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The biglasso Package: A Memory- and
Computation-Efficient Solver for Lasso
Model Fitting with Big Data in R
by Yaohui Zeng and Patrick Breheny

Abstract Penalized regression models such as the lasso have been extensively applied to analyzing
high-dimensional data sets. However, due to memory limitations, existing R packages like glmnet
and ncvreg are not capable of fitting lasso-type models for ultrahigh-dimensional, multi-gigabyte
data sets that are increasingly seen in many areas such as genetics, genomics, biomedical imaging,
and high-frequency finance. In this research, we implement an R package called biglasso that tackles
this challenge. biglasso utilizes memory-mapped files to store the massive data on the disk, only
reading data into memory when necessary during model fitting, and is thus able to handle out-of-
core computation seamlessly. Moreover, it’s equipped with newly proposed, more efficient feature
screening rules, which substantially accelerate the computation. Benchmarking experiments show
that our biglasso package, as compared to existing popular ones like glmnet, is much more memory-
and computation-efficient. We further analyze a 36 GB simulated GWAS data set on a laptop with only
16 GB RAM to demonstrate the out-of-core computation capability of biglasso in analyzing massive
data sets that cannot be accommodated by existing R packages.

Introduction

The lasso model proposed by Tibshirani (1996) has fundamentally reshaped the landscape of high-
dimensional statistical research. Since its original proposal, the lasso has attracted extensive studies
with a wide range of applications to many areas, such as signal processing (Angelosante and Giannakis,
2009), gene expression data analysis (Huang and Pan, 2003), face recognition (Wright et al., 2009), text
mining (Li et al., 2015) and so on. The great success of the lasso has made it one of the most popular
tools in statistical and machine-learning practice.

Recent years have seen the evolving era of Big Data where ultrahigh-dimensional, large-scale data
sets are increasingly seen in many areas such as genetics, genomics, biomedical imaging, social media
analysis, and high-frequency finance (Fan et al., 2014). Such data sets pose a challenge to solving the
lasso efficiently in general, and for R specifically, since R is not naturally well-suited for analyzing
large-scale data sets (Kane et al., 2013). Thus, there is a clear need for scalable software for fitting
lasso-type models designed to meet the needs of big data.

In this project, we develop an R package, biglasso (Zeng and Breheny, 2016), to extend lasso model
fitting to Big Data in R. Specifically, sparse linear and logistic regression models with lasso and elastic
net penalties are implemented. The most notable features of biglasso include:

• It utilizes memory-mapped files to store the massive data on the disk, only loading data into
memory when necessary during model fitting. Consequently, it’s able to seamlessly handle
out-of-core computation.

• It is built upon pathwise coordinate descent algorithm and “warm start” strategy, which has
been proven to be one of fastest approaches to solving the lasso (Friedman et al., 2010).

• We develop new, hybrid feature screening rules that outperform state-of-the-art screening rules
such as the sequential strong rule (SSR) (Tibshirani et al., 2012), and the sequential EDPP rule
(SEDPP) (Wang et al., 2015) with additional 1.5x to 4x speedup.

• The implementation is designed to be as memory-efficient as possible by eliminating extra copies
of the data created by other R packages, making biglasso at least 2x more memory-efficient
than glmnet.

• The underlying computation is implemented in C++, and parallel computing with OpenMP is
also supported.

The methodological innovation and well-designed implementation have made biglasso a much
more memory- and computation-efficient and highly scalable lasso solver, as compared to existing
popular R packages like glmnet (Friedman et al., 2010), ncvreg (Breheny and Huang, 2011), and
picasso (Ge et al., 2015). More importantly, to the best of our knowledge, biglasso is the first R
package that enables the user to fit lasso models with data sets that are larger than available RAM,
thus allowing for powerful big data analysis on an ordinary laptop.
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Method

Memory mapping

Memory mapping (Bovet and Cesati, 2005) is a technique that maps a data file into the virtual memory
space so that the data on the disk can be accessed as if they were in the main memory. Technically,
when the program starts, the operating system (OS) will cache the data into RAM. Once the data are
in RAM, the computation is at the standard in-memory speed. If the program requests more data after
the memory is fully occupied, which is inevitable in the data-larger-than-RAM case, the OS will move
data that is not currently needed out of RAM to create space for loading in new data. This is called the
page-in-page-out procedure, and is automatically handled by the OS.

