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Testing the Equality of Normal
Distributed and Independent Groups’
Means Under Unequal Variances by doex
Package
by Mustafa Cavus and Berna Yazıcı

Abstract In this paper, we present the doex package contains the tests for equality of normal dis-
tributed and independent group means under unequal variances such as Cochran F, Welch-Aspin,
Welch, Box, Scott-Smith, Brown-Forsythe, Johansen F, Approximate F, Alexander-Govern, Generalized
F, Modified Brown-Forsythe, Permutation F, Adjusted Welch, B2, Parametric Bootstrap, Fiducial
Approach, and Alvandi Generalized F-test. Most of these tests are not available in any package. Thus,
doex is easy to use for researchers in multidisciplinary studies. In this study, an extensive Monte-Carlo
simulation study is conducted to investigate the performance of the the tests for equality of normal
distributed group means under unequal variances in terms of Type I error probability and penalized
power. In the case of Type I error probability of the compared tests are different, the penalized power
is used which allows fair power comparisons. In this way, we conclude the performance of the tests by
taking into account two possible errors in hypothesis testing.

Introduction

Testing equality of normal distributed and independent groups’ means is a basic analysis in statistics
and related fields. The Fisher’s F-test is a powerful test to do this analysis with the assumptions of
variance homogeneity, normality, and statistical independency. Violation of the variance homogeneity
assumption is a commonly encountered statistical problem in a variety of application areas such
as agriculture, pharmacy, and biostatistics. There is number of methods improved because of the
negative effect of the violation of variance homogeneity assumption on the performance of Classical
F-test in terms of Type I error probability and power. These tests are, Cochran F (CF), Welch-Aspin
(WA), Welch (WE), Box (BX), Scott-Smith (SS), Brown-Forsythe (BF), Johansen (JF), Approximate F
(AF), Alexander-Govern (AG), Generalized F (GF), Modified Brown-Forsythe (MBF), Permutation F
(PF), Adjusted Welch (AW), B2, Parametric Bootstrap (PB), Fiducial Approach (FA) and Alvandi et al.
Generalized F (AGF) test, chronologically. The fact that the high number of methods in the literature
raises the problem of choosing the most appropriate method for researchers.

There are many articles to investigate the performance of the tests for equality of normal distributed
and independent group means under unequal variances in the literature. However, only some of the
tests are included in these studies. The results of these studies help researchers to solve the problem
of choosing the appropriate method for their work. Gamage and Weerahandi (1998) compared the
size performance of the GF test and four widely used procedures: CF, BF, and Welch test in case of
deviation from normality. The highly skewed Gamma distributions and Gamma distributions with
shapes close to being normal are considered. While the GF was found to have size not exceeding
the intended level, as heteroscedasticity becomes severe the others were found to have poor size
performance. Hartung et al. (2002) compared the CF, C, W, BF, MBF, AF, and AW tests under normal
populations, balanced-unbalanced sample sizes and an increasing number of populations. None of
the tests considered is uniformly dominating the others. The BF and the W test perform well over
a wide range of parameter configurations, the MBF test by Mehrotra keeps generally the level, but
other tests may also perform well, depending on the constellation of the parameters under study.
The W test becomes liberal when the sample sizes are small and the number of populations is large.
They propose a modified version of Welch’s test that keeps the nominal level in these cases. With the
understanding that methods are unacceptable if they have Type I error rates that are too high, only
the testing procedure associated with the MBF test can be recommended, the modified Welch test
can also be recommended. Argac (2004) constructed a systematic pattern in simulations of the tests
for equality of normal distributed and independent group means under unequal variances. Classical
F, Cochran, Welch, modified Welch, Brown-Forsythe, modified Brown-Forsythe, and approximate F
test considered are divided into two groups, Cochran-Welch type tests and the Brown-Forsythe type
tests. There seems to be considerably higher variability in the power of C-W type tests in the balanced
case. In the unbalanced case, there does not appear to be a huge difference between the power of
the different tests. Sadooghi-Alvandi et al. (2012) proposed a new GF test and compared it with GF,
PB, Welch, and Cochran test in an extensive Monte-Carlo simulation study. According to results, it
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controls the Type I error probability better and its power closed to the others. Gokpinar and Gokpinar
(2012) compared the Type I error probability and power of CF, BF, GF, PB, and W test under different
variance heterogeneities and effect sizes for three and five groups. Their results indicate that PB is the
best control Type I error probability and has the highest power. In addition to these articles, the scope
of the other articles are not comprehensive in the literature (Hartung et al. (2002), Lee and Ahn (2003),
Li et al. (2011), Mutlu et al. (2017)). A comprehensive Monte-Carlo simulation study is conducted
under normal distribution in this article in order to fill this gap. Especially, the penalized power is
used which allows fair power comparisons when the Type I error probabilities are different. In this
way, we conclude the performance of the tests by taking into account two possible errors in hypothesis
testing.

Another problem experienced by the researchers is most of these tests are not available in any
R package. However, some R packages contain the tests for equality of normal distributed and
independent group means under unequal variances, asbio by Aho (2018), coin by Hothorn et al.
(2008), lawstat by Hui et al. (2008), onewaytests by Dag et al. (2018), welchADF by Villacorta (2017),
WRS2 by Mair and Wilcox (2018). These packages contain only the Brunner-Dette-Munk, Permutation
F, Kruskal-Wallis, Brown-Forsythe, Alexander-Govern, James Second Order, Welch test. In particular,
the performance of the tests such as the GF, PB, FA, and AGF test by Monte-Carlo simulations prevents
the easy use of these tests. Clearly, a package should contain these tests. We propose the package doex
provides the tests for equality of normal distributed group means under unequal variances which
previously have not been implemented in any R package such as AF, AGF, B2, FA, JF, MBF, MW, PB,
and PF. Also, it consists of the modified Generalized F-test (MGF) which is proposed by Cavus et al.
(2017) to test the equality of group means under heteroscedasticity and non-normality caused by
outliers. It is a useful procedure for non-normal distributed groups and Cavus et al. (2018) showed in
a real data application.

The following sections detail the tests for equality of normal distributed and independent group
means under unequal variances considered in doex. The performance of these tests is investigated in
terms of penalized power and Type I error probability. Finally, we conclude with a brief summary and
future works.

Tests for Testing Equality of Normal Distributed Groups’ Means under
Unequal Variance

The linear model within the context of a one-way independent group design for testing the equality of
groups’ means is given in (1) .

Yij = µi + εij (1)

where Yij is the dependent variable associated with the ith observation in the jth group for i = 1, 2, ..., ni
and j = 1, 2, ..., k. µi is the group mean for the ith group, and εij is the random error component
associated with Yij. The null hypothesis H0 : µ1 = µ2 = ... = µk is tested as the Classical F-test
assumed that the εij’s are independent, normally distributed, and have an equal variance σ2 for
each group of k. Type I error probability of Classical F-test inflates and its power decreases in case
of the violation of variance homogeneity assumption. There are many procedures improved in the
literature to solve this problem. In this section, the tests for equality of normal distributed and
independent group means under unequal variances, considered in doex and discussed in the Monte-
Carlo simulation study, are introduced. These tests are, Alexander-Govern, Alvandi et al. generalized
F, Approximate F, Box F, Brown-Forsythe, B2, Cochran F, Fiducial Approach, Generalized F, Johansen,
Modified Brown-Forsythe, Adjusted Welch, Parametric Bootstrap, Permutation F, Scott-Smith, Welch,
Welch-Aspin test.

Alexander-Govern (AG) test

Alexander and Govern (1994) improved a test using the Hill’s normality transformation to the Student’s
t variables. Consider Xi1, Xi2, ..., Xini ∼ N(µi, σ2

i ) and the standard deviations of normal groups
computed as in (2).

