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Comparing Multiple Survival Functions
with Crossing Hazards in R
by Hsin-wen Chang, Pei-Yuan Tsai, Jen-Tse Kao and Guo-You Lan

Abstract It is frequently of interest in time-to-event analysis to compare multiple survival functions
nonparametrically. However, when the hazard functions cross, tests in existing R packages do not
perform well. To address the issue, we introduce the package survELtest, which provides tests for
comparing multiple survival functions with possibly crossing hazards. Due to its powerful likelihood
ratio formulation, this is the only R package to date that works when the hazard functions cross. We
illustrate the use of the procedures in survELtest by applying them to data from randomized clinical
trials and simulated datasets. We show that these methods lead to more significant results than those
obtained by existing R packages.

Introduction

The nonparametric comparison of multiple survival functions is of interest in numerous biomedical set-
tings, such as clinical trials (Robert et al., 2015), preclinical studies (Liebl et al., 2015) and observational
studies (Loupy et al., 2013) with right-censored time-to-event endpoints. It has been implemented
in existing R packages using log-rank-type statistics. However, these log-rank-type tests can fail to
detect differences among survival curves when the hazard functions cross. For example, consider the
Kaplan–Meier (KM) estimated survival functions in Figure 1 for the treatment and control groups of
patients in a randomized clinical trial. There is a clear gap between the survival curves, which we
would expect to be detected by a reasonable statistical test. Nevertheless, the log-rank test provided
in the survival (Therneau et al., 2020) package returns a p-value of 0.07, indicating no significant
difference between the two survival functions at α = 0.05. Note that in this case the gap between
the survival curves shrinks then widens in the middle of the follow-up period, suggesting that the
estimated hazard functions may cross at some time point.
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Figure 1: Estimated survival functions for treatment (solid line) versus control (dashed line) groups,
based on a randomized clinical trial for treatment of severe alcoholic hepatitis (Nguyen-Khac et al.,
2011).

The need to compare survival functions with crossing hazards has been documented in the
statistics literature (see, e.g., Pepe and Fleming, 1989; Yang and Prentice, 2010). There are many
practical situations in which the hazard functions cross, indicating that the instantaneous treatment
effect changes direction. For example, some treatments are initially harmful due to toxicity or other
complications, but may be beneficial later on. Other treatments can have short-term benefits but
produce side effects in the long run. Despite the varying instantaneous treatment effect, the cumulative
treatment effect can still be positive, as reflected by a positive difference between the treatment and
control survival functions throughout the follow-up period. It is important to be able to detect such a
difference, as the treatment would be worth considering in this case. To this end, an adaptive weighted
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log-rank test was implemented in the R package YPmodel (Sun and Yang, 2020), but this test involves
a parametric assumption on the hazard functions, is limited to two-sample comparisons, and cannot
deal with the general k-sample situation. Another method, the restricted mean survival time (RMST)
approach, was implemented in the R package survRM2 (Uno et al., 2020). However, to our knowledge
the RMST method can only deal with two-sample comparisons nonparametrically. For the k-sample
case, certain model-based assumptions still need to be made (see, e.g., Cronin et al., 2016).

To address this issue, the package survELtest (Chang, 2020) provides nonparametric tests that can
deal with general k-sample comparisons while accounting for possibly crossing hazards. It avoids the
pitfalls of log-rank-type statistics, in which negative and positive differences among the estimated
hazard functions cancel each other in a weighted sum (see Section Existing test statistics in R and
their pitfalls for more details). Further, the statistics are constructed using empirical likelihood (EL),
which has been shown to produce tests with optimal power (see, e.g., Kitamura et al., 2012). EL is
a nonparametric likelihood which does not assume that the data come from a particular parametric
family of distributions. It serves as the basis for constructing a nonparametric likelihood ratio (i.e., the
EL ratio), which leads to more efficient inference than Wald-type procedures such as log-rank-type
tests, as seen in the literature on parametric (see, e.g., Mukerjee, 1994) and nonparametric inference
(Bravo, 2003; Kitamura et al., 2012). There are R packages available for survival analysis using EL,
namely emplik (Zhou, 2020), emplik2 (Barton, 2018) and ELYP (Zhou, 2018), but they are limited to
inference regarding finite-dimensional parameters, whereas our package handles survival functions,
an infinite dimensional problem.

Our approach computes EL ratios at each observed uncensored time point, then summarizes them
into maximal-deviation-type and integral-type statistics. The statistical theory of this approach and
the empirical levels and powers in various simulation scenarios have been studied in Chang and
McKeague (2016; 2019), but these authors focused on the technical development of one-sided tests,
and did not provide a software package or an accessible guide for implementing the method. In this
paper we provide a general framework for both two-sided and one-sided testing, an accessible guide
to the R package survELtest, and a comparison with existing R packages (reviewed briefly in Section
Existing test statistics in R and their pitfalls) in applications to data from clinical trials and simulated
datasets.

