09853 09880 09881 09893 09812 09879 09777 09812 0.9583
1,2,3) 03 00682 00656 00684 00649 00708 0.0655 0.0702 0.0708 0.0644
08 0.1700 02006 01701 0.1653 0.1760 0.2004 0.1752 0.1760 0.1615
15 04832 05536 04833 04716 04998 05534 04968 04998  0.4693
1,4,7) 03 00614 00566 00616 00622 00627 00565 00622 0.0627 0.0563
08 01023 0.1200 01026 01050 0.1075 0.1200 0.1068 0.1075 0.0958
15 02542 03022 02550 0.2556 02655 03021 02594 02655 0.2424
(30,30,30) (0.1,02,03) 03 06299 07004 06293 06281 06327 07002 06342 06327 06375
08 09882 09980 09872 09872 09815 09979 09853 0.9815 0.9970
15 1 1 1 1 1 1 1 1 1
(0.1,04,07) 03 03210 03791 03212 03210 03243 03789 03224 03243  0.3233
08 09772 09924 09775 09779 09740 09922 09726 09740 0.9898
15 09831 09960 09834 09834 09796 09960 09787 0.9796 0.9960
1,2,3) 03 00923 01072 0.0922 0.0934 0.0938 0.1070 0.0930 0.0938 0.0925
08 04785 05411 04780 04733 04823 05410 04789 04823  0.4820
15 09566 09798 09557 09545 09517 09797 09566 09517 0.9653
1,4,7) 03 00661 00715 00663 00663 00672 00714 00648 0.0672 0.0657
08 02282 02809 02285 02284 02318 02808 0.2298 02318 0.2301
15 06982 07659 06990 07012 07032 07655 07009 0.7032 0.7100
(50,50,50) (0.1,02,03) 03 08573 09046 08577 0.8546 08547 09045 08604 08547 0.8593
08 09811 09980 09815 09825 09759 09979 09853 09759 0.9834
15 1 1 1 1 1 1 1 1 1
(0.1,04,07) 03 05427 06028 05425 05443 05418 0.6026 05400 0.5418  0.5442
0.8 09832 09980 09834 09880 09759 0.9980 09740 09759 0.9872
15 1 1 1 1 09979 1 09940 09981 1
1,2,3) 03 01421 0.1671 0.1431 01432 01435 0.1671 0.1474 0.1435 0.1434
08 07210 07900 0.7214 07203 0.7204 0.7900 0.7262 0.7204 0.7232
15 09803 09974 09807 09817 09751 09974 09843 09751 0.9826
1,4,7) 03 00912 01040 0.0917 0.0907 00917 0.1040 0.0918 0.0917 0.0904
08 04020 04659 04018 04066 04017 04659 04021 04017  0.4032
15 09031 09405 09032 09070 0.8990 09405 0.8932 0.8990 0.9077
(5,10,15)  (0.1,02,03) 03 02790 03346 02791 02535 02573 02974 02605 02573 02371
08 09598 09388 09570 09217 09432 09342 09484 09432  0.9406
15 09844 09483 09815 09475 09731 09500 09787 09731 0.9759
(0.1,04,07) 03 01522 01955 01526 0.1346 0.1494 0.1743 0.1490 0.1494 0.1339
08 07601 0.8070 07609 07018 0.7535 0.7860 0.7532 0.7535  0.7063
15 09910 09612 09913 09340 09962 09748 09992 09962 0.9567
1,2,3) 03 00702 0.0835 00709 00604 00650 0.0669 00652 0.0650 0.0607
08 02018 02644 02014 01817 0.1900 0.2236 0.1912 0.1900 0.1741
15 05940 06651 05928 05571 05611 0.6205 05649 05611  0.5412
1,4,7) 03 00562 00690 00567 00460 0.0568 0.0610 0.0580 0.0568 0.0496