SX̄i
=

∑k
i=1 ∑ni

j=1(Xij − X̄i)
2

ni(ni − 1)
(2)
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The weights are computed using the SX̄i
as in (3).

wi =
1/S2

X̄i

∑k
i=1 1/S2

X̄i

(3)

The weight mean is computed using the wi in (4).

X̄∗ =
k

∑
i=1

wiX̄i (4)

The values of ti = (X̄i − X̄∗)/SX̄i
∼ tni−1 are transformed using the following transformation.

zi = c +
c3 + 3c

b
+

4c7 + 33c5 + 240c3 + 855c
10b2 + 8bc4 + 1000b

(5)

where a = vi − 0.5, c =
√

aln(1 + t2
i

vi
) and b = 48a2. The test statistic of AG test is computed as in (6).

TAG =
k

∑
i=1

z2
i (6)

The H0 is rejected when TAG > χ2
(k−1);α.

Alvandi et. al. Generalized F (AGF) test

Sadooghi-Alvandi et al. (2012) proposed the test statistic in 8 as an alternative of Weerahandi’s
Generalized F-test.

TG(S2
1, S2

2, ..., S2
k) =

k

∑
i=1

ni

S2
i

X̄i −
[∑k

i=1 niX̄i/S2
i ]

2

∑k
i=1 ni/S2

i

(7)

TAGF =
k

∑
i=1

ni − 1
Ui

(X̄i − qiX̃)2 (8)

where qi =

√
ni/s2

i

∑k
i=1 ni/s2

i
and X̃ = ∑k

i=1 qiX̄i. The p-value of AGF test computed using Monte-Carlo

simulations with Algorithm 1.

Algorithm 1. Computation of Monte-Carlo estimate of the AGF test

1. Compute the vectors of (x̄1, x̄2, ..., x̄k) and (s2
1, s2

2, ..., s2
k) for k groups

2. Compute the TG using the vectors in Step 1
3. for j in {1, ..., r} do

Generate Ui ∼ χ2
ni−1 random samples

Compute the TAGF using generated random samples
Set the counter Qj = 1 when TAGF > TG
end for

4. Compute the Monte-Carlo estimate of p-value as ∑k
i=1 Qj/r

Approximate F (AF) test

Asiribo and Gurland (1990) proposed a modification to the F-test as in (9).

TAF = N
∑k

i=1 ni(X̄i − X̄..)2

∑k
i=1(N − ni)S2

i

(9)

where X̄.. = ∑k
i=1 X̄i and N = ∑k

i=1 ni. The H0 is rejected when TAF > Fv1,v2;α. The degrees of freedom
of the AF test statistic is computed in (10).

v1 =
[∑k

i=1(1− ni/N)S2
i ]

2

∑k
i=1 S4

i + [∑k
i=1 niS2

i /N]2 − 2 ∑k
i=1 niS4

i /N
, v2 =

[∑k
i=1(1− ni/N)2S2

i ]
2

∑k
i=1(ni − 1)S4

i

(10)
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Box (BX) test

Box (1954) proposed the test statistic in (11).

TBO =
Nk

N(k− 1)∑k
i=1

(N−ni)S2
i

(ni−1)S2
i

(11)

The H0 is rejected when TBO > Fv1,v2;α where

v1 =
[∑k

i=1(N − ni)S2
i ]

2

[∑k
i=1 niS2

i ]
2 + N ∑k

i=1(N − 2ni)S2
i

, v2 =
[∑k

i=1(ni − 1S2
i )]

2

∑k
i=1(ni − 1)S+

i

(12)

Brown-Forsythe (BF) test

Brown and Forsythe (1974) proposes the following test statistic.

TBF =
∑k

i=1 ni(X̄i − X..)2

∑k
i=1(1− ni/N)S2

i

(13)

where X.. = ∑k
i=1 X̄i and N = ∑k

i=1 ni. The H0 is rejected when TBF > F(k−1),v;α. The degrees of
fredom of the test statistic computed as in (14).

v =
[∑k

i=1 ni(X̄i − X..)]2

∑k
i=1

(1−ni/N)2S4
i

(ni−1)

(14)

The B2 test

Ozdemir and Kurt (2006) proposed the following procedure using the Bailey’s normality transforma-
tion to the Student’s t variables. Consider Xi1, Xi2, ..., Xini ∼ N(µi, σ2

i ) and the standard deviations of
normal groups computed as in (15).

SX̄i
=

∑k
i=1 ∑ni

j=1(Xij − X̄i)
2

ni(ni − 1)
(15)

The weights computed using the SX̄i
as in (16).

wi =
1/S2

X̄i

∑k
i=1 1/S2

X̄i

(16)

The weighed mean computed using the wi’s as in (17).

X̄∗ =
k

∑
i=1

wiX̄i. (17)

The values of ti = (X̄i − X̄∗)/SX̄i
∼ tni−1 are transformed using Bailey’s (1980) normality transforma-

tion.

zi =
4v2

i +
5(2z2

c+3)
24

4v2
i + vi +

4z2
c+9
12

√
viln(1 +

t2
i

vi
) ∼ N(0, 1) (18)

where zc = Zα/2 ∼ N(0, 1) and the test statistic of B2 test computed as in (19).

TBK =
k

∑
i=1

z2
i =

k

∑
i=1

(
4v2

i +
5(2z2

c+3)
24

4v2
i + vi +

4z2
c+9
12

)2. (19)

The H0 is rejected when TBK > χ2
(k−1);α.
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Cochran (CF) test

Cochran (1937) proposes the test statistic in (20).

TC =
k

∑
i=1

wi(X̄i −
k

∑
j=1

hjX̄j)
2 (20)

where wi = ni/s2
i and hi = wi/ ∑k

i=1 wi. The H0 is rejected when TC > χ2
(k−1);α.

Fiducial Approach (FA) test

Li et al. (2011) proposed the test statistic in (21).

TFA =
k

∑
i=1

t2
i −

(∑k
i=1

√
ni

Si
ti)

2

∑k
i=1

ni
S2

i

. (21)

The p-value of the FA test can be computed using Monte-Carlo simulations with Algorithm 2.

Algorithm 2. Computation of Monte-Carlo estimate of the FA test

1. Compute the vectors of (x̄1, x̄2, ..., x̄k) and (s2
1, s2

2, ..., s2
k) for k groups

2. Compute the TG using the vectors in Step 1
3. for j in {1, ..., r} do

Generate Zi ∼ N(0, 1) and Ui ∼ χ2
ni−1 random samples

Compute the TFA using generated random samples
Set the counter Qj = 1 when TFA > TG
end for

4. Compute the Monte-Carlo estimate of p-value as ∑k
i=1 Qj/r

Generalized F (GF) test

Weerahandi (1995) proposed the test statistic in (22) using the generalized p-value approach.

TGF =
k

∑
i=1

(niUi/v2
i )x̄2

i −
[∑k

i=1(niUi/v2
i )x̄i]

2

∑k
i=1 niUi/v2

i

(22)

where v2
i = (ni − 1)S2

i . The p-value of GF test can be computed using Monte-Carlo simulations with
Algorithm 3.

Algorithm 3. Computation of Monte-Carlo estimate of the GF test

1. Compute the vectors of (x̄1, x̄2, ..., x̄k) and (s2
1, s2

2, ..., s2
k) for k groups

2. Compute the TG using the vectors in Step 1
3. for j in {1, ..., r} do

Generate Ui ∼ χ2
ni−1 random samples

Compute the TGF using generated random samples
Set the counter Qj = 1 when TGF > TG
end for

4. Compute the Monte-Carlo estimate of p-value as ∑k
i=1 Qj/r

Johansen (JF) test

Johansen (1980) proposed an approximate solution to the W test as in (23).