For k-sample nonparametric testing under right censorship, to our knowledge all existing R
packages use log-rank-type statistics (see the CRAN Task View Survival), often referred to as the
weighted log-rank statistics. The package FHtest (Oller and Langohr, 2017) and the survdiff function
in the package survival consider the Fleming-Harrington Gρ family, which belongs to the class of
weighted log-rank statistics. The package clinfun (Seshan, 2018) adopts a permutation version of the
log-rank test. The package LogrankA (Richter-Dumke and Rau, 2013) provides a log-rank test based
on aggregated survival data. SurvivalTests in the coin (Hothorn et al., 2019) package implements
a reformulated weighted log-rank test as a linear rank test. The maxstat (Hothorn, 2017) package
performs tests using maximally selected log-rank statistics.

This paper is organized as follows. In the next section, we provide a brief review of k-sample
nonparametric methods used in existing R packages, their pitfalls, and the use of EL tests as a solution.
Section Program description describes our package functions, along with a flow chart showing the
procedure for using those functions. In Sections Application of supELtest to threearm data and
Application of intELtest to hepatitis data, we apply the proposed routines to datasets from clinical
trials, and obtain more significant results than the log-rank-type tests. Some concluding remarks
are made in Section Discussion. The availability of the program is given in Section Availability.
In the Appendix, we compare our procedures with more existing methods, including those in the
aforementioned packages YPmodel and survRM2, which cannot deal with the general k-sample case
nonparametrically.

Theoretical background

Existing test statistics in R and their pitfalls

This section briefly reviews the log-rank-type statistics in existing R packages, for testing whether
the k survival functions are the same. The null and alternative hypotheses are H0 : S1 = . . . = Sk
and H1 : H0 is not true, respectively, where Sj is the survival function of the j-th sample. To quantify
the discrepancy between the j-th sample (j = 1, . . . , k − 1) and other samples, a weighted sum of
differences between the estimated hazard function of the j-th sample and that of the pooled sample
is computed. The k− 1 weighted sums are then summarized using a quadratic form to obtain the
final log-rank-type statistic. Different choices of the weight lead to different log-rank-type statistics, of
which the commonly used log-rank test is a special case.
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To illustrate the pitfalls of this formulation under crossing hazards, we restrict our attention to
k = 2 for simplicity. When k = 2, there is only one weighted sum involved, which can be expressed as

m

∑
i=1

vi

{
ĥ1 (ti)− ĥ2 (ti)

}
, (1)

where 0 < t1 < . . . < tm < ∞ are the (ordered) observed uncensored times, ĥj(ti) are the estimated
hazard functions at time ti for the j-th sample, and vi ≥ 0 is the corresponding weight at ti. When the
survival functions are different, the hazard functions can cross each other. In this case, there are both
positive differences (i.e., when ĥ1(·) > ĥ2(·)) and negative differences (i.e., when ĥ1(·) < ĥ2(·)) in (1).
These differences between the estimated hazard functions cancel out, leading to a smaller value of
the statistic and hence a less significant result. Consequently, the formulation can fail to detect the
difference between the survival curves.

EL ratio and test statistics

In the proposed package survELtest, we use a likelihood ratio statistic, namely a pointwise EL statistic,
to replace the estimated hazard difference in (1). This pointwise EL statistic quantifies, at each time
point, the difference in the multiple survival functions. It is always non-negative, as are all typical
likelihood ratio statistics, which prevents the problematic cancellation described in the previous
section. In the rest of Section Theoretical background, we provide a brief description of this approach.
More details can be found in Chang and McKeague (2016, 2019).

The pointwise EL statistic is constructed from the following likelihood ratio:

R (t) =
sup {L (S1, S2, . . . , Sk) : S1 (t) = S2 (t) = . . . = Sk (t)}

sup {L (S1, S2, . . . , Sk)}
, (2)

where L(S1, S2, . . . , Sk) is a nonparametric likelihood which does not assume that the data come
from a particular parametric family of distributions (Thomas and Grunkemeier, 1975). As in a usual
(parametric) likelihood ratio, the numerator of (2) maximizes the likelihood subject to the constraint
under H0, whereas the denominator maximizes the likelihood globally, as it corresponds to the
union of H0 and H1. We then use −2 logR(t) as our pointwise EL statistic; such transformation of
likelihood ratios has been widely used in the literature. A larger −2 logR(t) gives less evidence for
S1(t) = S2(t) = . . . = Sk(t).