08 01202 0.1546 01210 0.1068 0.1190 0.1353 0.1190 0.1190 0.1036
15 03310 0398 03312 03016 03252 03689 03250 0.3252 0.2971
(20,30,40) (0.1,02,03) 0.3 07142 07419 07143 07108 07071 07609 07093 0.7071  0.7068
08 09955 09509 09960 09980 09872 09970 09921 09872  0.9960
15 1 1 1 1 1 1 1 1 1
(0.1,04,0.7) 03 03951 04407 03953 03944 03994 04314 03953 03994 0.3872
08 09892 09612 09895 09936 09984 09869 09899 09984 0.9857
15 09910 09614 09911 09950 1 09872 09911 1 0.9872
1,2,3) 03 01062 0.1227 01066 01022 01060 0.1196 0.1058 0.1060 0.1044
08 05572 05975 05576 05541 05521 0.6064 05540 05521  0.5530
15 09843 09452 09847 09860 09758 09892 09806 0.9758 0.9845
1,4,7) 03 00743 0.0821 00747 00732 00756 0.0772 00747 0.0756 0.0735
08 02872 03234 02874 02876 02904 03157 02908 02904 0.2843
15 08011 08166 08020 0.8044 08100 0.8240 0.8004 0.8100 0.7957
(25,50,75) (0.1,02,03) 03 09182 08505 00184 09294 09129 09361 09153 09129 0.9227
08 09744 08811 09750 09872 09704 09796 09750 09704 0.9825
15 1 1 1 1 1 1 1 1 1
(0.1,04,0.7) 03 0.6392 06680 0.6398 06375 0.6365 0.6702 06384 0.6365 0.6380
08 09682 09054 09685 09704 09649 09631 09750 09649 0.9722
15 1 09654 1 1 1 1 1 1 1
1,2,3) 03 01631 02058 01636 01649 01630 01932 0.1652 0.1630 0.1627
08 0.8022 07839 08030 08105 07976 0.8452 07991 0.7976 0.8058
15 09745 08811 09750 09872 09704 09796 09750 0.9704 0.9825
1,4,7) 03 00970 0.1217 0.0972 0.0959 00969 0.1094 0.0989 0.0969 0.0961
08 04922 05291 04924 04896 04902 05205 04941 04902  0.4900
15 09466 0.8923 09470 09486 09433 09435 09531 0.9433  0.9500
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Table 2: Penalized powers for k = 5
n; o? A AG AF B2 JF MBF PB WE WA
(10, 10,10,10,10)  (0.1,0.2,0.3,04,0.5) 0.3 0.0713 0.0867 0.0716 0.0779 0.0863 0.0729 0.0779 0.0718
0.8 02172 0.3403 02173 02424 03400 0.2350 02424 0.2271
15 06316 0.8549 0.6315 0.6984 0.8542 0.6897 0.6984 0.6722
(0.1,04,0.7,1.1,1.5) 03 0.0562 0.0586 0.0565 0.0543 0.0536 0.0540 0.0543 0.0515
0.8 0.0917 0.1191 0.0915 0.0848 0.1074 0.0843 0.0848 0.0791
1.5 02110 0.3094 02109 0.1840 0.2835 0.1850 0.1840 0.1747
1,2,3,4,5) 0.3 0.0522 0.0541 0.0523 0.0560 0.0540 0.0525 0.0560 0.0502
0.8 0.0658 0.0788 0.0657 0.0713 0.0785 0.0671 0.0713  0.0647
1.5 01066 0.5250 0.1065 0.1165 0.1479 0.1072 0.1165 0.1046
1,4,7,11,15) 03 0.0953 01154 0.0951 0.0923 0.1153 0.0964 0.0923  0.0940
0.8 04644 05647 04635 04510 05645 04635 04510 04611
15 09652 09788 09633 0.9312 09785 09611 09312 0.9563
(30,30,30,30,30) (0.1,0.2,03,04,05) 0.3 0.3557 04704 0.3556 0.3598 0.4700 0.3573 0.3598 0.3601
