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TULIP: A Toolbox for Linear

Discriminant Analysis with Penalties
by Yugqing Pan, Qing Mai and Xin Zhang

Abstract Linear discriminant analysis (LDA) is a powerful tool in building classifiers with easy
computation and interpretation. Recent advancements in science technology have led to the popularity
of datasets with high dimensions, high orders and complicated structure. Such datasetes motivate the
generalization of LDA in various research directions. The R package TULIP integrates several popular
high-dimensional LDA-based methods and provides a comprehensive and user-friendly toolbox for
linear, semi-parametric and tensor-variate classification. Functions are included for model fitting, cross
validation and prediction. In addition, motivated by datasets with diverse sources of predictors, we
further include functions for covariate adjustment. Our package is carefully tailored for low storage
and high computation efficiency. Moreover, our package is the first R package for many of these
methods, providing great convenience to researchers in this area.

Introduction

Linear discriminant analysis (LDA) is one of the most popular classification method and a cornerstone
for multivariate statistics (Michie et al., 1994, e.g). Classical LDA builds a linear classifier based on
p-dimensional multivariate predictor X € IR? to distinguish K classes and to predict the class label
Y € {1,...,K}. Despite its simplicity, LDA is shown to be very accurate on many benchmark datasets
(Lim et al., 2000; Dettling, 2004; Hand, 2006). Moreover, LDA is easily interpretable and is thus often
used as a visualizing tool for exploratory data analysis.

In recent decades, the advancements in science and technology have enabled researchers to collect
datasets with increasing sizes and complexity. Such datasets pose challenges to LDA. Four challenges
that we tackle with this package are as follows. First, in research areas such as biology, genomics and
psychology, we often have more predictors than samples. However, LDA is not applicable on these
high-dimensional data, because sample covariance matrix becomes not invertible when the number of
predictors exceeds the sample size.

Secondly, when we have a large number of predictors, variable selection is often desired such that
we can obtain a sparse classifier involving only a small proportion of the variables. On one hand, Fan
and Fan (2008); Bickel and Levina (2008) showed in theory that variable selection is critical for accurate
classification. On the other hand, sparse classifiers much easier to interpret in practice. However, LDA
generally does not perform variable selection.

Thirdly, contemporary datasets often have complicated structure that renders the linear classifier in
LDA inadequate. For example, in the presence of thousands of predictors, it may be inappropriate them
to model all of them with the normal distribution. Moreover, research in neuroimaging, computational
biology and personalized recommendation produces data in the form of matrices (2-way tensor) or
tensors. The analysis of tensor datasets requires considerable modification to the vector-based LDA
model.

Last but not least, integrative analysis with multiple data sources are drawing researchers’ at-
tention recently. Co-existence of diverse data types, such as vector, matrix and tensor calls for more
sophisticated models to integrate the information from them to improve classification accuracy. It is
critical to model the dependence among different types of data to reduce the noise level in the data
and improve prediction accuracy (Pan et al., 2019).

Motivated by these challenges, many methods have been proposed to generalize LDA to datasets
with high dimensions, non-normality and/or higher order predictors. In this package, we implement
six methods that generalize LDA to contemporary complicated datasets. All of them are developed
under models closely related to the LDA model, and penalties are imposed to achieve classification
accuracy and variable selection in high dimensions. These methods include:

1. Direct sparse discriminant analysis (DSDA): DSDA generalizes the classical LDA model to high
dimensions when there are only two classes (Mai et al., 2012). It formulates high-dimensional
LDA into a penalized least squares problem.

2. Regularized optimal affine discriminant (ROAD): under the same model as DSDA, ROAD fits a
sparse classifier by minimizing the classification error under the ¢; constraint (Fan et al., 2012).