For the desired simultaneous inference, we summarize the pointwise statistics in two ways. The
first, provided by the routine intELtest, takes a weighted sum:

I =
m

∑
i=1

wi {−2 logR (ti)} , (3)

where wi ≥ 0 is the weight at each ti. This is an integral-type statistic because the summation can
be written into a stochastic integral. The form of a weighted sum is similar to the components of the
log-rank-type statistics shown in the previous section. Here we avoid ad hoc choices of the weight wi
by setting equal weight for data with no ties. We do this because the EL statistic−2 logR(ti) implicitly
provides optimal (i.e., nonparametric-likelihood-optimized) weighting for contrasting the survival
functions. More details regarding the weighting schemes are given in Section Weight.

Another way to summarize the pointwise statistics is to take a maximum K = supi=1,...,m{−2 logR
(ti)}, which is provided by the function supELtest. Such maximal-deviation-type statistics have been
used in the classical Kolmogorov–Smirnov test, and are more sensitive to local differences amongst
survival curves (i.e., differences among survival curves that appear only in a short period of time). In
contrast, the integral-type statistic I in (3) is designed to detect moderate differences spread over a
sizable portion of the follow-up period. The choice between the two statistics should be guided by
prior knowledge and practical considerations. In particular, if prior knowledge does not suggest the
presence of local differences, we recommend I for general use. Otherwise K can be implemented to
exploit the additional knowledge of the existence of a local difference. For example, a local difference
is present when medical knowledge suggests that a treatment has a benefit in some localized time
interval, or when a pilot study shows that the difference among the KM estimated survival curves
appears only over a short period of time. In the latter case, the evidence would be even stronger if a
significant result was obtained from a statistical test that is sensitive to such local differences, such as
the maximal-deviation-type statistics described above.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 110

Two-step procedure for one-sided testing

So far, we have focused on two-sided testing. For one-sided testing, we consider the alternative
Ho

1 : S1 � S2 � . . . � Sk that there is an ordering among the survival functions, where f � g for
functions f (t) and g(t) of t means f (t) ≥ g(t) for all t with a strict inequality for some t. The EL
statistics are the same as the ones in the previous section, except that now we put an additional
constraint S1(t) ≥ S2(t) ≥ . . . ≥ Sk(t) in the denominator ofR(t) in (2).

The resulting EL test will be preceded by an initial test that excludes the possibility of crossings or
alternative orderings among the survival functions. The reason is due to the fact that for functional
parameters (e.g., survival functions), testing a one-sided alternative hypothesis usually involves certain
assumptions, such as that the functions are not crossed and that their ordering is as hypothesized.
These assumptions may be checked using the initial test, with the null hypothesis being that the
assumptions are not satisfied, versus the alternative that they are. If the null hypothesis of the initial
test is rejected, we conclude that the assumptions are satisfied and proceed to the EL test. Rejection
of the null hypothesis H0 of the EL test then gives support for H1. On the other hand, if the null
hypothesis of the initial test is not rejected, we conclude that the assumptions are not satisfied and do
not proceed to the EL test. The family-wise error rate of this two-step procedure has been shown to be
asymptotically controlled at the same α-level as the individual tests.

Weight

As mentioned in Section EL ratio and test statistics, we need to specify wi in (3). This can be done
by setting the value of the argument wt in the routine intELtest. The default is an objective weight
wi = di/n, where di denotes the number of events at each time point ti and n is the total sample size.
This simplifies to equal weight wi = 1/n when there are no ties (i.e., di = 1) in the data. This default
weight is specified by the option wt = "p.event".

Despite the default weight, we provide in intELtest two alternative options that have been used
for integral-type statistics in the literature. One option is wi = F̂(ti)− F̂(ti−1) for i = 1, . . . , m, where
F̂(t) = 1− Ŝ(t), Ŝ(t) is the pooled KM estimator, and t0 ≡ 0. This wi reduces to the objective weight
wi = di/n when there is no censoring (see, e.g., El Barmi and McKeague, 2013). The resulting I can be
seen as an empirical version of the expected negative two log EL ratio under H0. This weight can be
chosen via the option wt = "dF".

Another weight, proposed by Pepe and Fleming (1989), is wi = ti+1 − ti for i = 1, . . . , m, where
tm+1 ≡ tm. This approach gives more weight to the time intervals when there are fewer observed
uncensored times, but can be affected by extreme observations. This weight can be chosen via the
option wt = "dt".

Bootstrap critical values

Having computed the statistics, we need to calibrate the tests. Possible methods include bootstrapping
or simulating the limiting distributions. We choose the former for the following two reasons: (a) in
small samples, calibration using the bootstrap can perform better than using the limiting distribution
(Heller and Venkatraman, 1996). (b) in our experience the bootstrap can be more computationally
efficient, since the limiting distributions of I and K involve stochastic processes that depend on
unknown parameters.