TJ =
∑k

i=1
X̄2

i
S2

i
− [∑k

i=1 X̄i/S2
i ]

2

∑k
i=1 1/S2

i

c
(23)
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where c = (k − 1) + 2A− 6A/(k + 1), v = (k − 1)(k + 1)/3A and A = ∑k
i=1(1− wi/w)2/(ni − 1)

The H0 is rejected when TJ > Fk−1,v;α.

Modified Brown-Forsythe (MBF) test

Mehrotra (1997) proposed the test statistic in (24), which is a modification of BF, to well-performing in
case of small sample size.

TMBF =
∑k

i=1 ni(X̄i − X̄..)2

∑k
i=1(1− ni/N)S2

i

. (24)

where X̄.. = ∑k
i=1 X̄i and N = ∑k

i=1 ni. The H0 is rejected when TMBF>Fv1,v2;α . The degrees of freedom
of the MBF test statistics is computed as in (25).

v1 =
[∑k

i=1(1− ni/N)S2
i ]

2

∑k
i=1 S4

i + (∑k
i=1 niS2

i /N)2 − 2 ∑k
i=1 niS4

i /N
, v2 =

[∑k
i=1(1− ni/N)2S2

i ]
2

∑k
i=1

(1−ni/N)2S4
i

ni−1

. (25)

Adjusted Welch (AW) test

Hartung et al. (2002) proposed an adjustment to the Welch test. The test statistic of adjusted Welch test
is computed as in (26).

TW =
∑k

i=1 w∗i (x̄i −∑k
j=1 h∗j x̄j)

2

(k− 1) + 2 k−2
k+1 ∑k

i=1
1

ni−1 (1− h∗j )
2

. (26)

where w∗i = [ ni
(ni−1/ni−3)s2

i
] and h∗i =

w∗i
∑k

i=1 w∗i
. The H0 is rejected when TW > F(k−1),v;α. The degrees of

freedom of the test statistic computed in (27).

v =
k2−1

3

∑k
i=1

(1−h∗i )2

ni−1

. (27)

Parametric Bootstrap (PB) test

Krishnamoorthy et al. (2007) proposed a procedure to test the equality of group means under het-
eroscedasticity.

TG(S2
1, S2

2, ..., S2
k) =

k

∑
i=1

ni

S2
i

X̄i −
[∑k

i=1 niX̄i/S2
i ]

2

∑k
i=1 ni/S2

i

(28)

Assume Zi ∼ N(0, 1) and Ui ∼ χ2
ni−1 random samples, the test statistic of the PB test is computed as

in (29).

TPB(S2
1, S2

2, ..., S2
k) =

k

∑
i=1

Z2
i (ni − 1)

Ui
−

[∑k
i=1
√

niZi(ni − 1)/SiUi]
2

∑k
i=1 ni(ni − 1)/S2

i Ui
(29)

The H0 is rejected when TPB > TG. The p-value of PB test is computed using Monte-Carlo simulations
with Algorithm 4.

Algorithm 4. Computation of Monte-Carlo estimate of the PB test

1. Compute the vectors of (x̄1, x̄2, ..., x̄k) and (s2
1, s2

2, ..., s2
k) for k groups

2. Compute the TG using the vectors in Step 1
3. for j in {1, ..., r} do

Generate Zi ∼ N(0, 1) and Ui ∼ χ2
ni−1 random samples

Compute the TPB using generated random samples
Set the counter Qj = 1 when TPB > TG
end for

4. Compute the Monte-Carlo estimate of p-value as ∑k
i=1 Qj/r
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Permutation F (PF) test

Berry and Mielke (2002) proposed the test statistic in (30) as the permutational alternative of F-test.

TPF =
(T − NX̄∗)/(k− 1)
(V − T)/(N − k)

(30)

where T = ∑k
i=1 ni ∑ x2

i , X̄∗ = 1/N ∑ ni x̄i and V = ∑k
i=1 ∑ni

j=1 X2
ij. The H0 is rejected when TPF >

Fk−1,N−k;α.

Scott-Smith (SS) test

Scott and Smith (1971) proposed the test statistic in (31).

TSC =
k

∑
i=1

ni(X̄i − X̄..)2

S∗2i
(31)

where S∗2i = ni−1
ni−3 S2

i . The H0 is rejected when TSC > χ2
k;α.

Welch (WE) test

Welch (1951) improved the test statistic in 32 based on the weighted group variance as an alternative
to the F-test under heteroscedasticity.

TW =
∑k

i=1 wi(x̄i −∑k
i=1 hj x̄j)

2

(k− 1) + 2 k−2
k+1 ∑k

i=1
1

ni−1 (1− hi)2
(32)

where wi = ni/s2
i and hi = wi/ ∑k

i=1 wi. The H0 is rejected when TW > F(k−1),v;α. The degrees of
freedom of the Welch test computed as in 33.

v =
(k2 − 1)/3

∑k
i=1

(1−hi)2

ni−1

(33)

Welch-Aspin (WA) test

Aspin (1948) proposed the test statistic in (34) with a modification to the degrees of freedom of Welch
test.

TWA =
∑k

i=1(X̄i − X̄)2/S2
i

(k− 1)[1 + 2k−2
k2−1 λ]

(34)

where λ = ∑k
i=1[(1 − wi)

2/wi], v1 = k − 1 and v2 = (k2 − 1)/3λ. The H0 is rejected when
TWA > Fv1;v2;α.

Using doex package

The doex package provides to perform several tests for equality of normal distributed and indepen-
dent distributed group means under unequal variances. These tests are called a function with the
initials of their name which are given in the previous sections. In particular, the following tests are not
included in any R package or statistical package program: AF, AGF, B2, FA, JF, MBF, MW, PB, and PF.
In this section, the examples are given how to use these tests by using doex. After the explanatory
data analysis, the variance homogeneity assumption must be checked to move on to the next stage
(Noguchi and Gel, 2010; Erps and Noguchi, 2019). The Levene Test is used to this, and we did not
include it in the package is because it is included in many R package such as car by Fox and Weisberg
(2019), rstatix by Kassambara (2020), lawstat by Gastwirth et al. (2020), inferr by Hebbali (2018). We
want to stick with the idea of creating a package that includes tests not included in the CRAN.

Example 1: The data are inputted to the functions with two parts: observations and the group labels.
As an example hybrid data from Weerahandi (1995) is given in the package. It consists of two parts:
data are observations and species are the labels of species of the corn hybrids.
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# Call the doex package
> library(doex)
# print hybrid data of Weerahandi (1995)
> hybrid

data species
1 7.4 A
2 6.6 A
3 6.7 A
4 6.1 A
5 6.5 A
6 7.2 A
7 7.1 B
8 7.3 B
9 6.8 B
10 6.9 B
11 7.0 B
12 6.8 C
13 6.3 C
14 6.4 C
15 6.7 C
16 6.5 C
17 6.8 C
18 6.4 D
19 6.9 D
20 7.6 D
21 6.8 D
22 7.3 D

# observations of the hybrid data
> hybrid$data
[1] 7.4 6.6 6.7 6.1 6.5 7.2 7.1 7.3 6.8 6.9 7.0 6.8 6.3 6.4 6.7 6.5 6.8 6.4 6.9 7.6 6.8 7.3

# group labels of the hybrid data
> hybrid$species
[1] A A A A A A B B B B B C C C C C C D D D D D
Levels: A B C D

# The ggplot2 package can be used to plot the box plot of the data in Figure 1.
> ggplot(hybrid, aes(x = species, y = data)) +
> geom_boxplot() +
> ylab("Yield") +
> xlab("Corn Species")

# Look at the summary statistics of the data before using the tests.
# Use psych package to obtain the descriptive statistics of the hybrid data
> library(psych)

# Describe the hybrid data by species using describe.by(.) function
> describe.by(hybrid$data, hybrid$species)

#The output of the describe.by function as follows:

Descriptive statistics by group
group: A

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 6 6.75 0.48 6.65 6.75 0.52 6.1 7.4 1.3 0.11 -1.7 0.19
----------------------------------------------------------
group: B

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 5 7.02 0.19 7 7.02 0.15 6.8 7.3 0.5 0.28 -1.72 0.09
----------------------------------------------------------
group: C

vars n mean sd median trimmed mad min max range skew kurtosis se
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Figure 1: Boxplot of the data in Example 1.