3. Sparse optimal scoring (SOS) for binary problems: SOS is also developed under the LDA model
(Clemmensen et al., 2011). It penalizes the optimal scoring problem (Hastie et al., 1994). We
focus on its application in binary problems.
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| DSDA  SOS  ROAD SeSDA MSDA CATCH
Classes Binary Binary Binary Binary Multi-class =~ Multi-class
Data type Vector Vector Vector  Vector Vector Tensor
Model LDA LDA  LDA  SeLDA LDA TDA/CATCH
Covariate adjustment Yes No No No Yes Yes

Table 1: Comparison of model settings between models. SOS was originally proposed to deal with
both binary and multiclass problems, but we focus on binary problems in the package. Model
SeLDA stands for Semi-parametric linear discriminant analysis, which is introduced in Section 2.2.4.
Model TDA /CATCH represents tensor discriminant analysis and covariate-adjusted tensor in high-
dimensions, which are illustrated in Section 2.2.5 and 2.3.6.

4. Semiparametric sparse discriminant analysis (SeSDA): SeSDA assumes a semiparametric model
where data transformation can be applied to alleviate the non-normality. In practice, SeSDA
finds the data-driven transformation and then performs model-fitting on the transformed data
(Mai and Zou, 2015).

5. Multiclass sparse discriminant analysis (MSDA): Instead of focusing on binary problems, MSDA
considers the multiclass LDA model (Mai et al., 2015). It takes note of the fact that the Bayes’
rule can be estimated with minimizing a quadratic loss. To account for the multiclass structure,
a group lasso penalty (Yuan and Lin, 2006) is applied to achieve variable selection.

6. Covariate-adjusted tensor classification in high-dimensions (CATCH): CATCH (Pan et al., 2019)
is developed for tensor predictors. It takes advantage of the tensor structure to significantly
reduce the number of parameters and hence alleviate computation complexity.

See Table 1 for a comparison of these methods. Despite their different model assumptions and
formulas, all of them have strong theoretical support and excellent empirical performance. We further
note that they can be combined with covariate adjustment when multiple data sources are available.
Our package TULIP (Pan et al., 2021) integrates diverse discriminant analysis models and supportive
functions to make it a convenient and well-equipped toolbox. It has several notable advantages. First,
we not only include functions for model fitting, but also cross validation functions for easy control of
the sparsity level, and prediction functions for the prediction of future observations. In addition, we
provide covariate adjustment functions that efficiently remove heterogeneity in the predictors and
combine information from covariates. Second, our package greatly facilitates the application of DSDA,
ROAD and SeSDA for R users, as they do not have public R packages on CRAN outside ours. Third,
although MSDA and SOS have been implemented in packages msda (Mai et al., 2015) and sparseLDA
(Clemmensen and Kuhn, 2016), we carefully modify their algorithms in our implementation to lower
storage cost and/or speed up computation.

We acknowledge that many other efforts have been spent on topics closely related to that of our
paper. On one hand, by now a large number of high-dimensional discriminant analysis methods
have been developed. Some excellent examples include Fan and Fan (2008); Tibshirani et al. (2002);
Trendafilov and Jolliffe (2007); Fan et al. (2012); Wu et al. (2009); Cai et al. (2011); Shao et al. (2011);
Clemmensen et al. (2011); Witten and Tibshirani (2011); Xu et al. (2015); Niu et al. (2015). On the other
hand, in the literature, many works study matrix/tensor regression and classification methods. Many
of them impose low rank assumption (Zhou et al., 2013; Kolda and Bader, 2009; Chi and Kolda, 2012;
Liu et al., 2017; Li and Schonfeld, 2014; Lai et al., 2013; Zhong and Suslick, 2015; Zeng et al., 2015). All
these methods have been reported to have great performance, but a comprehensive study of them is
apparently out of the scope of our current paper.

The rest of this paper is organized as follows. We start with a brief overview of discriminant analy-
sis models in Section 2.2. Model estimation and implementation details are discussed in Section 2.3.
Section 2.4 contains instructions and examples on the usage of the package. A real data example is
given in Section 2.5 to confirm the numerical performance of methods in the package.