Here we adopt a Gaussian multiplier bootstrap approach, which is commonly used instead of the
nonparametric bootstrap in survival analysis to avoid producing tied data in the bootstrap samples.
To form the bootstrap samples, the original data are perturbed using independent standard Gaussian
random variables, termed Gaussian multipliers (see, e.g., Parzen et al., 1997). We denote the number
of bootstrap samples as B, which is specified by the nboot argument (default is 1000). In cases when
m is too large for the computation to be handled with reasonable speed, we split the calculation of
the B bootstrap replications into nsplit parts, where nsplit = dm / nlimite (default nlimit = 200).
Here and in the sequel, if we do not specify which R function an option or argument applies to, then
the option or argument applies to all the functions provided by the survELtest package.

Since the bootstrap involves random sampling, the critical values will differ based on different
sets of bootstrap samples. To make the critical values reproducible, we set a seed for random number
generation via the seed option in our routines.
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User guide and numerical examples

Program description

The survELtest package can be installed along with survELtest using the following R code:

> install.packages("survELtest")

The following code loads the package:

> library(survELtest)

The main routines in survELtest are intELtest, supELtest, nocrossings, and ptwiseELtest. The
intELtest routine conducts testing based on the integrated EL statistics I in (3) that can detect
moderate differences among the survival curves over time. The supELtest routine conducts testing
based on the maximally selected EL statistics K that is more sensitive to differences locally in time. Each
routine gives a two- or one-sided test statistic, the critical value based on bootstrap, and the p-value
of the test. As mentioned in Section EL ratio and test statistics, the choice between the two routines
should be guided by prior knowledge and practical considerations regarding whether there is a local
difference among the survival curves. The choice between two-sided and one-sided testing should be
determined a priori as well, depending on the research question of interest. One-sided testing can
be specified by the option sided = 1 in both intELtest and supELtest, but should be preceded by
the initial test in nocrossings to exclude the possibility of crossings or alternative orderings among
the survival functions. While the first three routines provide simultaneous testing, ptwiseELtest
conducts pointwise testing to compare the survival curves at each time point. It can be used to
identify periods of local differences, after intELtest or supELtest test gives a significant result. A
flow chart of the procedure for using the survELtest package is given in Figure 2. Methods defined
for the objects produced by the main routines are provided for print and summary. In addition to the
aforementioned routines, survELtest contains four datasets: hepatitis, threearm, hazardcross and
hazardcross_Weibull, which will be analyzed in Sections Application of supELtest to threearm data,
Application of intELtest to hepatitis data, and the Appendix to illustrate the use of the routines.

A summary of the R code and the input arguments of the routines are given as follows. Among
the input arguments below, only the formula input is compulsory. The rest of the arguments can be
omitted if the default settings are used.

> intELtest(formula, data = NULL, group_order = NULL, t1 = 0, t2 = Inf, sided = 2,
+ nboot = 1000, wt = "p.event", alpha = 0.05, seed = 1011, nlimit = 200)

> supELtest(formula, data = NULL, group_order = NULL, t1 = 0, t2 = Inf, sided = 2,
+ nboot = 1000, alpha = 0.05, seed = 1011, nlimit = 200)

> nocrossings(formula, data = NULL, group_order = NULL, t1 = 0, t2 = Inf, sided = 2,
+ nboot = 1000, alpha = 0.05, seed = 1011, nlimit = 200)

> ptwiseELtest(formula, data = NULL, group_order = NULL, t1 = 0, t2 = Inf, sided = 2,
+ nboot = 1000, alpha = 0.05, seed = 1011, nlimit = 200)

The time needed to run these functions depends on the total number n of observations, the number k
of samples, the speed of the processor and the amount of PC memory. For example, to run intELtest
with the default settings, it takes about 0.32 seconds on the dataset hepatitis with n = 174 and k = 2,
and 1.79 minutes on the dataset threearm with n = 664 and k = 3, on a desktop computer with Intel
i7-7700 CPU @ 3.60 GHz and 64 GB RAM.

• formula: a formula object, with a Surv object on the left of the ∼ operator and the grouping
variable on the right. The Surv object involves two variables: the observed survival and
censoring times, and the censoring indicator, which takes a value of 1 if the observed time is
uncensored and 0 otherwise. The grouping variable takes different values for different groups.
If not found in data described below, the variables in the formula should be already defined by
the user or in attached R objects.

• data: an optional data frame containing the variables in the formula: the observed survival and
censoring times, the censoring indicator, and the grouping variable. The default is the data
frame with three columns of variables taken from the formula: column 1 contains the observed
survival and censoring times, column 2 the censoring indicator, and column 3 the grouping
variable.
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Figure 2: Flow chart of the procedure for using the routines in the survELtest package.

• group_order: a k-vector containing the values of the grouping variable, with the j-th element
being the group hypothesized to have the j-th highest survival rates, j = 1, . . . , k. The default is
the vector of sorted grouping variables.