0.8 09824 09871 09824 09666 09870 09716 0.9666 0.9803
15 09834 09872 09844 09676 09871 09731 09676 0.9815
(0.1,04,0.7,1.1,15) 03 0.1442 01996 0.1443 0.1461 0.1994 0.1445 0.1461 0.1456
0.8 07418 0.8700 0.7420 0.7478 0.8700 0.7439 0.7478  0.7586
15 09843 09931 09848 0.9708 09930 0.9700 0.9708 0.9906
1,2,3,4,5) 0.3 0.0773 0.0898 0.0779 0.0791 0.0893 0.0784 0.0791  0.0768
0.8 02581 0.3510 02590 0.2618 0.3508 0.2606 0.2618 0.2614
1.5 07472 0.8595 0.7477 0.7509 0.8593 0.7537 0.7509 0.7579
1,4,7,11,15) 03 0.0621 0.0666 0.0622 0.0621 0.0664 0.0624 0.0621 0.0614
0.8 01158 0.1557 0.1160 0.1167 0.1552 0.1164 0.1167 0.1159
15 03113 04370 03112 03182 04366 0.3153 0.3182 0.3193
(50, 50, 50,50,50) (0.1,0.2,0.3,04,0.5) 0.3 0.5882 0.6978 0.5883 0.5996 0.6975 0.5964 0.5996 0.5881
0.8 09955 09825 09960 1 09823 09990 1 0.9901
15 1 1 1 1 1 1 1 1
(0.1,04,0.7,1.1,15) 03 02161 0.3051 02163 0.2215 03050 0.2178 02215 0.2152
0.8 09432 09636 09433 09472 09633 09440 09472 0.9321
15 09890 0.9787 0.9892 0.9901 09785 0.9872 0.9901 0.9750
(1,2,3,4,5) 03 0.0912 01121 0.0919 0.0929 0.1120 0.0921 0.0929  0.0909
0.8 04361 05477 04363 04465 05474 04435 0.4465 0.4374
15 09502 09665 09508 0.9574 09663 0.9558 09574 0.9473
1,4,7,611,15) 0.3 0.0621 0.0701 0.0628 0.0626 0.0700 0.0621 0.0626 0.0610
0.8 0.1617 02248 0.1619 0.1657 02245 0.1624 0.1657 0.1602
1.5 05205 0.6456 05206 0.5292 0.6455 0.5302 0.5292 0.5197
4, 6,10, 14, 16) (0.1,0.2,0.3,04,05) 0.3 01680 0.2295 0.1682 0.1448 0.1922 0.1309 0.1448 0.1313
0.8 0.8345 09315 0.8335 0.7925 0.8584 0.7690 0.7925 0.7730
1.5 09833 09844 09814 09795 09198 09739 09795 0.9758
(0.1,04,0.7,1.1,15) 0.3 0.0848 0.1110 0.0847 0.0790 0.0988 0.0745 0.0790 0.0736
0.8 03790 05455 03790 0.3366 05029 0.3283 0.3366 0.3282
1.5 09103 09756 09072 0.8771 09474 0.8920 0.8771 0.8947
(1,2,3,4,5) 0.3 0.0633 00625 0.0632 0.0605 0.0501 0.0583 0.0605 0.0570
0.8 01252 0.1750 0.1253 0.1103 0.1469 0.1081 0.1103  0.1069
15 03671 05264 03674 03126 04614 03090 0.3126 0.3093
(1,4,7,11,15) 0.3 0.0523 0.0537 0.0525 0.0544 0.0471 0.0479 0.0544 0.0474
0.8 0.0727 0.0902 0.0735 0.0707 0.0791 0.0635 0.0707 0.0630
15 01466 02189 0.1475 0.1359 01930 0.1195 0.1359 0.1197
(12,18,30,42,48)  (0.1,0.2,0.3,04,05) 0.3 05134 0.6239 05129 04915 0.6184 04904 04915 0.4905
0.8 09969 09466 0.9959 09824 09863 0.9910 0.9824  0.9959
15 1 1 1 1 1 1 1 1
(0.1,04,0.7,1.1,1.5) 03 0.1999 0.2816 02000 0.1936 02697 0.1906 0.1936 0.1904
0.8 09238 09291 09239 09091 009556 0.9046 0.9091 0.9183