Discriminant analysis models and Bayes rules

Bayes rule for classification

Recall that Y € {1,...,K} is the categorical response (class indicator), and we use the generic X
to denote the predictor and (potential) additional covariate. Specifically, X = X € IR in classical
multivariate discriminant analysis; X = X € RP1*"*PM in tensor discriminant analysis; and X =
(X, U) in covariate-adjusted classification settings, where U € IR7 is additional covariates and X can
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be either vector or tensor. Our goal is to construct the optimal classifier to distinguish and predict Y
based on X under various settings. Denote 7t = Pr(Y = k) and f; as the conditional distribution of
X within Class k (e.g. fx(X) = f(X,U | Y = k) is the joint distribution of X and U given Y = k, in
presence of U). The optimal classifier, often referred to as the Bayes rule, is thus

5(X) = argml?x{log . + log fr(X)}. 1)

The Bayes rule achieves the lowest classification error possible (Friedman et al., 2001). Therefore, it
is our ultimate goal to estimate the Bayes rule. However, additional model assumptions are often
needed for f; to ensure statistical and computational efficiency. Consider the classical LDA setting of
XeRPandY € {1,...,K}. To gain intuition, we often assume that within each class, the predictor
follows a normal distribution with different means and a common covariance matrix. Then the Bayes
rule is a linear function of X and can be straightforwardly estimated.

In the rest of this section, we discuss various statistical models that have been widely studied in
the literature, along with the Bayes rules under these assumptions. Specifically, we review the classical
LDA model, the semiparametric LDA model, and the tensor discriminant analysis model. We also
discuss a general framework for covariate adjustment.

The linear discriminant analysis model (LDA)

Given a multivariate predictor X € R and Y € {1,..., K}, the LDA model assumes that X is normally
distributed within each class, i.e,

X|(Y=k) ~N(p,E), Pr(Y=k=m, k=1,..,K @)

where y; € R? is the mean of X within class k, and & € IRP*7 is the common within class covariance
matrix.

Define B, = L~ !(pu; — p;) fork = 1,-- -, K. The Bayes’ rule turns out to be a linear function:

Y = arg max Pr(Y =k |X) = argkrr}axK{log e+ BL(X — i /2) ). (3)

The LDA model is simple yet elegant. All the parameters in this model have natural interpretations,
while the Bayes rule has a nice linear form. An interesting fact about the Bayes rule in (3) is that it does
not explicitly involve the p?>-dimensional parameter Z~!. Instead, £~ is only implicitly included in
the discriminant directions ;. Moreover, it can be shown that the Bayes rule is equivalent to first
reducing data to XTB,, ... X" B and then fitting the LDA model on the (K — 1)-dimensional space.
Therefore, to estimate the Bayes rule in high dimensions, our interest centers on the estimation of
By- We assume that B,’s are sparse with many elements being zero. Enforcement of this sparsity
assumption will facilitate our estimation and naturally lead to variable selection.

Although the Bayes rule is derived under the somewhat restrictive normality and equal covariance
assumptions, the discriminant directions B are still meaningful when data are non-normal, thanks
to their geometric properties. It can be shown that, if we project X to 8,k =1, ..., K, the separation
between classes is maximized over all possible sets of K — 1 linear projections. Consequently, the LDA
model is reasonably resistant to model misspecification. However, in some of the cases where the LDA
model assumptions are severely violated, one can resort to more flexible models. For example, the
quadratic discriminant analysis model (Jiang et al., 2015; Fan et al., 2015; Li and Shao, 2015; Sun and
Zhao, 2015) relaxes the equal covariance assumption, while severely non-normal data can be modeled
by the semiparametric model to be discussed in Section 2.2.4.