X1 1 6 6.58 0.21 6.6 6.58 0.3 6.3 6.8 0.5 -0.13 -2.02 0.09
----------------------------------------------------------
group: D

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 5 7 0.46 6.9 7 0.59 6.4 7.6 1.2 0.04 -1.84 0.21

# It is seen that the variances of the species are unequal
# Thus we need to use the tests for equality of the group means under unequal variances
#
# Examples of the use of the AF and GF tests on the hybrid data are given in the follows.
# The following code performs the Approximate F-test on the hybrid data.

> library(doex)
> AF(hybrid$data,hybrid$species)

# This function returns a result matrix consists of a test statistic, degrees of freedom,
and p-value of Approximate F-test as follows:

Test Statistic df1 df2 p-value
Approximate F 1.8538 2 12 0.1943

# Following code performs the Generalized F-test.

> library(doex)
> GF(hybrid$data,hybrid$species)

# The p-value of the GF test is computed Monte-Carlo estimates and its size is
# controlled with the rept parameter in the function. It is implemented as
# default rept=10000
# This function returns the p-value of the Generalized F-test as follows:

p-value
Generalized F 0.0492

# The results of the AF and GF tests are different at the nominal level 0.05.
# It is needed to investigate the performance of these tests in
# a Monte-Carlo simulation study.

Example 2: This example is provided an external data involves litter weights of mice born from
mothers assigned to three different dosage groups and a control. For the low dose group the dose
metameter is 5, for the medium dose group it is 50, and for the high dose group it is 500. In here, the
problem is testing the equality of mean of litter weights of mice born according to the used dose. The
dataset is available in the following repository: https://github.com/mcavs/doex_TheRJournal.
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Figure 2: Boxplot of the data in Example 2.

# Print born weight data using the data is given in GitHub repository.

weight_data dose
1 22.69 0
2 26.59 0
3 28.85 0
4 28.03 0
5 29.05 0
6 23.61 0
7 22.21 0
8 26.81 0
9 26.01 0
10 25.98 0
. . .
. . .
. . .
70 26.31 500
71 30.61 500
72 26.48 500
73 24.31 500
74 27.98 500

# The ggplot2 package can be used to plot the box plot of the data in Figure 2.
> ggplot(born_weight_data, aes(x = dose, y = weight_data)) +
> geom_boxplot() +
> ylab("Born Weight (gr)") +
> xlab("Dose Treatment")

# Describe the born weight data by species using describe.by(.) function
> describe.by(born_weight_data$weight_data, born_weight_data$dose)

#The output of the describe.by function as follows:

Descriptive statistics by group
group: 0

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 20 25.73 2.02 26.1 25.74 2.43 22.21 29.05 6.84 -0.1 -1.16 0.45
-------------------------------
group: 5

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 19 23.52 3.9 22.75 23.51 4.28 16.34 30.95 14.61 0.01 -0.97 0.89
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-------------------------------
group: 50

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 18 23.79 2.83 24.11 23.84 1.92 17.54 29.21 11.67 -0.28 0.03 0.67
-------------------------------
group: 500

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 17 23.72 4.08 24.31 23.76 3.84 16.13 30.61 14.48 -0.4 -0.91 0.99

# It is seen that the variances of the dose groups may be unequal
# To conclude whether the variance homogenity assumption is valid,
# Levene test is used.

> library(car)
> car::LeveneTest(weight_data ~ dose)

# LeveneTest(.) function returns the test statistic and
# p-value of Levene variance homogeneity test as follows:

Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 3 3.3819 0.0229 *
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

# The p-value of Levene test is lower than the nominal level 0.05,
# so it is concluded that the variance homogeneity assumption is violated.
# Thus we need to use the tests for equality of the group means under
# unequal variances in doex.

# The GF, AF, and PB are used to conclude there is a significance difference between
# the mean born weight of mice according to used dose group.

> doex::GF(weight_data, dose)

p-value
Generalized F 0.0331

> doex::AF(weight_data, dose)

Test Statistic df1 df2 p-value
Approximate F 1.9408 3 57 0.1484

> doex::PB(weight_data, dose)

p-value
Parametric Bootstrap 0.0366

# The results of the GF and PB tests indicate that there is a significant difference,
# while the result of the AF indicates that there is no significant difference between
# the mean born weight of mice according to used dose group.
# It is also needed to investigate the performance of these tests in
# a Monte-Carlo simulation study.

Monte-Carlo simulation study

In this section, the performance of the tests for equality of normal distributed and independent groups’
means under unequal variances are investigated in terms of Type I error probability and penalized
power of the test. We used the penalized power instead of the classical power of the test, because
any comparison of the powers is invalid when Type I error probabilities are different in Monte-Carlo
simulation studies. Zhang and Boos (1994) and Lloyd (2005) proposed alternatives for the power of
the tests have some deficiencies. To overcome this problem, Cavus et al. (2019) proposed the penalized
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Figure 3: Type I error probability of the tests for k = 3.

power of the test in (35) to compare the power of the test even if Type I error probabilities are different.

γ =
1− β√

1 +
∣∣∣1− αi

α0

∣∣∣ (35)

where β is Type II error rate, αi is Type I error of the test, and α0 is the nominal level. Penalized
power adjusts the power function with the square root of the percentile deviation between type I error
probability and the nominal level. Thus, penalized power is used to compare the power of the tests in
the simulation studies. An extensive Monte-Carlo simulation study is conducted to investigate the
performance of the tests in terms of Type I error probability and penalized power. Firstly, the ability
of the tests to control the Type I error probability is examined. Then, the penalized power of the test
which controls the Type I error probability in the Bradley (1978)’s robustness limits are compared.
In this way, we conclude the performance of the tests by taking into account two possible errors in
hypothesis testing. The sample size, design type, variance heterogeneity, and effect sizes are used
as configuration factors beyond this part of the study. The R code used in this simulation study is
available in the following repository: https://github.com/mcavs/doex_TheRJournal.

The properties of the tests to control the Type I error probability

Type I error probabilities of the tests are investigated in an extensive Monte-Carlo simulation study
under balanced and unbalanced design with small, moderate, and large sample sizes in this section.
Also, the number of the groups is fixed as k = 3, 5, 7, and different heteroscedasticity setups are also
used. Hereby, the properties of the tests to control the Type I error probability are revealed under
various scenarios.

The boxplots in Figs. 3,4,5 are constructed for several heteroscedasticity scenarios. In this way, the
ability of the tests to control the Type I error probability are obtained. According to the Fig.3, AF, AG,
B2, GF, JF, MBF, PB, WA and WE test controls the Type I error probability in the Bradley (1978) limits
which are shown with dashed red lines. However, the AGF, CF, PF, and SS test could not control the
Type I error probability for k = 3. The GF test controls the Type I error probability unlike in the case of
k = 3 in Fig.4. The AF, AG, B2, MBF, PB, and WA test control Type I error probability for k = 7. When
the results are summarized, it is concluded that the AGF, BF, BX, CF, MW, PF, and SS test could not
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Figure 4: Type I error probability of the tests for k = 5.