• t1: the first endpoint of a prespecified time interval, if any, to which the comparison of the
survival functions is restricted. The default value is 0.

• t2: the second endpoint of a prespecified time interval, if any, to which the comparison of the
survival functions is restricted. The default value is ∞.

• sided: 2 if two-sided test, and 1 if one-sided test. The default value is 2.

• nboot: the number of bootstrap replications in calculating critical values for the tests. The
default value is 1000.

• wt: the name of the weight to be used in the integrated EL statistics in intELtest: "p.event",
"dF", or "dt". The default is "p.event".

• alpha: the pre-specified significance level of the tests. The default value is 0.05.

• seed: the seed for the random number generator in R, for generating bootstrap samples needed
to calculate the critical values for the tests. The default value is 1011.

• nlimit: a number used to calculate nsplit = dm / nlimite, the number of parts into which
the calculation of the nboot bootstrap replications is split. The use of this variable can make
computation faster when the number of time points m is large. The default value for nlimit is
200.
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Application of supELtest to threearm data

In this section we apply the routines supELtest and ptwiseELtest to the dataset threearm provided
in the survELtest package, and compare the results with the log-rank-type tests for trend. The
dataset is obtained by resampling from a perturbed dataset of patients from a randomized clinical
trial for the treatment of major depression, where the perturbation is achieved by adding a random
U(−0.01`, 0.01`) variable to existing observations, ` is the smallest observation in the original data,
and the resampling is done by conditional bootstrapping with stratified survival and censoring
distributions using the censboot function in the package boot (Canty and Ripley, 2020). The original
data were analyzed by Chang and McKeague (2019), who observed a local difference among the
survival functions.

The purpose of analyzing the threearm dataset is to assess whether the survival functions of the
three arms are ordered: that is, whether the experimental treatment group (n1 = 262) is better than
the standard treatment group (n2 = 267), which is in turn superior to the placebo group (n3 = 135).
This question can be answered using the one-sided tests described in Section Two-step procedure for
one-sided testing. Since prior knowledge suggests that there is a local difference among the survival
functions, here we conduct the maximally selected EL test via supELtest.

The endpoint of the clinical trial is time (in days) to first remission. Because a shorter time to first
remission is desirable, a treatment with a lower value of the survival function is better in this dataset.
Based on this information, from the KM estimated survival curves in the left panel of Figure 3, it seems
that the three groups are similar initially but become ordered for the rest of the follow-up period.
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Figure 3: The KM estimated survival curves (left) and the estimated hazard functions (right) in the
threearm dataset: experimental treatment group (solid), standard treatment group (dashed) and
placebo group (two-dashed).

To see if the curves are statistically significantly ordered, we start with conducting the commonly
used log-rank-type tests. The trend test is needed for the one-sided research question. Using the
common choice c(3, 2, 1) for the score vector (see, e.g., Andersen et al., 1993, page 388), the log-rank
test for trend is implemented as follows:

> library(survival)
> dat = Surv(threearm[, 1], threearm[, 2])
> logrank = survdiff(dat ~ threearm[, 3])
> score_vec = 3 : 1
> logrankteststat = matrix(score_vec, nrow = 1, ncol = 3)
+ %*% (logrank$obs - logrank$exp) / sqrt(matrix(score_vec, nrow = 1, ncol = 3)
+ %*% (logrank$var) %*% matrix(score_vec, nrow = 3, ncol = 1))
> if(logrankteststat < 0){
+ pval = 2 * pnorm(logrankteststat)
+ }else{
+ pval = 2 * (1 - pnorm(logrankteststat))
+ }
> round(pval, 2)
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[,1]
[1,] 0.04

As the log-rank test for trend gives a p-value of 0.04, we conclude that the three survival functions are
ordered at α = 0.05. The other extreme in the Gρ family can be implemented by setting survdiff(dat
∼ threearm[, 3], rho = 1) in the above code, which leads to a p-value of 0.08. These results mean
the weighted log-rank statistics in the entire Gρ family give a p-value that ranges from 0.04 to 0.08 for
the trend test.

Now we conduct the proposed one-sided testing for the threearm data. We anticipate a more
significant result than the log-rank-type tests, as there seems to be crossing among the estimated
hazard functions in the right panel of Figure 3, created using the function muhaz in the package muhaz
(Hess and Gentleman, 2019) with the default settings. The initial test and the maximally selected EL
test are implemented by the routines nocrossings and supELtest, respectively. (Note that if two-sided
testing is conducted instead, then the initial test is not needed.) To use the routines, we need to
specify two options: sided = 1 for the one-sided test, and group_order = c(3, 2, 1), since the
hypothesized order among the three arms with the survival rates ranging from the largest to the
smallest is the placebo (coded as 3 in the grouping variable), standard treatment (coded as 2), and
experiment treatment (coded as 1). The rest of the options are kept at their default values. The R code
for performing the initial test is as follows:

> nocrossings(Surv(threearm$time, threearm$censor) ~ threearm$group,
+ group_order = c(3, 2, 1), sided = 1)

Call:
nocrossings(formula = Surv(threearm$time, threearm$censor) ~ threearm$group,
group_order = c(3, 2, 1), sided = 1)

Decision = 1

A decision value of 1 means there is no crossing or alternative orderings among the survival functions.
Thus, we can proceed to the main (maximally selected EL) test in the second step:

> supELtest(Surv(threearm$time, threearm$censor) ~ threearm$group,
+ group_order = c(3, 2, 1), sided = 1)

Call:
supELtest(formula = Surv(threearm$time, threearm$censor) ~ threearm$group,
group_order = c(3, 2, 1), sided = 1)

One-sided maximally selected EL test statistic = 14.23, p = 0.004

As the maximally selected EL test gives a p-value < 0.01, we obtain the same conclusion—that the
three survival functions are significantly ordered—as the log-rank-type tests for trend, but with a
statistically more significant result. This finding is as we anticipated after seeing the crossing estimated
hazard functions in the right panel of Figure 3.

Since our procedure leads to the conclusion that the survival functions are ordered, it can be of
interest to identify periods of local differences for further clinical investigation. To this end, we can
use the routine ptwiseELtest for pointwise testing at each observed uncensored time point:

> ptwise = ptwiseELtest(Surv(threearm$time, threearm$censor) ~ threearm$group,
+ group_order = c(3, 2, 1), sided = 1)

The list of the time points at which the survival functions are ordered (i.e., decision == 1) is obtained
by

> round(ptwise$result_dataframe$time_pts[ptwise$result_dataframe$decision == 1], 2)

[1] 13.91 13.91 13.91 13.92 13.92 13.92 13.92 13.93 13.98 13.99 13.99 14.00 14.00
[14] 14.00 14.01 14.01 20.96 20.96 27.98 27.99 28.00 28.00 28.00 28.02 28.02 28.98
[27] 28.99 29.01 30.00 32.96 36.97 40.97 40.98 40.99 41.02 41.98 41.98 41.99 42.00
[40] 42.01 42.02 42.99 43.01 43.02 43.02 44.00 44.00 51.97 51.97 55.00 56.01 56.01
[53] 56.02 59.03 59.04 64.97 68.98 69.01
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From the result, we see there are local differences occurring near the time points 14, 21, 30, 40, 52, 56,
59, 65 and 69 days.

Application of intELtest to hepatitis data

Now we turn to our motivating example in the Introduction and demonstrate the use of intELtest
and its benefit over the log-rank-type tests. The corresponding dataset hepatitis is provided in the
survELtest package. The dataset was obtained by reconstructing survival and censoring information
(Guyot et al., 2012) based on digitizing the KM curves presented in Nguyen-Khac et al. (2011). It
contains survival data (in days, rounded to one decimal place) from patients in a randomized clinical
trial for the treatment of severe alcoholic hepatitis. The purpose of the clinical trial was to assess if the
treatment group (n1 = 85) had a significantly different survival rate than the control group (n2 = 89).

From the KM estimated survival curves in Figure 1, the survival rate of the treatment group seems
to be greater than that of the control group over the entire follow-up period. To see whether the
difference between the survival functions are statistically significant, we start with conducting the
commonly used two-sided log-rank test:

> library(survival)
> dat = Surv(hepatitis[, 1], hepatitis[, 2])
> logrank = survdiff(dat ~ hepatitis[, 3])
> round(1 - pchisq(logrank$chisq, df = 1), 2)

[1] 0.07

The log-rank test gives a p-value of 0.07, failing to detect a difference between the survival curves at
α = 0.05. The reason may be due to the crossing estimated hazard functions in Figure 4 (created using
the function muhaz in the package muhaz with the default settings). We also conduct another log-rank-
type test—the Peto and Peto’s modification of the Gehan-Wilcoxon test—by setting survdiff(dat ∼
hepatitis[, 3], rho = 1) in the above code, which leads to a p-value of 0.05. Since this test and the
log-rank test are the two extremes in the Gρ family, these results mean the weighted log-rank statistics
in the entire Gρ family give either insignificant or borderline significant conclusions.

0 30 60 90 120 150 180
0.000

0.005

0.010

Days

H
az

ar
d 

fu
nc

tio
n

Figure 4: Estimated hazard functions for treatment (solid line) versus control (dashed line) groups.