Covariates adjustment

In many real-life problems, we have additional covariates along with the predictors. The covariates
play two roles in the classification: it has predictive power on it own, and it also accounts part of the
variation in the predictors. For example, in genomics studies, we record not only gene expression
levels but also age and clinical measurements. In this case, we may view the gene expression levels as
the high-dimensional predictor, and the age and clinical measurements as the covariates. We consider
an LDA-type model to incorporate the covariates. In addition to the response Y and the predictor X,
we denote the covariates as U € IR7. We assume that

U[ (Y =k)~N(¢ ), )
X|(U=uwY=k) ~N(p+auX), 5)
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Figure 1: Graphical illustration of the direct and indirect effects. The direct effect of covariate U on Y
follows classical discriminant analysis model measured by {7, ..., v }. Meanwhile, U also affects
class label through affecting X. Therefore we have Y = f(X, U).

where ¢, € R is the within-class mean, ¥ € R7%9, ¥ > 0 is the common within class covariance
matrix of covariates, and « € RP*1 is the dependence of X on U. We refer to this model as the
covariate-adjusted LDA (CA-LDA) model. The CA-LDA model is conceptually similar to the CATCH
model (Pan et al., 2019) for tensor, which is to be introduced in Section 2.2.5, but the CA-LDA model
focuses on vector predictor X rather than tensor predictor.

Obviously, the CA-LDA model reduces to the LDA model in the absence of covariates. With the
covariates, the CA-LDA model continues to have natural interpretations. Equation (4) indicates that
(U, Y) marginally follow the LDA model. Equation (5) implies that the distribution of X not only
depends on Y, but also U through mean dependence. Therefore, within each class, X is linked to U
through a linear regression model, while, after we adjust for U, (X, Y) follow the LDA model as well.
See Figure 1 for a graphical illustration of the relationship among X, U and Y.

Under the CA-LDA model, the Bayes’ rule is

~

Y =arg max {ak + 'y,?U + ,BZ(X - aU)} (6)

where 7, = ¥~ (¢ — ¢y), B = T — py) and @y = log(me/ 1) — 3vL (Pr + 1) — 3B (e +
#1)) is a scalar that does not involve X or U. Throughout this paper, we assume that U is low-
dimensional and does not need variable selection, but X is high-dimensional. In the presence of
covariates, X needs to be first adjusted to X — aU before entering the Bayes rule. Similar to the LDA
model, we assume that the coefficient of X — aU, B, is sparse.

The semiparametric LDA model

Although LDA is reasonably resistant to model misspecification, we may still need more flexible
models when data are heavily non-normal. The semiparametric linear discriminant analysis (SeLDA)
model (Lin and Jeon, 2003) is proposed for this purpose. SeLDA assumes that there exists a set of
strictly monotone univariate transformations #y, . .., hp such that

(B (X1), -+ hp(Xp)) | (Y = k) ~ N(py, E). @)

For identifiability, we further assume that all the diagonal elements in X are 1, and all elements
in p; are 0. We also use the shorthand notation h(X) = (h1(X1),- - - ,hp(Xp)). The transformation i
is assumed to be unknown and needs to be estimated from data. The SeLDA model assumes that
the LDA model is true up to an unknown transformation. It has the same spirit as the well-known
Box-Cox transformation, with which model assumptions are relaxed by proper data mapping.

It is easy to see that the LDA model is a special case of the SeLDA model, if we restrict h(X) = X.
However, in the SeLDA model, we do not impose any parametric assumptions on /1, which leads to
great flexibility in practice. We further review a formula for /; that will facilitate its estimation. It can
be shown that

hj=® 1o Fj=® 1o R+, (8)

where @ is the cumulative distribution function (CDF) of the standard normal random variable, and
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Fyj is the CDF of X; within Class k. Equation (8) will be used in Section 2.3.4. The SeLDA model also
amounts to assuming that the data follow the Gaussian copula model within each class (Klaassen and
Wellner, 1997; Hoff et al., 2014; Liu et al., 2009).