The memory mapping technique is commonly used in modern operating systems such as Windows
and Unix-like systems due to several advantages:

(1) it provides faster file read/write than traditional I/O methods since data-copy from kernel to user
buffer is not needed due to page caches;

(2) it allows random access to the data as if it were in the main memory even though it physically
resides on the disk;

(3) it supports concurrent sharing in that multiple processes can access the same memory-mapped
data file simultaneously, making parallel computing easy to implement in data-larger-than-RAM
cases;

(4) it enables out-of-core computing thanks to the automatic page-in-page-out procedure.

We refer the readers to Rao et al. (2010), Lin et al. (2014), and Bovet and Cesati (2005) for detailed
techniques and some successful applications of memory mapping.

To take advantage of memory mapping, biglasso creates memory-mapped big matrix objects
based upon the R package bigmemory (Kane et al., 2013), which uses the Boost C++ library and
implements memory-mapped big matrix objects that can be directly used in R. Then at the C++ level,
biglasso uses the C++ library of bigmemory for underlying computation and model fitting.

Efficient feature screening

Another important contribution of biglasso is our newly developed hybrid safe-strong rule, named
SSR-BEDPP, which substantially outperforms existing state-of-the-art ones in terms of the overall
computing time of obtaining the lasso solution path. Here, we describe the main idea of hybrid rules;
for the technical details, see Zeng et al. (2021).

Feature screening aims to identify and discard inactive features (i.e., those with zero coefficients)
from the lasso optimization. It often leads to dramatic dimension reduction and hence significant
computation savings. However, these savings will be negated if the screening rule itself is too
complicated to execute. Therefore, an efficient screening rule needs to be powerful enough to discard
a large portion of features and also relatively simple to compute.

Existing screening rules for the lasso can be divided into two types: (1) heuristic rules, such as
the sequential strong rule (SSR) (Tibshirani et al., 2012), and (2) safe rules, such as the basic and the
sequential EDPP rules (Wang et al., 2015), denoted here as BEDPP and SEDPP respectively. Safe rules,
unlike heuristic ones, are guaranteed to never incorrectly screen a feature with a nonzero coefficient.
Figure 1 compares the power of the three rules in discarding features. SSR, though most powerful
among the three, requires a cumbersome post-convergence check to verify that it has not incorrectly
discarded an active feature. The SEDPP rule is both safe and powerful, but is inherently complicated
and time-consuming to evaluate. Finally, BEDPP is the least powerful, and discards virtually no
features when λ is smaller than 0.45 (in this case), but is both safe and involves minimal computational
burden.

The rule employed by biglasso, SSR-BEDPP, as its name indicates, combines SSR with the simple
yet safe BEDPP rule. The rationale is to alleviate the burden of post-convergence checking for strong
rules by not checking features that can be safely eliminated using BEDPP. This hybrid approach
leverages the advantages of each rule, and offers substantial gains in efficiency, especially when
solving the lasso for large values of λ.

Table 1 summarizes the complexities of the four rules when applied to solving the lasso along a
path of K values of λ for a data set with n instances and p features. SSR-BEDPP can be substantially
faster than the other three rules when BEDPP is effective. Furthermore, it is important to note that
SSR (with post-convergence checking) and SEDPP have to scan the entire feature matrix at every
value of λ, while SSR-BEDPP only needs to scan the features not discarded by BEDPP. This advantage
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Figure 1: Percent of features discarded.

of SSR-BEDPP is particularly appealing in out-of-core computing, where fully scanning the feature
matrix requires disk access and therefore becomes the computational bottleneck of the procedure.

Rule Complexity

SSR O(npK)
SEDPP O(npK)
BEDPP O(np)

SSR-BEDPP O(n ∑K
k |Sk|))

Table 1: Complexity of computing screening rules along the entire path of K values of λ. |Sk| denotes
the cardinality of Sk, the safe set of features not discarded by BEDPP screening.

The hybrid screening idea is straightforward to extend to other lasso-type problems provided that
a corresponding safe rule exists. For the biglasso package, we also implemented a hybrid screening
rule, SSR-Slores, for lasso-penalized logistic regression by combining SSR with the so-called Slores
rule (Wang et al., 2014), a safe screening rule developed for sparse logistic regression.