Now we apply the proposed two-sided integrated EL test to the hepatitis data to see if we can
better detect a difference between the survival functions. The default options are used and the R code
is as simple as

> intELtest(Surv(hepatitis$time, hepatitis$censor) ~ hepatitis$group)

Call:
intELtest(formula = Surv(hepatitis$time, hepatitis$censor) ~ hepatitis$group)

Two-sided integrated EL test statistic = 1.42, p = 0.007
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As the integrated EL test gives a p-value < 0.01, we conclude there is a significant difference between
the two survival functions at α = 0.05. The p-value is much smaller than those given by the previous
log-rank-type tests, which indicates that the integrated EL test is better at detecting the difference
between the survival curves.

Note the decision as to whether there is a significant discrepancy between the two survival
functions is totally different for the log-rank and the integrated EL tests at α = 0.05. It may be
tempting to pick the most significant result, but this practice is data snooping and has been shown
to be problematic. Instead, we recommend setting a primary method prior to the data analysis and
making the decision based on that method. Any other methods are treated as secondary, and their
results can serve an exploratory purpose for future work.

Discussion

In this paper we introduce the R package survELtest for comparing two or more survival functions
nonparametrically based on right-censored data. It is the only R package to date that utilizes the
powerful likelihood ratio formulation instead of log-rank-type statistics, thereby performing well
when the hazard functions cross. We provide both maximal-deviation-type and integral-type statistics,
for detecting local and cumulative differences among the survival functions, respectively.

The use of the software is illustrated using two data sets from randomized clinical trials, where the
estimated survival functions seem to be ordered, but the estimated hazard functions cross. In these
cases, our procedures lead to more significant results than the results obtained from the log-rank-type
tests. Specifically, in one of the examples, the original clinical trial concludes that there is no significant
difference between the treatment and the control groups (log-rank p = 0.07), whereas our test suggests
otherwise, based on a much smaller p-value < 0.01. We envision the survELtest package will be
valuable for finding more significant results in numerous biomedical settings involving the comparison
of multiple survival functions, especially in the presence of crossing hazards.

Availability

The package is available from the Comprehensive R Archive Network at https://CRAN.R-project.
org/package=survELtest. The development website is available at https://github.com/news11/
survELtest.

Acknowledgements

The research of Hsin-wen Chang was partially supported by Ministry of Science and Technology of
Taiwan under grants 106-2118-M-001-015-MY3 and MOST 109-2118-M-001-005-. The authors thank
Yu-Ju Wang for computational support and Shih-Hao Huang for helpful comments. The authors
declare that they have no conflict of interest.

Bibliography

P. K. Andersen, Ø. Borgan, R. D. Gill, and N. Keiding. Statistical Models Based on Counting Processes.
New York: Springer, 1993. URL https://doi.org/10.1007/978-1-4612-4348-9. [p113]

W. H. Barton. emplik2: Empirical Likelihood Ratio Test for Two Samples with Censored Data, 2018. URL
https://CRAN.R-project.org/package=emplik2. R package version: 1.21. [p108]

F. Bravo. Second-order power comparisons for a class of nonparametric likelihood-based tests.
Biometrika, 90(4):881–890, 2003. URL https://doi.org/10.1093/biomet/90.4.881. [p108]

A. Canty and B. Ripley. boot: Bootstrap Functions (Originally by Angelo Canty for S), 2020. URL
https://CRAN.R-project.org/package=boot. R package version: 1.3-25. [p113]

H.-w. Chang. survELtest: Comparing Multiple Survival Functions with Crossing Hazards, 2020. URL
https://CRAN.R-project.org/package=surELtest. R package version: 2.0.1. [p108]

H.-w. Chang and I. W. McKeague. Empirical likelihood based tests for stochastic ordering under right
censorship. Electronic Journal of Statistics, 10(2):2511–2536, 2016. URL https://doi.org/10.1214/16-
EJS1180. [p108, 109]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=survELtest
https://CRAN.R-project.org/package=survELtest
https://github.com/news11/survELtest
https://github.com/news11/survELtest
https://doi.org/10.1007/978-1-4612-4348-9
https://CRAN.R-project.org/package=emplik2
https://doi.org/10.1093/biomet/90.4.881
https://CRAN.R-project.org/package=boot
https://CRAN.R-project.org/package=surELtest
https://doi.org/10.1214/16-EJS1180
https://doi.org/10.1214/16-EJS1180


CONTRIBUTED RESEARCH ARTICLE 117

H.-w. Chang and I. W. McKeague. Nonparametric testing for multiple survival functions with non-
inferiority margins. Annals of Statistics, 47(1):205–232, 2019. URL https://doi.org/10.1214/18-
AOS1686. [p108, 109, 113]

A. Cronin, L. Tian, and H. Uno. strmst2 and strmst2pw: New commands to compare survival
curves using the restricted mean survival time. Stata Journal, 16(3):702–716, 2016. URL https:
//doi.org/10.1177/1536867X1601600310. [p108]

H. El Barmi and I. W. McKeague. Empirical likelihood based tests for stochastic ordering. Bernoulli, 19:
295–307, 2013. URL https://doi.org/10.3150/11-BEJ393. [p110]