Figure 5: Type I error probability of the tests for k = 7.
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control the Type I error probability for each of the k’s. Thus, the tests only which control Type I error
probability in the limits are considered in the next section for power comparisons to avoid making a
wrong decision.

The results of the penalized powers

In this section, the penalized power results are given under four configuration factors are sample size,
design type, effect size, heteroscedasticity level for k = 3, 5, 7. The samples follows normal distribution
with the parameters (µi, σ2

i ) as given in Tables 1, 2, 3. The mean parameter of the samples are shown
as the effect size ∆i in each line. This means that the mean parameter of the samples are zero except
the last sample is ∆i.

When the effect of the configuration factors on the power are examined, it is observed that the
larger sample size increase, the higher level of heteroscedasticity decrease, and the higher effect sizes
increase the power of all tests as expected. Also, some interesting results are obtained such as the
penalized power of all tests are higher in the unbalanced designs. The performances of the AF and
MBF, the AG and B2, the JF and WE tests are very close to each other in terms of penalized power.
Thus, these tests may be used interchangeably.

The AF and MBF test are superior than others in most of the scenarios. In the lower level of
heteroscedasticity for all sample sizes, the penalized power of the tests are higher than 0.90 for
k = 3. It is the same situation for k = 5 except for a small sample-unbalanced design. In this case,
the penalized power of the AF and MGF is close to the 0.90, and the performance of the others is
unacceptable. For k = 7, the penalized power of the tests is higher than 0.90 except for small sample-
lower heteroscedasticity scenarios. In this case, the AF and MBF tests show acceptable performance
in terms of penalized power in only small sample-lower level heteroscedasticity. As a result, it
is clearly seen that the penalized power of the tests decreases dramatically in the higher level of
heteroscedasticity for k = 5, 7.

Discussion

In this paper, an extensive Monte-Carlo simulation study is conducted to investigate the performance
of the tests for equality of normal distributed and independent groups’ means under unequal variances
under several scenarios. It is rather rare to encounter normally distributed data and Bono et al. (2017)
showed that the data obtained from health, educational, and social sciences research are often not
normally distributed. Blanca et al. (2013) discussed the negative effect of non-normality on the power
and Type I error probability of the parametric tests. It is reality that the normality assumption is crucial
for the considered tests in this study. Here, it is focused on the performance of the considered tests
under normality to fill the gap mentioned the introduction part. Firstly, the ability of the test to control
the Type I error probability is examined and the boxplots in Figs.3, 4 and 5 are used to summarize
the results. The tests which can control the Type I error probability are obtained as robust tests with
respect to the Bradley (1978)’s limits. Then, the penalized power of the robust tests is calculated. The
reason for using this method was to consider two possible types of error.

According to the results of the Monte-Carlo simulation study, the AF, AG, B2, MBF, PB, WA test
control the Type I error probability for k = 3, 5, 7 in the interval [0.0495, 0.0505]. The GF can control
only for k = 3 and the WE test can control only for k = 3, 5. Besides the controlling of the Type I
error probability of these tests, the penalized power properties are also investigated under similar
scenarios. The results are indicated that the AF and MBF tests are superior than others in the higher
heteroscedasticity levels. Also, it is concluded that the penalized power of the other tests is quite close
to the intended level.

As a result of this study, the robust tests are obtained and can be used in most of the situations
except for a higher level of heteroscedasticity and small sample sizes. Using the results of the
simulation study, researchers can use appropriate tests for their studies.

Summary and Future works

The doex package contains the several tests for testing equality of normally distributed groups’ means
under unequal variances. Most of these tests are not available in any R package. Thus, we fill this
gap by implementing the package in the statistical software literature. The fact that the package
contains tests such as the GF, PB, and FA with complex calculation steps provides a significant benefit
to multidisciplinary researchers. Furthermore, the performance of the considered tests is investigated
under normal distributions in detail in an extensive Monte-Carlo simulation study. Considering the
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number of methods discussed, this article is the most comprehensive performance investigation study
in the literature. Recommendations were made to the researchers by using the interesting outputs
from the simulation study.

It is always optimistic idea to encountered normal distribution in real life. The performance of
the considered tests can be also investigated under the various distributions or to focus the tests are
proposed for non-normal distributions. Thus, it is planned to expand the package by adding methods
used to test the equality of the log-normal (Tian and Wu, 2007) and inverse-Gaussian (Tian, 2006; Ma
and Tian, 2009) distributed and independent groups’ means in further studies.
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Table 1: Penalized powers for k = 3

ni σ2
i ∆i AG AF B2 GF JF MBF PB WE WA

(10, 10, 10) (0.1, 0.2, 0.3) 0.3 0.2232 0.2630 0.2236 0.2133 0.2314 0.2628 0.2306 0.2314 0.2128
0.8 0.9045 0.9391 0.9047 0.8915 0.9197 0.9390 0.9201 0.9197 0.8833
1.5 0.9910 0.9815 0.9911 0.9768 0.9921 0.9815 0.9941 0.9921 0.9614

(0.1, 0.4, 0.7) 0.3 0.1265 0.1491 0.1269 0.1277 0.1326 0.1490 0.1296 0.1326 0.1193
0.8 0.5962 0.6858 0.5978 0.6004 0.6129 0.6855 0.6089 0.6129 0.5829
1.5 0.9853 0.9880 0.9881 0.9893 0.9812 0.9879 0.9777 0.9812 0.9583

(1, 2, 3) 0.3 0.0682 0.0656 0.0684 0.0649 0.0708 0.0655 0.0702 0.0708 0.0644
0.8 0.1700 0.2006 0.1701 0.1653 0.1760 0.2004 0.1752 0.1760 0.1615
1.5 0.4832 0.5536 0.4833 0.4716 0.4998 0.5534 0.4968 0.4998 0.4693

(1, 4, 7) 0.3 0.0614 0.0566 0.0616 0.0622 0.0627 0.0565 0.0622 0.0627 0.0563
0.8 0.1023 0.1200 0.1026 0.1050 0.1075 0.1200 0.1068 0.1075 0.0958
1.5 0.2542 0.3022 0.2550 0.2556 0.2655 0.3021 0.2594 0.2655 0.2424

(30, 30, 30) (0.1, 0.2, 0.3) 0.3 0.6299 0.7004 0.6293 0.6281 0.6327 0.7002 0.6342 0.6327 0.6375
0.8 0.9882 0.9980 0.9872 0.9872 0.9815 0.9979 0.9853 0.9815 0.9970
1.5 1 1 1 1 1 1 1 1 1

(0.1, 0.4, 0.7) 0.3 0.3210 0.3791 0.3212 0.3210 0.3243 0.3789 0.3224 0.3243 0.3233
0.8 0.9772 0.9924 0.9775 0.9779 0.9740 0.9922 0.9726 0.9740 0.9898
1.5 0.9831 0.9960 0.9834 0.9834 0.9796 0.9960 0.9787 0.9796 0.9960

(1, 2, 3) 0.3 0.0923 0.1072 0.0922 0.0934 0.0938 0.1070 0.0930 0.0938 0.0925
0.8 0.4785 0.5411 0.4780 0.4733 0.4823 0.5410 0.4789 0.4823 0.4820
1.5 0.9566 0.9798 0.9557 0.9545 0.9517 0.9797 0.9566 0.9517 0.9653

(1, 4, 7) 0.3 0.0661 0.0715 0.0663 0.0663 0.0672 0.0714 0.0648 0.0672 0.0657
0.8 0.2282 0.2809 0.2285 0.2284 0.2318 0.2808 0.2298 0.2318 0.2301
1.5 0.6982 0.7659 0.6990 0.7012 0.7032 0.7655 0.7009 0.7032 0.7100