Implementation

Memory-efficient design

In penalized regression models, the feature matrix X ∈ Rn×p is typically standardized to ensure that
the penalty is applied uniformly across features with different scales of measurement. In addition,
standardization contributes to faster convergence of the optimization algorithm. In existing R pack-
ages such as glmnet, ncvreg, and picasso, a standardized feature matrix X̃ is calculated and stored,
effectively doubling memory usage. This problem is compounded by cross-validation, where these
packages also calculate and store additional standardized and unstandardized copies of X for each
fold. This approach does not scale up well for big data.

To make the memory usage more efficient, biglasso doesn’t store X̃. Instead, it saves only the
means and standard deviations of the columns of X as two vectors, denoted as c and s. Then wherever
x̃ij is needed, it is retrieved by “cell-wise standardization”, i.e., x̃ij = (xij − cj)/sj. Additionally, the
estimated coefficient matrix is sparse-coded in C++ and R to save memory space.

Simplification of computations

Cell-wise standardization saves a great deal of memory space, but at the expense of computational
efficiency. To minimize this, biglasso uses a number of computational strategies to eliminate redundant
calculations.
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We first note that the computations related to X̃ during whole model fitting process are mainly of
three types, and all can be simplified so that naïve cell-wise standardization can be avoided:

(1) x̃>j x̃∗ = ∑i
xij−cj

sj

xi∗−c∗
s∗ = 1

sjs∗

(
∑i xijxi∗ − ncjc∗

)
;

(2) x̃>i y = ∑i
xij−cj

sj
yi =

1
sj

(
∑i xijyi − cj ∑i yi

)
;

(3) x̃>j r = ∑i
xij−cj

sj
ri =

1
sj

(
∑i xijri − cj ∑i ri

)
;

where x̃j is the jth column of X̃, x̃∗ is the column corresponding to λmax, y is the response vector, and
r ∈ Rn is current residual vector.

Type (1) and (2) are used only for initial feature screening, and require only one-time execution.
Type (3) occurs in both the coordinate descent algorithm and the post-convergence checking. Since
the coordinate descent algorithm is fast to converge and only iterates over features in the active set A
of nonzero coefficients, whose size is much smaller than p, the number of additional computations
this introduces is small. Moreover, we pre-compute and store ∑i ri, which saves a great deal of
computation during post-convergence checking since r does not change during this step. As a result,
our implementation of cell-wise standardization requires only O(p) additional operations compared
to storing the entire standardized matrix.

Scalable cross-validation

Cross-validation is integral to lasso modeling in practice, as it is by far the most common approach
to choosing λ. It requires splitting the data matrix X into training and test sub matrices, and fitting
the lasso model multiple times. This procedure is also memory-intensive, especially if performed in
parallel.

Existing lasso-fitting R packages split X using the “slicing operator” directly in R (e.g., X[1:1000,]).
This introduces a great deal of overhead and hence is quite slow when X is large. Worse, the training
and test sub-matrices must be saved into memory, as well as their standardized versions, all of which
result in considerable memory consumption.

In contrast, biglasso implements a much more memory-efficient cross-validation procedure that
avoids the above issues. The key design is that the main model-fitting R function allows a subset of
X, indicated by the row indices, as input. To cope with this design, all underlying C++ functions are
enabled to operate on a subset of X given a row-index vector is provided.

Consequently, instead of creating and storing sub-matrices, only the indices of the training/test sets
and the descriptor of X (essentially, an external pointer to X) are needed for parallel cross validation
thanks to the concurrency of memory-mapping. The net effect is that only one memory-mapped data
matrix X is needed for K-fold parallel cross-validation, whereas other packages need up to 2K copies
of X: a copy and a standardized copy for each fold.

Parallel computation

Another important feature of biglasso is its parallel computation capability. There are two types of
parallel computation implemented in biglasso.

At the C++ level, single model fitting (as opposed to cross validation) is parallelized with OpenMP.
Though the pathwise coordinate descent algorithm is inherently sequential and thus does not lend
itself to parallelization, several components of the algorithm (computing c and s, matrix-vector
multiplication, post-convergence checking, feature screening, etc.) do, and are parallel-enabled in
biglasso.

Parallelization can also be implemented at the R level to run cross-validation in parallel. This im-
plementation is straightforward and also implemented by ncvreg and glmnet. However, as mentioned
earlier, the parallel implementation of biglasso is much more memory- and computation-efficient by
avoiding extra copies and the overhead associated with copying data to parallel workers. Note that
when cross-validation is run in parallel in R, parallel computing at C++ level for single model-fitting
is disabled to avoid nested parallelization.