Although the SeLDA model requires much weaker conditions than the LDA model, it preserves
many of the desirable properties. One of them is that the Bayes rule continues to be a linear function
of the transformed data h(X):

Y =arg max {logm + By (h(X) = r/2)}- ©)

Consequently, just as in the LDA model, when the dimension is high, we assume that j, is sparse
to allow accurate estimation.

Tensor discriminant analysis (TDA) and covariate adjustment

The tensor discriminant analysis (TDA) model is proposed for classification based on tensor predictors.
We first briefly introduce some standard tensor notation (Kolda and Bader, 2009). See Appendenx A
for more rigorous definitions. An M-way tensor is denoted by a multidimensional array A € R *Pu
where M > 2, pq,. .., ppy are all positive integers. We often need to multiply an M-way tensor C by M
matrices along each mode G;,i = 1,..., M, denoted by [C; Gy, ..., Gp]. For example, in Figure 2 we
obtain A = [C; Gy, ..., G3] by multiplying a 3-way tensor C with matrices G; along each mode. If
G;,i # m are identity matrices and Gy, is a vector, then we write CX,,Gy = [CL,..., Gy, ... I].

Further, we say a tensor X € RP1*"*PM follows the tensor normal distribution TN (¢, X1, ..., Zp)
if it can be written as
X =u+[Zx?..., 2},

where Z € RP1**PM has elements all independently standard normal, # € RP1*""*PM is the mean
tensor, and X, € IRP»*Pm are covariance matrices. See Figure 3 for an illustration.

A4

s

I

I : | | |
| - | C) | 4 i
A G L= JXL)T] || 2

14 ’ / ’

A4=Cx, G x,G, %, G, =[C;G,,G,,G,] X ~TN(1,%,,%,,%5)

Figure 2: Tucker decomposition of tensor A. Figure 3: Tensor normal distribution.

Now we discuss the tensor discriminant analysis (TDA) model. Consider the M-way tensor
predictor X € RP1*""*PM where M > 2 and class label Y € {1,...,K}. The TDA model assumes that

X | (Y =k) ~ TN(, E1,...,Zp), Pr(Y =k) = m (10)

where p; € RPVPME,, € RP»*Pm s the within-class mean, £, > 0 is the common within-class
covariance matrix along the m-th mode of the tensor, and 0 < 7y < 1 is the prior probability for Class
k. Compared to the LDA model, TDA utilizes the tensor normal distribution to model X within each
class. By taking advantage of the tensor structure, TDA drastically reduces the number of unknown
parameters (Pan et al.,, 2019). It can be seen that the TDA model requires O(YM_, p2,) parameters to
model the dependence among X. However, if we ignore the tensor structure and assume the LDA
model on the vectorized version of X, the covariance matrix has O([TL, p2,) parameters.

m=1
Under the TDA model, the Bayes’ rule is

Y =arg max {a+ (By, X)} (11)

where By = [y — yl;Zfl, e ,ZX,}]], and a; = log(7ty/m1) — (By, %(yk + 1)) is a scalar that does not
involve X. It can be seen that the Bayes rule is again a linear function in X, with the linear coefficients
Bj. In high dimensions, we again impose the sparsity assumption by assuming that many elements in
By are zeros.

Similar to the vector case, when additional covariates are provided, the TDA model can be
combined with covariate adjustment. Pan et al. (2019) proposed the CATCH model for this purpose.
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In addition to (Y, X), we are given the covariates U € R7. The CATCH model assumes that

U[(Y =k ~N(¢p¥) (12)
X‘ (U:u,Y:k)~TN(yk+a>_<<M+1)u,Zl,...,EM). (13)

where ¢, € RY is the within-class mean of U, ¥ € R7*1 is the within-class covariance of U, and
& € RPPXPM>T characterizes the dependence of X on U. The parameters in the CATCH model can
be interpreted in the same way as the CA-LDA model in Section 2.2.3.