1.5 09977 0.9543 09980 0.9853 0.9882 0.9815 0.9853  0.9980
1,2,3,4,5) 03 0.0812 01162 0.0814 0.0817 0.1028 0.0804 0.0817 0.0772
0.8 03714 04900 03713 0.3630 0.4614 0.3567 03630 0.3459
1.5 09016 0.9321 09017 09085 09309 0.8963 0.9085 0.8825
(1,4,7,11,15) 03 00611 0.0718 0.0618 0.0615 0.0670 0.0605 0.0615 0.0607
0.8 0.1502 02101 0.1506 0.1445 02032 0.1460 0.1445 0.1443
15 04561 05788 04561 0.4425 05779 0.4465 04425 0.4472
(20,30,50,70,80) (0.1,0.2,0.3,04,05) 0.3 07441 0.8321 0.7448 07426 0.8292 0.7403 0.7426 0.7293
0.8 09692 09509 09695 09759 09722 09731 09759 0.9614
1.5 09891 09729 09895 0.9959 09822 0.9921 09899 0.9934
(0.1,04,0.7,1.1,15) 03 0.7590 0.8306 0.7593 0.7602 0.8469 0.7569 0.7602  0.7499
0.8 09782 09444 09785 09844 09874 09828 09844 0.9747
1.5 09821 09449 09825 0.9882 009882 0.9872 09882 0.9787
1,2,3,4,5) 0.3 0.1040 0.1441 0.1047 0.1027 0.1374 0.1018 0.1027 0.1008
08 05771 06735 05773 05709 07017 0.5684 05709 0.5719
1.5 09472 09101 09475 0.9473 09861 0.9499 09473 0.9550
1,4,7,11,15) 0.3 0.0651 0.0805 0.0657 0.0654 0.0765 0.0652 0.0654 0.0643
0.8 02322 03155 02326 0.2275 03055 0.2278 0.2275 0.2250
1.5 07033 0.7689 0.7038 0.6962 0.7887 0.6987 0.6962  0.6995
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Table 3: Penalized powers for k = 7

n; o2 A; AG AF B2 MBF  PB WA
(10,10, 10,10, 10,10,10)  (0.1,0.2,0.3,0.4,0.5,0.6,07) 03 0.0916 0.1176 00921 0.1175 0.0954 0.0960
08 03745 06158 03750 0.6154 04288 0.4279
15 08713 09725 08715 09723 09247 0.9068
(0.1,04,07,1.1,1.5,1.9,2.3) 03 0.0668 00655 00666 00651 00660 0.0658
08 01501 02255 0.1502 02253 0.1578 0.1603
15 04021 06756 04023 0.6753 04519 0.4519
1,2,3,4,5,6,7) 03 00565 0.0520 0.0568 0.0520 0.0597 0.0588
0.8 00819 0.0944 0.0820 0.0942 00831 0.0834
15 01612 02385 01609 02381 0.1693 0.1695
(1,4,7,11,15, 19, 23) 03 00560 0.0485 0.0561 0.0483 0.0577 0.0570
08 00632 0.0608 0.0635 00604 00625 0.0633
15 0085 01044 00858 0.1042 0.0860 0.0880
(30, 30, 30, 30, 30, 30, 30) _ (0.1,0.2,0.3,04,05,0.6,07) 03 02204 03303 02209 03301 02301 0.2298
08 09598 09703 09596 09701 09616 0.9640
15 09957 09778 09960 09768 09911 0.9941
(0.1,04,07,1.1,1.5,1.9,2.3) 03 0.0978 0.1334 00980 0.1324 0.0977 0.0985
08 04679 0.6533 0.4680 0.6530 04867 0.4904
15 09702 09822 09704 09820 09630 0.9757
(1,2,3,4,5,6,7) 03 00651 00712 0.0657 00711 0.0670 0.0636
0.8 0.1652 02417 0.1657 02414 0.1725 0.1706
15 05243  0.6901 05247 0.6900 0.5453  0.5461
(1,4,7,11,15, 19, 23) 03 00552 0.0575 0.0555 0.0572 0.0550 0.0537
0.8 00852 0.1060 0.0857 0.1050 0.0853 0.0860