Benchmarking experiments

In this section, we demonstrate that our package biglasso (1.2-3) is considerably more efficient at
solving for lasso estimates than existing popular R packages glmnet (2.0-5), ncvreg (3.9-0), and picasso
(0.5-4). Here we focus on solving lasso-penalized linear and logistic regression, respectively, over the
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entire path of 100 λ values which are equally spaced on the scale of λ/λmax from 0.1 to 1. To ensure
a fair comparison, we set the convergence thresholds to be equivalent across all four packages. All
experiments are conducted with 20 replications, and the average computing times (in seconds) are
reported. The benchmarking platform is a MacBook Pro with Intel Core i7 @ 2.3 GHz and 16 GB RAM.

Memory efficiency

To demonstrate the improved memory efficiency of biglasso compared to existing packages, we
simulate a feature matrix with dimensions 1, 000× 100, 000. The raw data is 0.75 GB, and stored on
the hard drive as an R data file and a memory-mapped file. We used Syrupy1 to measure the memory
used in RAM (i.e., the resident set size, RSS) every 1 second during lasso-penalized linear regression
model fitting by each of the packages.

The maximum RSS during the model fitting is reported in Table 2. In the single fit case, biglasso
consumes 0.84 GB memory in RAM, 50% of that used by glmnet and 22% of that used by picasso.
Note that the memory consumed by glmnet, ncvreg, and picasso are respectively 2.2x, 2.1x, and 5.1x
larger than the size of the raw data.

More strikingly, biglasso does not require additional memory to perform cross-validation, unlike
other packages. For serial 10-fold cross-validation, biglasso requires just 27% of the memory used by
glmnet and 23% of that used by ncvreg, making it 3.6x and 4.3x more memory-efficient than glmnet
and ncvreg, respectively.

The memory savings offered by biglasso would be even more significant if cross-validation
were conducted in parallel. However, measuring memory usage across parallel processes is not
straightforward and not implemented in Syrupy.

Package picasso* ncvreg glmnet biglasso

Single fit 3.84 1.60 1.67 0.84
10-fold CV (1 core) - 3.74 3.18 0.87
* Cross-validation is not implemented in picasso.

Table 2: The maximum RSS (in GB) for a single fit and 10 fold cross-validation (CV) with the raw data
of 0.75 GB.

Computational efficiency: Linear regression

Simulated data

We now show with simulated data that biglasso is more scalable in both n and p (i.e., number of
instances and features). We adopt the same model in Wang et al. (2015) to simulate data: y = Xβ+ 0.1ε,
where X and ε are i.i.d. sampled from N(0, 1). We consider two different cases: (1) Case 1: varying p.
We set n = 1, 000 and vary p from 1,000 to 20,000. We randomly select 20 true features, and sample
their coefficients from Unif[-1, 1]. After simulating X and β, we then generate y according to the true
model; (2) Case 2: varying n. We set p = 10, 000 and vary n from 200 to 20,000. β and y are generated
in the same way as in Case 1.

Figure 2 compares the mean computing time of solving the lasso over a sequence of 100 λ values
by the four packages. In all the settings, biglasso (1 core) is uniformly 2x faster than glmnet and
ncvreg (which overlap in the figure), and 2.5x faster than picasso. Moreover, the computing time of
biglasso can be further reduced by half via parallel-computation of 4 cores. Using 8 cores doesn’t help
due to the increased overhead of communication between cores.

Real data

In this section, we compare the performance of the packages using diverse real data sets: (1) Breast
cancer gene expression data2 (GENE); (2) MNIST handwritten image data (MNIST) (LeCun et al.,
1998); (3) Cardiac fibrosis genome-wide association study data (GWAS) (Breheny, 2016); and (4) Subset
of New York Times bag-of-words data (NYT) (Dheeru and Karra Taniskidou, 2017). Note that for
data sets MNIST and NYT, a different response vector is randomly sampled from a test set at each
replication.

1https://github.com/jeetsukumaran/Syrupy
2http://myweb.uiowa.edu/pbreheny/data/bcTCGA.html
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Figure 2: Mean computing time (in seconds) of solving the lasso over a sequence 100 λ values as a
function of p (Left) and n (Right).