The Bayes’ rule under the CATCH model is

~

Y:argkinlaxK{ak—i—'yzU—&—(Bk,X—a>'<(M+1)U)}, (14)

where v, = Y1 (¢ — ¢1), and gy = log(my/m1) — 37 (¢ + 1) — (B, 5 () + py)) is a scalar that
does not involve X or U. Similar to the TDA model, we assume that By is sparse in high dimensions,
but impose no further sparsity assumptions on other parameters.

Methods

In this section, we formally introduce the six methods implemented by the package: DSDA, ROAD,
SOS, SeSDA, MSDA and CATCH. Throughout the rest of this paper, we denote ¥ as the pooled sample
covariance, ji; as the within-class sample mean,  as the sample size, and 7 as the sample size in class
k. All the methods involve a tuning parameter A > 0 that controls the amount of sparsity. Hence,
when we refer to an estimate B, it should be understood as B(A), although we suppress A in most
estimates for presentation convenience. We will discuss the tuning parameter in detail in Section 2.3.8.

Direct sparse discriminant analysis (DSDA)

The direct sparse discriminant analysis (DSDA) is proposed for binary classification under the LDA
model in (2). Recall that our main interest is in estimating the coefficients g, in the Bayes rule (3).
Because DSDA assumes that there are only two classes, it suffices to estimate 8 = Z ! (u, — ;). In
high dimensions, we assume that g is sparse. Let y; = =2 if Y; = land y; = 45 if Y; = 2. DSDA first
solves the penalized least squares problem

‘BEIRV,‘BU R i—1

., p
(BDSDA/ A]OjsDA) =arg min {n1 Z(yi —Bo— XiTﬁ)z +A Z':B]|} , (15)
j=1

~DSDA
where A > 0 is the tuning parameter, Z;;l | is the LASSO penalty (Tibshirani, 1996), and B is

DSDA
our estimate for B. Because of the LASSO penalty, S is typically sparse. To estimate the Bayes
~DSDA
rule, we further estimate the LDA model on the reduced data {Y;, XiT B PR

Numerical and theoretical studies show that DSDA consistently estimate the Bayes rule under
mild conditions. Also, DSDA can be computed very efficiently, as (15) is a heavily-studied ¢, penalized
least squares problem. Our implementation utilizes glmnet to solve (15).

Regularized optimal affine discriminant (ROAD)

Regularized optimal affine discriminant (ROAD, Fan et al. (2012)) is another binary penalized discrim-
inant analysis method for high-dimensional data. ROAD estimates 8 by

BROAD = argmin BTEB (16)

1Bl < e B (B — ) /2= 1. (17)
We remark that Wu et al. (2009) independently proposed the ¢1-Fisher’s discriminant analysis method
that closely resembles ROAD, but the developments of ROAD and the ¢;-Fisher’s discriminant analysis
have different emphasis. ROAD clarifies several theoretical aspects of high-dimensional classification,

while ¢;-Fisher’s discriminant analysis is developed for simultaneous testing for gene pathways. For
simplicity, we focus on ROAD in what follows.

In its optimization, the constraint of /;-norm can be recast as a {;-penalty with parameter A. ROAD
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rewrites (16) as

B =arg  min  BIZE+A|Bls (18)

B (=) /2=1
The authors of ROAD proposed to solve (18) by replacing the nonconvex constraint with a
quadratic penalty. However, we adopt a different approach to solve (18). It is showed in Mai and Zou

(2013) that the solution paths of DSDA and ROAD are equivalent. In other words, for any A > 0, there

exists A > 0 such that BDSDA(A) (S EROAD(X). Because DSDA produces a solution path much faster

than the original proposal of ROAD, we solve ROAD by first finding the solution path of DSDA for a
range of A, and then find each corresponding A to recover the solution path of ROAD.

Sparse optimal scoring (SOS) in binary problems

We also implement the successful discriminant analysis method, sparse optimal scoring (SOS, Clem-
mensen et al. (2011)). We focus on binary problems, where we are able to greatly improve the
computation speed. For multiclass problems, SOS can be solved by the R package sparseLDA.