15 01810 02765 0.1813 02755 0.1841 0.1839
(50, 50, 50, 50, 50, 50, 50) (0.1, 0.2,0.3,04, 0.5,0.6,0.7) 0.3 03722 05118 03725 05111 03782 0.3787
08 09969 09853 09978 09850 09988 0.9948
15 1 1 1 1 1 1
(0.1,04,07,1.1,15,1.9,2.3) 03 01362 01907 01365 0.1907 0.1387 0.1380
08 07502 0.8843 0.7507 0.8840 0.7686 0.7657
15 09943 09863 09948 09852 0.9988 0.9968
1,2,3,4,5,6,7) 03 00762 0.0914 00764 0.0910 00787 0.0758
08 02660 03817 02661 03812 02739 0.2697
15 08052 09063 0.8058 09051 0.8202 0.8145
(1,4,7,11,15, 19, 23) 03 00600 0.0629 00601 00612 00605 0.0594
08 01093 0.1499 0.1099 0.1479 0.1123  0.1099
15 02902 04275 02906 04271 02981 0.2971
@,6,8,10, 12, 14, 16) (0.1,02,03,04,05,06,07) 03 01201 01540 0.208 0.1419 0.1025 0.1067
08 06065 07846 0.6068 0.7525 05561 0.5596
15 09622 09456 09617 09273 09852 0.9544
(0.1,04,07,1.1,15,1.9,2.3) 03 00718 00814 00720 0.0750 0.0629 0.0704
08 02169 03329 02173 03132 01798 0.1944
15 06726 08591 06734 0.8274 06240 0.6532
1,2,3,4,5,6,7) 03 00622 00549 0.0621 0.0509 0.0587 0.0609
0.8 01035 0.1204 0.1041 01114 00856 0.0900
15 02357 03452 02356 03250 0.1935 0.2023
(1,4,7,11,15, 19, 23) 03 00561 0.0497 0.0564 0.0481 00518 0.0563
08 00653 00714 0.0654 0.0677 0.0607 0.0641
15 01078 0.1385 0.1080 0.1305 0.0939  0.0947
(12,18, 24, 30, 36, 42, 48)  (0.1,0.2,0.3,04,05,0.6,07) 0.3 03332 04900 03336 04627 03226 0.3149
0.8 09737 09882 09740 09750 09798  0.9740
15 09950 1 09940 09920 0.9906 0.9912
(0.1,04,0.7,1.1,15,19,2.3) 03 01277 01966 0.1284 01814 0.1228 0.1205
0.8 07067 08465 07070 0.8059 0.6955 0.6979
15 09990 09970 09995 09649 09950 0.9988
1,2,3,4,5,6,7) 03 00712 0.0870 0.0718 0.0798 00675 0.0678
08 02458 03612 02452 03438 02307 0.2322
15 07381 08667 07380 0.8494 07108 0.7255
(1,4,7,11,15, 19, 23) 03 00544 0.0636 0.0541 0.0593 00557 0.0530
0.8 00998 0.1537 0.0993 0.1388 0.0956 0.0938
15 02679 04137 02675 03839 02616 0.2539
(20, 30, 40, 50, 60, 70, 80) _ (0.1,0.2,0.3,04, 0.5,0.6,0.7) 03 05722 07108 05720 07148 05596  0.5577
0.8 09990 09614 09987 09911 09960 0.9980
15 1 09614 1 1 1 1
(0.1,04,0.7,1.1,15,19,2.3) 03 01939 02736 0.1935 02647 0.1885 0.1875
08 09270 09103 09262 09315 09254 0.9286
15 09921 09261 09919 09509 0.9901 0.9941
1,2,3,4,5,6,7) 03 00835 0.1185 0.0832 0.1079 0.0834 0.0799
08 04142 05701 04140 05418 04040 0.4014
15 09426 09747 09423 09664 09433  0.9380
(1,4,7,11,15,19, 23) 03 00551 0.0709 0.0542 0.0658 0.0563 0.0551
08 01388 02142 0.1369 02012 01352 0.1343
15 04446 06286 04442 06072 04363 0.4414
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