(50, 50, 50) (0.1, 0.2, 0.3) 0.3 0.8573 0.9046 0.8577 0.8546 0.8547 0.9045 0.8604 0.8547 0.8593
0.8 0.9811 0.9980 0.9815 0.9825 0.9759 0.9979 0.9853 0.9759 0.9834
1.5 1 1 1 1 1 1 1 1 1

(0.1, 0.4, 0.7) 0.3 0.5427 0.6028 0.5425 0.5443 0.5418 0.6026 0.5400 0.5418 0.5442
0.8 0.9832 0.9980 0.9834 0.9880 0.9759 0.9980 0.9740 0.9759 0.9872
1.5 1 1 1 1 0.9979 1 0.9940 0.9981 1

(1, 2, 3) 0.3 0.1421 0.1671 0.1431 0.1432 0.1435 0.1671 0.1474 0.1435 0.1434
0.8 0.7210 0.7900 0.7214 0.7203 0.7204 0.7900 0.7262 0.7204 0.7232
1.5 0.9803 0.9974 0.9807 0.9817 0.9751 0.9974 0.9843 0.9751 0.9826

(1, 4, 7) 0.3 0.0912 0.1040 0.0917 0.0907 0.0917 0.1040 0.0918 0.0917 0.0904
0.8 0.4020 0.4659 0.4018 0.4066 0.4017 0.4659 0.4021 0.4017 0.4032
1.5 0.9031 0.9405 0.9032 0.9070 0.8990 0.9405 0.8932 0.8990 0.9077

(5, 10, 15) (0.1, 0.2, 0.3) 0.3 0.2790 0.3346 0.2791 0.2535 0.2573 0.2974 0.2605 0.2573 0.2371
0.8 0.9598 0.9388 0.9570 0.9217 0.9432 0.9342 0.9484 0.9432 0.9406
1.5 0.9844 0.9483 0.9815 0.9475 0.9731 0.9500 0.9787 0.9731 0.9759

(0.1, 0.4, 0.7) 0.3 0.1522 0.1955 0.1526 0.1346 0.1494 0.1743 0.1490 0.1494 0.1339
0.8 0.7601 0.8070 0.7609 0.7018 0.7535 0.7860 0.7532 0.7535 0.7063
1.5 0.9910 0.9612 0.9913 0.9340 0.9962 0.9748 0.9992 0.9962 0.9567

(1, 2, 3) 0.3 0.0702 0.0835 0.0709 0.0604 0.0650 0.0669 0.0652 0.0650 0.0607
0.8 0.2018 0.2644 0.2014 0.1817 0.1900 0.2236 0.1912 0.1900 0.1741
1.5 0.5940 0.6651 0.5928 0.5571 0.5611 0.6205 0.5649 0.5611 0.5412

(1, 4, 7) 0.3 0.0562 0.0690 0.0567 0.0460 0.0568 0.0610 0.0580 0.0568 0.0496
0.8 0.1202 0.1546 0.1210 0.1068 0.1190 0.1353 0.1190 0.1190 0.1036
1.5 0.3310 0.3986 0.3312 0.3016 0.3252 0.3689 0.3250 0.3252 0.2971

(20, 30, 40) (0.1, 0.2, 0.3) 0.3 0.7142 0.7419 0.7143 0.7108 0.7071 0.7609 0.7093 0.7071 0.7068
0.8 0.9955 0.9509 0.9960 0.9980 0.9872 0.9970 0.9921 0.9872 0.9960
1.5 1 1 1 1 1 1 1 1 1

(0.1, 0.4, 0.7) 0.3 0.3951 0.4407 0.3953 0.3944 0.3994 0.4314 0.3953 0.3994 0.3872
0.8 0.9892 0.9612 0.9895 0.9936 0.9984 0.9869 0.9899 0.9984 0.9857
1.5 0.9910 0.9614 0.9911 0.9950 1 0.9872 0.9911 1 0.9872

(1, 2, 3) 0.3 0.1062 0.1227 0.1066 0.1022 0.1060 0.1196 0.1058 0.1060 0.1044
0.8 0.5572 0.5975 0.5576 0.5541 0.5521 0.6064 0.5540 0.5521 0.5530
1.5 0.9843 0.9452 0.9847 0.9860 0.9758 0.9892 0.9806 0.9758 0.9845

(1, 4, 7) 0.3 0.0743 0.0821 0.0747 0.0732 0.0756 0.0772 0.0747 0.0756 0.0735
0.8 0.2872 0.3234 0.2874 0.2876 0.2904 0.3157 0.2908 0.2904 0.2843
1.5 0.8011 0.8166 0.8020 0.8044 0.8100 0.8240 0.8004 0.8100 0.7957

(25, 50, 75) (0.1, 0.2, 0.3) 0.3 0.9182 0.8505 0.9184 0.9294 0.9129 0.9361 0.9153 0.9129 0.9227
0.8 0.9744 0.8811 0.9750 0.9872 0.9704 0.9796 0.9750 0.9704 0.9825
1.5 1 1 1 1 1 1 1 1 1

(0.1, 0.4, 0.7) 0.3 0.6392 0.6680 0.6398 0.6375 0.6365 0.6702 0.6384 0.6365 0.6380
0.8 0.9682 0.9054 0.9685 0.9704 0.9649 0.9631 0.9750 0.9649 0.9722
1.5 1 0.9654 1 1 1 1 1 1 1

(1, 2, 3) 0.3 0.1631 0.2058 0.1636 0.1649 0.1630 0.1932 0.1652 0.1630 0.1627
0.8 0.8022 0.7839 0.8030 0.8105 0.7976 0.8452 0.7991 0.7976 0.8058
1.5 0.9745 0.8811 0.9750 0.9872 0.9704 0.9796 0.9750 0.9704 0.9825

(1, 4, 7) 0.3 0.0970 0.1217 0.0972 0.0959 0.0969 0.1094 0.0989 0.0969 0.0961
0.8 0.4922 0.5291 0.4924 0.4896 0.4902 0.5205 0.4941 0.4902 0.4900
1.5 0.9466 0.8923 0.9470 0.9486 0.9433 0.9435 0.9531 0.9433 0.9500
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Table 2: Penalized powers for k = 5

ni σ2
i ∆i AG AF B2 JF MBF PB WE WA

(10, 10, 10, 10, 10) (0.1, 0.2, 0.3, 0.4, 0.5) 0.3 0.0713 0.0867 0.0716 0.0779 0.0863 0.0729 0.0779 0.0718
0.8 0.2172 0.3403 0.2173 0.2424 0.3400 0.2350 0.2424 0.2271
1.5 0.6316 0.8549 0.6315 0.6984 0.8542 0.6897 0.6984 0.6722

(0.1, 0.4, 0.7, 1.1, 1.5) 0.3 0.0562 0.0586 0.0565 0.0543 0.0536 0.0540 0.0543 0.0515
0.8 0.0917 0.1191 0.0915 0.0848 0.1074 0.0843 0.0848 0.0791
1.5 0.2110 0.3094 0.2109 0.1840 0.2835 0.1850 0.1840 0.1747

(1, 2, 3, 4, 5) 0.3 0.0522 0.0541 0.0523 0.0560 0.0540 0.0525 0.0560 0.0502
0.8 0.0658 0.0788 0.0657 0.0713 0.0785 0.0671 0.0713 0.0647
1.5 0.1066 0.5250 0.1065 0.1165 0.1479 0.1072 0.1165 0.1046

(1, 4, 7, 11, 15) 0.3 0.0953 0.1154 0.0951 0.0923 0.1153 0.0964 0.0923 0.0940
0.8 0.4644 0.5647 0.4635 0.4510 0.5645 0.4635 0.4510 0.4611
1.5 0.9652 0.9788 0.9633 0.9312 0.9785 0.9611 0.9312 0.9563