The size of the feature matrices and the average computing times are summarized in Table 3. In all
four settings, biglasso was fastest at obtaining solutions, providing 2x to 3.8x speedup compared to
glmnet and ncvreg, and 2x to 4.6x speedup compared to picasso.

Package GENE MNIST GWAS NYT
n = 536 n = 784 n = 313 n = 5, 000

p = 17, 322 p = 60, 000 p = 660, 495 p = 55, 000

picasso 1.50 (0.01) 6.86 (0.06) 34.00 (0.47) 44.24 (0.46)
ncvreg 1.14 (0.02) 5.60 (0.06) 31.55 (0.18) 32.78 (0.10)
glmnet 1.02 (0.01) 5.63 (0.05) 23.23 (0.19) 33.38 (0.08)

biglasso 0.54 (0.01) 1.48 (0.10) 17.17 (0.11) 14.35 (1.29)

Table 3: Mean (SE) computing time (seconds) for solving the lasso along a sequence of 100 λ values.

Computational efficiency: Logistic regression

Simulated data

Similar to Section 4.2, here we first illustrate that biglasso is faster than other packages in fit-
ting the logistic regression model with simulated data. The true data-generating model is: yi ∼
Bin(1, prob); logit(prob) = xiβ, where each entry of xi is i.i.d. sampled from standard Gaussian distri-
bution. Again, two cases – varying p and varying n – are considered. 20 true features are randomly
chosen and their coefficients are sampled from Unif[-1, 1].

Figure 3 summarizes the mean computing times of solving the lasso-penalized logistic regression
over a sequence of 100 values of λ by the four packages. In all the settings, biglasso (1 core) is around
1.5x faster than glmnet and ncvreg (which again largely overlap), and more than 3x faster than picasso.
Parallel computing with 4 cores using biglasso reduces the computing time by half.

Real data

We also compare the computing time of biglasso with other packages for fitting lasso-penalized
logistic regression based on four real data sets: (1) Subset of Gisette data set (Guyon et al., 2005); (2)
P53 mutants data set (Danziger et al., 2009); (3) Subset of NEWS20 data set (Keerthi and DeCoste,
2005); (4) Subset of RCV1 text categorization data set (Lewis et al., 2004). The P53 data set can be
found on the UCI Machine Learning Repository website3 (Lichman, 2013). The other three data sets
are obtained from the LIBSVM data repository site.4

3https://archive.ics.uci.edu/ml/datasets/p53+Mutants
4https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Figure 3: Mean computing time (in seconds) of solving the lasso-penalized logistic regression over a
sequence 100 λ values as a function of p (Left) and n (Right).

Table 4 presents the dimensions of the data sets and the mean computing times. Again, biglasso
outperforms all other packages in terms of computing time in all the real data cases. In particular, It’s
significantly faster than picasso with the speedup ranging from 2 to 5.5 times (for P53 data and RCV1
data, respectively). On the other hand, compared to glmnet or ncvreg, biglasso doesn’t provide as
much improvement in speed as in the linear regression case. The main reason is that safe rules for
logistic regression do not work as well as safe rules for linear regression: they are more computationally
expensive and less powerful in discarding inactive features.

Gisette P53 NEWS20 RCV1
Package n = 5, 000 n = 16, 592 n = 2, 500 n = 5, 000

p = 5, 000 p = 5, 408 p = 96, 202 p = 47, 236

picasso 6.15 (0.03) 19.49 (0.06) 68.92 (8.17) 53.23 (0.13)
ncvreg 5.50 (0.03) 10.22 (0.02) 38.92 (0.56) 19.68 (0.07)
glmnet 3.10 (0.02) 10.39 (0.01) 25.00 (0.16) 14.51 (0.04)

biglasso 2.02 (0.01) 9.47 (0.02) 18.84 (0.22) 9.72 (0.04)

Table 4: Mean (SE) computing time (in seconds) for solving the lasso-penalized logistic regression
along a sequence of 100 λ values on real data sets.