In binary problems, SOS creates a dummy variable Y € R"*? as a surrogate for the categorical
response Y, where Yl.”,’{m = 1{Y; = k}. Then SOS estimates coefficient by solving

~SOS

=arg min Y — X812 + A ,
ﬁ gBERZ,ﬂe]RP{H 'BH Hﬁ”l}
st LoTydn ydng — 1,9Tydm" ydn1 — o, (19)

where X is the centered X, and 8 € R? is the score for the two classes. SOS is a popular penalized
discriminant analysis method because of its impressive empirical performance. It can be solved by
iteratively minimizing the objective function in (19) over 6 and B.

However, we take another approach to solve SOS with lower computation cost. Mai and Zou

(2013) showed that BSOS is closely related to the DSDA estimator defined in (15). Let 7, = % We

have that A
~S0S ~DSDA
A) = /1 —— ). (20)
R
Therefore, to solve for ESOS(A)’ we first find ﬁDSDA(%) with DSDA, and rescale it to obtain
701702

the SOS solution. This approach avoids iteration between 8 and B, and is often faster than the original
algorithm for SOS.

Semiparametric sparse discriminant analysis (SeSDA)

SeSDA (Mai and Zou, 2015) fits the SeLDA model in (7) for binary problems. It is expected to have
better performance than DSDA when data are heavily non-normal. SeSDA has two steps. First, we
find an estimate /1 for the unknown function /. Second, we apply DSDA on the pseudo data (7(X), Y).
In what follows, we focus on the estimation of h.

Two estimators have been proposed for /1 based on (8), the naive estimator and the pooled estimator.
Without loss of generality, we assume that Class 1 has more observations than Class 2. Denote Flj as
the empirical CDF of X; within Class 1. To avoid infinity values at tails, we further Winsorize Fy; to
F1 jr where

1-1/n3 if Fj(x) >1-1/n}
Bj(x) = L
1/n? if Fyj(x) < 1/ni.

The naive estimator is shown to consistently estimate /i, but in practice it is vulnerable to loss of
efficiency, as it only utilizes one class of data. Therefore, the pooled estimator is proposed as a more
efficient estimator.

Similar to 151 jwe denote 1:"2]- as the empirical CDF of X]' within Class 2 Winsorized at (1/ n%, 1-—

1/n2). We first find an estimate for Hyj as ﬁ(zl;.ooh = frlﬁg}) + ﬁzﬁéz.), where ﬁép = n% Yy—2 o 1o
ﬁlj(Xij), ﬁg) = —ni] Yy—1® o ﬁzj(X,-]-). Then the pooled estimator for h; is
P = mh + 7k, 1)
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Algorithm 1 Algorithm for MSDA

1. Computef and gk =@ —p),k=12,--- K

> . I
2. Initialize ,B,((O) and compute [3]50) by By = %

3. For stepsw =1,2,..., do the following until convergence:
foreachelementj=1,...,p,

(a) Compute
(w—1) A

- T)
1B

S(@)

+5 (24)

(b) Update
D SN

Brj = (25)

Yjj

4. At convergence, output ;.

where f1]<.1) =d 1o ﬁlj and fzj(z) =dlo 1?2]‘ + ﬁ(zl;ooh. The pooled estimator is usually more accurate
than the naive estimator because it utilizes both classes to form an estimate for hj.

Multiclass sparse discriminant analysis (MSDA)

Up to now, we have focused on binary classifiers. In this section, we discuss a multiclass classifier
under the LDA model (2). Assume that K > 2. By the Bayes rule (3), we need to estimate the
coefficients B = =1 (u, — p;),k = 2,..., K. There is no need to estimate f;, as it is zero by definition.
As in the binary problems, we continue to assume that the classifier is sparse in high dimensions, in the
sense that only a few predictors are relevant to classification. However, this sparsity assumption has
slightly different implication in multiclass problems. Note that, for any X;, if any one of B, ..., Bk; is
nonzero, X j is important for classification, as it helps with distinguishing between at least one pair of
classes. Therefore, in order for an X; to be unimportant, we have to have f; = ... = Bg; = 0. In other
words, the coefficients ,, ..., Bx has a group sparsity structure.