(30, 30, 30, 30, 30) (0.1, 0.2, 0.3, 0.4, 0.5) 0.3 0.3557 0.4704 0.3556 0.3598 0.4700 0.3573 0.3598 0.3601
0.8 0.9824 0.9871 0.9824 0.9666 0.9870 0.9716 0.9666 0.9803
1.5 0.9834 0.9872 0.9844 0.9676 0.9871 0.9731 0.9676 0.9815

(0.1, 0.4, 0.7, 1.1, 1.5) 0.3 0.1442 0.1996 0.1443 0.1461 0.1994 0.1445 0.1461 0.1456
0.8 0.7418 0.8700 0.7420 0.7478 0.8700 0.7439 0.7478 0.7586
1.5 0.9843 0.9931 0.9848 0.9708 0.9930 0.9700 0.9708 0.9906

(1, 2, 3, 4, 5) 0.3 0.0773 0.0898 0.0779 0.0791 0.0893 0.0784 0.0791 0.0768
0.8 0.2581 0.3510 0.2590 0.2618 0.3508 0.2606 0.2618 0.2614
1.5 0.7472 0.8595 0.7477 0.7509 0.8593 0.7537 0.7509 0.7579

(1, 4, 7, 11, 15) 0.3 0.0621 0.0666 0.0622 0.0621 0.0664 0.0624 0.0621 0.0614
0.8 0.1158 0.1557 0.1160 0.1167 0.1552 0.1164 0.1167 0.1159
1.5 0.3113 0.4370 0.3112 0.3182 0.4366 0.3153 0.3182 0.3193

(50, 50, 50, 50, 50) (0.1, 0.2, 0.3, 0.4, 0.5) 0.3 0.5882 0.6978 0.5883 0.5996 0.6975 0.5964 0.5996 0.5881
0.8 0.9955 0.9825 0.9960 1 0.9823 0.9990 1 0.9901
1.5 1 1 1 1 1 1 1 1

(0.1, 0.4, 0.7, 1.1, 1.5) 0.3 0.2161 0.3051 0.2163 0.2215 0.3050 0.2178 0.2215 0.2152
0.8 0.9432 0.9636 0.9433 0.9472 0.9633 0.9440 0.9472 0.9321
1.5 0.9890 0.9787 0.9892 0.9901 0.9785 0.9872 0.9901 0.9750

(1, 2, 3, 4, 5) 0.3 0.0912 0.1121 0.0919 0.0929 0.1120 0.0921 0.0929 0.0909
0.8 0.4361 0.5477 0.4363 0.4465 0.5474 0.4435 0.4465 0.4374
1.5 0.9502 0.9665 0.9508 0.9574 0.9663 0.9558 0.9574 0.9473

(1, 4, 7, 11, 15) 0.3 0.0621 0.0701 0.0628 0.0626 0.0700 0.0621 0.0626 0.0610
0.8 0.1617 0.2248 0.1619 0.1657 0.2245 0.1624 0.1657 0.1602
1.5 0.5205 0.6456 0.5206 0.5292 0.6455 0.5302 0.5292 0.5197

(4, 6, 10, 14, 16) (0.1, 0.2, 0.3, 0.4, 0.5) 0.3 0.1680 0.2295 0.1682 0.1448 0.1922 0.1309 0.1448 0.1313
0.8 0.8345 0.9315 0.8335 0.7925 0.8584 0.7690 0.7925 0.7730
1.5 0.9833 0.9844 0.9814 0.9795 0.9198 0.9739 0.9795 0.9758

(0.1, 0.4, 0.7, 1.1, 1.5) 0.3 0.0848 0.1110 0.0847 0.0790 0.0988 0.0745 0.0790 0.0736
0.8 0.3790 0.5455 0.3790 0.3366 0.5029 0.3283 0.3366 0.3282
1.5 0.9103 0.9756 0.9072 0.8771 0.9474 0.8920 0.8771 0.8947

(1, 2, 3, 4, 5) 0.3 0.0633 0.0625 0.0632 0.0605 0.0501 0.0583 0.0605 0.0570
0.8 0.1252 0.1750 0.1253 0.1103 0.1469 0.1081 0.1103 0.1069
1.5 0.3671 0.5264 0.3674 0.3126 0.4614 0.3090 0.3126 0.3093

(1, 4, 7, 11, 15) 0.3 0.0523 0.0537 0.0525 0.0544 0.0471 0.0479 0.0544 0.0474
0.8 0.0727 0.0902 0.0735 0.0707 0.0791 0.0635 0.0707 0.0630
1.5 0.1466 0.2189 0.1475 0.1359 0.1930 0.1195 0.1359 0.1197

(12,18, 30, 42, 48) (0.1, 0.2, 0.3, 0.4, 0.5) 0.3 0.5134 0.6239 0.5129 0.4915 0.6184 0.4904 0.4915 0.4905
0.8 0.9969 0.9466 0.9959 0.9824 0.9863 0.9910 0.9824 0.9959
1.5 1 1 1 1 1 1 1 1

(0.1, 0.4, 0.7, 1.1, 1.5) 0.3 0.1999 0.2816 0.2000 0.1936 0.2697 0.1906 0.1936 0.1904
0.8 0.9238 0.9291 0.9239 0.9091 0.9556 0.9046 0.9091 0.9183
1.5 0.9977 0.9543 0.9980 0.9853 0.9882 0.9815 0.9853 0.9980

(1, 2, 3, 4, 5) 0.3 0.0812 0.1162 0.0814 0.0817 0.1028 0.0804 0.0817 0.0772
0.8 0.3714 0.4900 0.3713 0.3630 0.4614 0.3567 0.3630 0.3459
1.5 0.9016 0.9321 0.9017 0.9085 0.9309 0.8963 0.9085 0.8825

(1, 4, 7, 11, 15) 0.3 0.0611 0.0718 0.0618 0.0615 0.0670 0.0605 0.0615 0.0607
0.8 0.1502 0.2101 0.1506 0.1445 0.2032 0.1460 0.1445 0.1443
1.5 0.4561 0.5788 0.4561 0.4425 0.5779 0.4465 0.4425 0.4472

(20, 30, 50, 70, 80) (0.1, 0.2, 0.3, 0.4, 0.5) 0.3 0.7441 0.8321 0.7448 0.7426 0.8292 0.7403 0.7426 0.7293
0.8 0.9692 0.9509 0.9695 0.9759 0.9722 0.9731 0.9759 0.9614
1.5 0.9891 0.9729 0.9895 0.9959 0.9822 0.9921 0.9899 0.9934

(0.1, 0.4, 0.7, 1.1, 1.5) 0.3 0.7590 0.8306 0.7593 0.7602 0.8469 0.7569 0.7602 0.7499
0.8 0.9782 0.9444 0.9785 0.9844 0.9874 0.9828 0.9844 0.9747
1.5 0.9821 0.9449 0.9825 0.9882 0.9882 0.9872 0.9882 0.9787

(1, 2, 3, 4, 5) 0.3 0.1040 0.1441 0.1047 0.1027 0.1374 0.1018 0.1027 0.1008
0.8 0.5771 0.6735 0.5773 0.5709 0.7017 0.5684 0.5709 0.5719
1.5 0.9472 0.9101 0.9475 0.9473 0.9861 0.9499 0.9473 0.9550