Validation

To validate the numerical accuracy of our implementation, we contrast the model fitting results from
biglasso to those from glmnet based on the following relative difference criterion:

RD(λ) =
Q̂(β̂B; λ)− Q̂(β̂G; λ)

Q̂(β̂G; λ)
, (1)

where β̂B and β̂G denote the biglasso and glmnet solutions, respectively. Four real data sets are
considered, including MNIST and GWAS for linear regression, and P53 and NEWS20 for logistic
regression. For the GWAS and P53 data sets, we obtain 100 RD values, one of each value of λ along
the regularization path. For the MNIST and NEWS20 data sets, we obtained solutions for 20 different
response vectors, each with a path of 100 λ values, resulting in 2,000 RD values.

Table 5 presents the summary statistics of RD(λ) for the 4 real data sets. For both linear and
logistic regression cases, all values of RD(λ) values are extremely close to zero, demonstrating that
biglasso and glmnet converge to solutions with virtually identical values of the objective function.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859
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Statistic Linear regression Logistic regression
MNIST GWAS P53 NEWS20

Minimum -7.7e-3 -3.9e-4 -6.4e-3 -1.6e-3
1st Quantile -1.6e-3 -2.7e-5 1.7e-5 -2.2e-4

Median -9.5e-4 1.6e-4 2.0e-4 -1.1e-4
Mean -1.1e-3 8.3e-4 2.2e-4 -1.2e-4

3rd Quantile -1.3e-4 1.3e-3 7.7e-4 1.0e-10
Maximum 4.2e-3 4.2e-3 2.0e-4 2.2e-3

Table 5: Summary statistics of RD(λ) based on real data sets.

Data analysis example

In this section, we illustrate the usage of biglasso with a real data set colon included in biglasso. The
colon data contains contains expression measurements of 2,000 genes for 62 samples from patients
who underwent a biopsy for colon cancer. There are 40 samples from positive biopsies (tumor samples)
and 22 from negative biopsies (normal samples). The goal is to identify genes that are predictive of
colon cancer.

biglasso package has two main model-fitting R functions as below. Detailed syntax of the two
functions can be found in the package reference manual.5

• biglasso: used for a single model fitting.

• cv.biglasso: used for performing cross-validation and selecting parameter λ.

We first load the data: X is the 62-by-2000 raw data matrix, and y is the response vector with 1
indicating tumor sample and 0 indicating normal sample.

R> library("biglasso")
R> data(colon)
R> X <- colon$X
R> y <- colon$y

Some information about X and y are as follows.

R> dim(X)
[1] 62 2000
R> X[1:5, 1:5]
Hsa.3004 Hsa.13491 Hsa.13491.1 Hsa.37254 Hsa.541

t 8589.42 5468.24 4263.41 4064.94 1997.89
n 9164.25 6719.53 4883.45 3718.16 2015.22
t 3825.71 6970.36 5369.97 4705.65 1166.55
n 6246.45 7823.53 5955.84 3975.56 2002.61
t 3230.33 3694.45 3400.74 3463.59 2181.42
R> y
[1] 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1
[34] 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 1 1 0 1 0

Set up the design matrix

It’s important to note that biglasso requires that the design matrix X must be a big.matrix object - an
external pointer to the data. This can be done in two ways:

• If the size of X is small, as in this case, a big.matrix object can be created via:

R> X.bm <- as.big.matrix(X)

X.bm is a pointer to the data matrix, as shown in the following output.

R> str(X.bm)
Formal class 'big.matrix' [package "bigmemory"] with 1 slot
..@ address:<externalptr>

5https://cran.r-project.org/web/packages/biglasso/biglasso.pdf
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R> dim(X.bm)
[1] 62 2000
R> X.bm[1:5, 1:5]
Hsa.3004 Hsa.13491 Hsa.13491.1 Hsa.37254 Hsa.541

t 8589.42 5468.24 4263.41 4064.94 1997.89
n 9164.25 6719.53 4883.45 3718.16 2015.22
t 3825.71 6970.36 5369.97 4705.65 1166.55
n 6246.45 7823.53 5955.84 3975.56 2002.61
t 3230.33 3694.45 3400.74 3463.59 2181.42

• If the size of the data is large, the user must create a file-backed big.matrix object via the utility
function setupX in biglasso. Specifically, setupX reads the massive data stored on disk, and
creates memory-mapped files for that data set; this is demonstrated in the next section. A
detailed example can also be found in the package vignettes.6

Single fit and cross-validation

After the setup, we can now fit a lasso-penalized logistic regression model.