P. Guyot, A. E. Ades, M. J. N. M. Ouwens, and N. J. Welton. Enhanced secondary analysis of survival
data: reconstructing the data from published Kaplan–Meier survival curves. BMC Medical Research
Methodology, 12(1):1–13, 2012. URL https://doi.org/10.1186/1471-2288-12-9. [p115]

G. Heller and E. S. Venkatraman. Resampling procedures to compare two survival distributions in the
presence of right-censored data. Biometrics, 52(4):1204–1213, 1996. URL https://doi.org/10.2307/
2532836. [p110]

K. Hess and R. Gentleman. muhaz: Hazard Function Estimation in Survival Analysis, 2019. URL
https://CRAN.R-project.org/package=muhaz. R package version: 1.2.6.1. [p114]

T. Hothorn. maxstat: Maximally Selected Rank Statistics, 2017. URL https://CRAN.R-project.org/
package=maxstat. R package version: 0.7-25. [p108]

T. Hothorn, H. Winell, K. Hornik, M. A. van de Wiel, and A. Zeileis. coin: Conditional Inference
Procedures in a Permutation Test Framework, 2019. URL https://CRAN.R-project.org/package=coin.
R package version: 1.3-1. [p108]

Y. Kitamura, A. Santos, and A. M. Shaikh. On the asymptotic optimality of empirical likelihood for
testing moment restrictions. Econometrica, 80(1):413–423, 2012. URL https://doi.org/10.3982/
ECTA8773. [p108]

M. Liebl, J. Windschmitt, A. S Besemer, A.-K. Schäfer, H. Reber, C. Behl, and A. Clement. Low-frequency
magnetic fields do not aggravate disease in mouse models of Alzheimer’s disease and amyotrophic
lateral sclerosis. Scientific Reports, 5:8585, 2015. URL https://doi.org/10.1038/srep08585. [p107]

A. Loupy, C. Lefaucheur, D. Vernerey, C. Prugger, J.-P. D. van Huyen, N. Mooney, C. Suberbielle,
V. Frémeaux-Bacchi, A. Méjean, F. Desgrandchamps, D. Anglicheau, D. Nochy, D. Charron, J.-P.
Empana, M. Delahousse, C. Legendre, D. Glotz, G. S. Hill, A. Zeevi, and X. Jouven. Complement-
binding anti-HLA antibodies and kidney-allograft survival. New England Journal of Medicine, 369
(13):1215–1226, 2013. URL https://doi.org/10.1056/NEJMoa1302506. [p107]

R. Mukerjee. Comparison of tests in their original forms. Sankhyā: The Indian Journal of Statistics, Series
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Appendix: Comparison of survELtest with other existing tests in two sim-
ulated datasets

Here we provide two more examples for comparing our procedures with other existing tests in the
literature, namely the log-rank test, the Peto and Peto’s modification of the Gehan-Wilcoxon test, the
adaptive weighted log-rank test implemented in the R package YPmodel, and the RMST method
implemented in the R package survRM2. Since the latter two methods cannot deal with the general
k-sample case nonparametrically, the examples provided here are restricted to the two-sample case.
For the first dataset hazardcross, the survival time is generated from the piecewise exponential model
displayed in the left panel of Figure 5. Since the difference between the true survival curves appears
only during [0, 6] but not later on, we use supELtest to detect such local differences. For the second
dataset hazardcross_Weibull, the survival time is generated from the Weibull model displayed in the
right panel of Figure 5. We use intELtest because the difference between the true survival curves is
spread over the entire follow-up period. For both datasets, the true hazard functions cross, but there is
an obvious gap between the survival curves. The censoring distributions are specified to be the same
in each arm, and uniform with administrative censoring at t = 10 and a censoring rate of 25% in the
first group. We use the default settings in implementing the tests given in the aforementioned two
packages.

The results are given in Table 1. Our tests provide more significant results in detecting the gap
between the survival curves than any of the other tests for both datasets.
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Figure 5: The true survival curves for generating hazardcross (left) and hazardcross_Weibull (right)
datasets: the first (solid) and second (dashed) groups.

Table 1: p-values from various tests for comparing the survival curves in the hazardcross and
hazardcross_Weibull datasets. EL denotes the suitable EL test implemented in the R package survEL-
test, PP denotes the Peto and Peto’s modification of the Gehan-Wilcoxon test, YP denotes the adaptive
weighted log-rank test implemented in the R package YPmodel, and dRMST and rRMST denote the
results in the R package survRM2 for the difference in and the ratio of RMST, respectively.

Datasets EL log-rank PP YP dRMST rRMST

hazardcross 0.037 0.106 0.060 0.096 0.126 0.130
hazardcross_Weibull 0.005 0.080 0.006 0.009 0.014 0.018
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