(1, 4, 7, 11, 15) 0.3 0.0651 0.0805 0.0657 0.0654 0.0765 0.0652 0.0654 0.0643
0.8 0.2322 0.3155 0.2326 0.2275 0.3055 0.2278 0.2275 0.2250
1.5 0.7033 0.7689 0.7038 0.6962 0.7887 0.6987 0.6962 0.6995
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Table 3: Penalized powers for k = 7

ni σ2
i ∆i AG AF B2 MBF PB WA

(10, 10, 10, 10, 10, 10, 10) (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7) 0.3 0.0916 0.1176 0.0921 0.1175 0.0954 0.0960
0.8 0.3745 0.6158 0.3750 0.6154 0.4288 0.4279
1.5 0.8713 0.9725 0.8715 0.9723 0.9247 0.9068

(0.1, 0.4, 0.7, 1.1, 1.5, 1.9, 2.3) 0.3 0.0668 0.0655 0.0666 0,0651 0.0660 0.0658
0.8 0.1501 0.2255 0.1502 0.2253 0.1578 0.1603
1.5 0.4021 0.6756 0.4023 0.6753 0.4519 0.4519

(1, 2, 3, 4, 5, 6, 7) 0.3 0.0565 0.0520 0.0568 0.0520 0.0597 0.0588
0.8 0.0819 0.0944 0.0820 0.0942 0.0831 0.0834
1.5 0.1612 0.2385 0.1609 0.2381 0.1693 0.1695

(1, 4, 7, 11, 15, 19, 23) 0.3 0.0560 0.0485 0.0561 0.0483 0.0577 0.0570
0.8 0.0632 0.0608 0.0635 0.0604 0.0625 0.0633
1.5 0.0855 0.1044 0.0858 0.1042 0.0860 0.0880

(30, 30, 30, 30, 30, 30, 30) (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7) 0.3 0.2204 0.3303 0.2209 0.3301 0.2301 0.2298
0.8 0.9598 0.9703 0.9596 0.9701 0.9616 0.9640
1.5 0.9957 0.9778 0.9960 0.9768 0.9911 0.9941

(0.1, 0.4, 0.7, 1.1, 1.5, 1.9, 2.3) 0.3 0.0978 0.1334 0.0980 0.1324 0.0977 0.0985
0.8 0.4679 0.6533 0.4680 0.6530 0.4867 0.4904
1.5 0.9702 0.9822 0.9704 0.9820 0.9630 0.9757

(1, 2, 3, 4, 5, 6, 7) 0.3 0.0651 0.0712 0.0657 0.0711 0.0670 0.0636
0.8 0.1652 0.2417 0.1657 0.2414 0.1725 0.1706
1.5 0.5243 0.6901 0.5247 0.6900 0.5453 0.5461

(1, 4, 7, 11, 15, 19, 23) 0.3 0.0552 0.0575 0.0555 0.0572 0.0550 0.0537
0.8 0.0852 0.1060 0.0857 0.1050 0.0853 0.0860
1.5 0.1810 0.2765 0.1813 0.2755 0.1841 0.1839

(50, 50, 50, 50, 50, 50, 50) (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7) 0.3 0.3722 0.5118 0.3725 0.5111 0.3782 0.3787
0.8 0.9969 0.9853 0.9978 0.9850 0.9988 0.9948
1.5 1 1 1 1 1 1

(0.1, 0.4, 0.7, 1.1, 1.5, 1.9, 2.3) 0.3 0.1362 0.1907 0.1365 0.1907 0.1387 0.1380
0.8 0.7502 0.8843 0.7507 0.8840 0.7686 0.7657
1.5 0.9943 0.9863 0.9948 0.9852 0.9988 0.9968

(1, 2, 3, 4, 5, 6, 7) 0.3 0.0762 0.0914 0.0764 0.0910 0.0787 0.0758
0.8 0.2660 0.3817 0.2661 0.3812 0.2739 0.2697
1.5 0.8052 0.9063 0.8058 0.9051 0.8202 0.8145

(1, 4, 7, 11, 15, 19, 23) 0.3 0.0600 0.0629 0.0601 0.0612 0.0605 0.0594
0.8 0.1093 0.1499 0.1099 0.1479 0.1123 0.1099
1.5 0.2902 0.4275 0.2906 0.4271 0.2981 0.2971

(4, 6, 8, 10, 12, 14, 16) (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7) 0.3 0.1201 0.1540 0.1208 0.1419 0.1025 0.1067
0.8 0.6065 0.7846 0.6068 0.7525 0.5561 0.5596
1.5 0.9622 0.9456 0.9617 0.9273 0.9852 0.9544

(0.1, 0.4, 0.7, 1.1, 1.5, 1.9, 2.3) 0.3 0.0718 0.0814 0.0720 0.0750 0.0629 0.0704
0.8 0.2169 0.3329 0.2173 0.3132 0.1798 0.1944
1.5 0.6726 0.8591 0.6734 0.8274 0.6240 0.6532

(1, 2, 3, 4, 5, 6, 7) 0.3 0.0622 0.0549 0.0621 0.0509 0.0587 0.0609
0.8 0.1035 0.1204 0.1041 0.1114 0.0856 0.0900
1.5 0.2357 0.3452 0.2356 0.3250 0.1935 0.2023

(1, 4, 7, 11, 15, 19, 23) 0.3 0.0561 0.0497 0.0564 0.0481 0.0518 0.0563
0.8 0.0653 0.0714 0.0654 0.0677 0.0607 0.0641
1.5 0.1078 0.1385 0.1080 0.1305 0.0939 0.0947

(12, 18, 24, 30, 36, 42, 48) (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7) 0.3 0.3332 0.4900 0.3336 0.4627 0.3226 0.3149
0.8 0.9737 0.9882 0.9740 0.9750 0.9798 0.9740
1.5 0.9950 1 0.9940 0.9920 0.9906 0.9912

(0.1, 0.4, 0.7, 1.1, 1.5, 1.9, 2.3) 0.3 0.1277 0.1966 0.1284 0.1814 0.1228 0.1205
0.8 0.7067 0.8465 0.7070 0.8059 0.6955 0.6979
1.5 0.9990 0.9970 0.9995 0.9649 0.9950 0.9988

(1, 2, 3, 4, 5, 6, 7) 0.3 0.0712 0.0870 0.0718 0.0798 0.0675 0.0678
0.8 0.2458 0.3612 0.2452 0.3438 0.2307 0.2322
1.5 0.7381 0.8667 0.7380 0.8494 0.7108 0.7255

(1, 4, 7, 11, 15, 19, 23) 0.3 0.0544 0.0636 0.0541 0.0593 0.0557 0.0530
0.8 0.0998 0.1537 0.0993 0.1388 0.0956 0.0938
1.5 0.2679 0.4137 0.2675 0.3839 0.2616 0.2539

(20, 30, 40, 50, 60, 70, 80) (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7) 0.3 0.5722 0.7108 0.5720 0.7148 0.5596 0.5577
0.8 0.9990 0.9614 0.9987 0.9911 0.9960 0.9980
1.5 1 0.9614 1 1 1 1

(0.1, 0.4, 0.7, 1.1, 1.5, 1.9, 2.3) 0.3 0.1939 0.2736 0.1935 0.2647 0.1885 0.1875
0.8 0.9270 0.9103 0.9262 0.9315 0.9254 0.9286
1.5 0.9921 0.9261 0.9919 0.9509 0.9901 0.9941

(1, 2, 3, 4, 5, 6, 7) 0.3 0.0835 0.1185 0.0832 0.1079 0.0834 0.0799
0.8 0.4142 0.5701 0.4140 0.5418 0.4040 0.4014
1.5 0.9426 0.9747 0.9423 0.9664 0.9433 0.9380

(1, 4, 7, 11, 15, 19, 23) 0.3 0.0551 0.0709 0.0542 0.0658 0.0563 0.0551
0.8 0.1388 0.2142 0.1369 0.2012 0.1352 0.1343
1.5 0.4446 0.6286 0.4442 0.6072 0.4363 0.4414
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