R> fit <- biglasso(X.bm, y, family = "binomial")

The output object fit is a list of model fitting results, including the sparse matrix beta. Each
column of beta corresponds to the estimated coefficient vector at one of the 100 values of λ.

In practice, cross-validation is typically conducted to select λ and hence the model with the best
prediction accuracy. The following code snippet conducts a 10-fold (default) cross-validation using
parallel computing with 4 cores.

R> cvfit <- cv.biglasso(X.bm, y, family = "binomial",
+ seed = 1234, nfolds = 10, ncores = 4)
R> par(mfrow = c(2, 2), mar = c(3.5, 3.5, 3, 1) ,mgp = c(2.5, 0.5, 0))
R> plot(cvfit, type = "all")

Figure 4 displays the cross-validation curves with standard error bars. The vertical, dashed, red
line indicates the λ value corresponding to the minimum cross-validation error.

Similar to glmnet and other packages, biglasso provides coef, predict, and plot methods for
both biglasso and cv.biglasso objects. Furthermore, cv.biglasso objects contain the biglasso fit to
the full data set, so one can extract the fitted coefficients, make predictions using it, etc., without ever
calling biglasso directly. For example, the following code displays the full lasso solution path, with a
red dashed line indicating the selected λ (Figure 5).

R> plot(cvfit$fit)
R> abline(v = log(cvfit$lambda.min), col = 2, lty = 2)

The coefficient estimates at the selected λ can be extracted via: coef:

R> coefs <- as.matrix(coef(cvfit))

Here we output only nonzero coefficients:

R> coefs[coefs != 0, ]
(Intercept) Hsa.8147 Hsa.36689 Hsa.42949 Hsa.22762 Hsa.692.2

7.556421e-01 -6.722901e-05 -2.670110e-03 -3.722229e-04 1.698915e-05 -1.142052e-03
Hsa.31801 Hsa.3016 Hsa.5392 Hsa.1832 Hsa.12241 Hsa.44244

4.491547e-04 2.265276e-04 4.518250e-03 -1.993107e-04 -8.824701e-04 -1.565108e-03
Hsa.2928 Hsa.41159 Hsa.33268 Hsa.6814 Hsa.1660

9.760147e-04 7.131923e-04 -2.622034e-03 4.426423e-03 5.156006e-03

The predict method, in addition to providing predictions for a feature matrix X, has several
options to extract different quantities from the fitted model, such as the number and identity of the
nonzero coefficients:

R> as.vector(predict(cvfit, X = X.bm, type = "class"))
[1] 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0
[43] 0 1 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0
R> predict(cvfit, type = "nvars")
0.0522

6https://cran.r-project.org/web/packages/biglasso/vignettes/biglasso.pdf
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Figure 4: The cross-validation curves with standard error bars.

16
R> predict(cvfit, type = "vars")
Hsa.8147 Hsa.36689 Hsa.42949 Hsa.22762 Hsa.692.2 Hsa.31801 Hsa.3016 Hsa.5392

249 377 617 639 765 1024 1325 1346
Hsa.1832 Hsa.12241 Hsa.44244 Hsa.2928 Hsa.41159 Hsa.33268 Hsa.6814 Hsa.1660

1423 1482 1504 1582 1641 1644 1772 1870

In addition, the summary method can be applied to a cv.biglasso object to extract useful cross-
validation results:

R> summary(cvfit)
lasso-penalized logistic regression with n=62, p=2000
At minimum cross-validation error (lambda=0.0522):
-------------------------------------------------
Nonzero coefficients: 16
Cross-validation error (deviance): 0.77
R-squared: 0.41
Signal-to-noise ratio: 0.70
Prediction error: 0.177

Application: Big Data case

Perhaps the most important feature of biglasso is its capability of out-of-core computing. To demon-
strate this, we use it to analyze a simulated GWAS data set that consists of 3,000 observations and
1,340,000 features. Each feature cell is randomly assigned a value of 0 or 1 or 2. 200 features have
nonzero coefficients, where 100 of which being 0.5 and the rest being -0.5. The size of the resulting raw
feature matrix is over 36 GB data, which is more than 2x larger than the installed 16 GB RAM.

In this Big Data case, the data is stored in an external file on the disk. To use biglasso, memory-
mapped files are first created via the following command.

R> library("biglasso")
R> X <- setupX(filename = "X_3000_1340000_200_gwas.txt")
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Figure 5: The solution path of lasso-penalized logistic regression model for the colon data.

This command creates two files in the current working directory:

• a memory-mapped file cache of the data, "X_3000_1340000_200_gwas.bin";

• a descriptor file, "X_3000_1340000_200_gwas.desc", that contains the backingfile description.

Note that this setup process takes a while if the data file is large. However, this only needs to
be done once, during data processing. Once the cache and descriptor files are generated, all future
analyses using biglasso can use the X object. In particular, should one close R and open a new R
session at a later date, X can be seamlessly retrieved by attaching its descriptor file as if it were already
loaded into the main memory:

R> X <- attach.big.matrix("X_3000_1340000_200_gwas.desc")

The object X returned from setupX or attach.big.matrix is a big.matrix object that is ready to be
used for model fitting. Details about big.matrix and its related functions such as attach.big.matrix
can be found in the reference manual of bigmemory package (Kane et al., 2013).

Note that the object X that we have created is a big.matrix object and is therefore stored on disk,
not in RAM, but can be accessed as if it were a regular R object:

R> str(X)
Formal class 'big.matrix' [package "bigmemory"] with 1 slot
..@ address:<externalptr>

R> dim(X)
[1] 3000 1340000
R> X[1:10, 1:10]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 1 0 1 1 2 2 2 1 0
[2,] 0 1 2 1 0 0 1 2 0 2
[3,] 2 2 2 1 1 0 0 1 0 0
[4,] 1 2 1 1 1 0 2 2 0 1
[5,] 0 0 0 0 2 2 0 1 0 2
[6,] 2 0 0 0 1 2 1 0 0 0
[7,] 1 0 1 2 1 1 2 0 2 2
[8,] 2 2 0 2 2 0 0 0 0 2
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[9,] 0 2 2 2 0 0 2 0 2 2
[10,] 1 0 2 1 0 1 1 0 1 0
R> table(y)
y

0 1
1487 1513

Here we fit both sparse linear and logistic regression models with the lasso penalty over the entire
path of 100 λ values equally spaced on the scale of λ/λmax. The ratio of λmin/λmax is set to be 0.05 for
both models. Parallel computation with 4 cores is applied:

R> fit <- biglasso(X, y, ncores = 4)
R> fit <- biglasso(X, y, family = "binomial", ncores = 4)

The above code, which solves the full lasso path for a 36 GB feature matrix, required 147 minutes
for the linear regression fit and 151 minutes for the logistic regression fit on an ordinary laptop with 16
GB RAM installed. Figure 6 depicts the lasso solution path for the sparse linear regression model. The
following code extracts the nonzero coefficient estimates and the number of selected variables of the
lasso model when λ = 0.04:

R> coefs <- as.matrix(coef(fit, lambda = 0.04))
R> coefs[coefs != 0, ]
(Intercept) V1 V4 V71 V76 V78

4.917257e-01 -1.396769e-03 -1.198865e-02 -5.289779e-04 -1.475436e-03 -5.829812e-05
V86 V97 V115 V127 V136 V152

-1.283901e-03 -3.437698e-03 1.672246e-04 1.012488e-03 5.913265e-03 9.485837e-03
V157 V161 V176 V185 V118862 V160312

1.992574e-04 1.654802e-03 1.731413e-03 2.411654e-04 4.871443e-03 -6.270115e-05
V273843 V406640 V437742 V559219 V607177 V688790

-2.395813e-03 -5.189343e-03 6.079211e-03 -1.438325e-03 2.635234e-05 -3.645285e-04
V814818 V849229 V916411 V981866 V1036672 V1036733

-3.611999e-04 9.293857e-03 2.637108e-03 -3.130641e-04 6.890073e-05 2.010702e-03
V1110042 V1170636 V1279721

-8.323210e-04 -1.539764e-03 -3.729763e-05
R> predict(fit, lambda = 0.04, type = "nvars")
0.04
32

Conclusion

We developed a memory- and computation-efficient R package biglasso to extend lasso model fitting
to Big Data. The package provides functions for fitting regularized linear and logistic regression
models with both lasso and elastic net penalties. Equipped with the memory-mapping technique and
more efficient screening rules, biglasso is not only is 1.5x to 4x times faster than existing packages, but
consumes far less memory and, critically, enables users to fit lasso models involving data sets that are
too large to be loaded into memory.
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