The multi-class sparse discriminant analysis (MSDA) has been proposed for fitting a sparse
classifier under the context of interest. It takes note of the fact that, on the population level, we have

s

K
(By, -+, Bx) = argﬁmir;; Z{%ﬁ;{zﬁk — (i _.”1)Tlgk}- (22)
2/ IPK k=2

Therefore, in high dimensions, MSDA replaces the parameters with the sample estimates and
impose the group sparsity structure through group lasso (Yuan and Lin, 2006). More specifically,
MSDA estimates B by

R K R P
By, Bx) = argﬁmin Z{%ﬁfzﬂk — (e —71) B} + A Z% 181 (23)
=

YA /ﬁ[( k=2

The problem in (23) can be solved by a blockwise coordinate descent algorithm (Mai et al., 2015)
summarized in Algorithm 1. We refer to Algorithm 1 as the original MSDA algorithm. The R package
msda implements such an algorithm. However, the original MSDA algorithm can be demanding on
storage for high-dimensional data, because it requires the input of £ € RP*?. When p is very large, the
original MSDA algorithm can be practically inapplicable. Moreover, because of the sparse nature of ,
many elements in % are never used, and the calculation of them leads to unnecessary computation
burden.

Therefore, in our implementation we modify the original MSDA algorithm for lower storage and
computation cost for high-dimensional data. Note that T is only used in updating rule (25). We
take advantage of two properties of this updating rule (25). First, given the natural element-wise
property of coordinate descent algorithm, only the j-th column of covariance matrix . j is needed in
each iteration. The full covariance matrix is never used during the computation process. Therefore,
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it is not necessary to store the huge covariance matrix. Secondly, a large number elements of B are
exactly 0. Hence among the column Z we only need to compute the rows corresponding to the
nonzero coefficients. These facts motlvate us to develop the modified MSDA algorithm. The modified
MSDA algorithm is largely identical to the original algorithm, but with two important distinctions.

On one hand, in Step 1 we only require the input of gk but not £. On the other hand, Step 3(b) in (25)
is replaced with

(n = K)B — Loy B (S (e, (X — ) (X — i)
Y e, (Xij — 1))

Bij = , (26)

where T, = {i : y; = k}. By doing so, we avoid the storage and the computation of the full matrix of z.
In computing (26), we further use three tricks to speed up the computation. Firstly, we calculate and
store all diagonal elements in the covariance matrix as they will be called multiple times. Secondly,
we keep the indexes of nonzero elements in Ty and update it every time we observe a new nonzero
element. Hence we do not need to check all elements to locate the nonzero ones in each iteration.
Thirdly, we update equation (26) by only computing elements corresponding to the nonzero indexes
in Ty. With these three tricks, the modified algorithm reduces the space complexity from O(p?) to
O(p), and is also faster than the original algorithm for large p.

Covariate-adjusted tensor classification in high dimensions (CATCH)

When X is a tensor instead of a vector, we need to fit the TDA model or the CATCH model (in presence
of covariates) for better efficiency and accuracy. Pan et al. (2019) proposed the CATCH method to fit
both models, but in this section we focus on the CATCH method on the TDA model, where there is no
covariate. The inclusion of covariates will be discussed in Section 2.3.7.

Recall that, under the TDA model, we aim to estimate the parameters By = [p —p; 27 ,..., Z Ml]].
We first rewrite By as solutions to estimating equations:

K
(By, ..., By) = arg min Y (B, [BuZy,-. Zuml) — 2(Br e — pq)),
L=

where for two M-way tensors A, C, (A,C) = Zfl"'jM Ay g Cy-ojag 18 the inner product of two tensors.
To estimate By, we find the within-class sample mean i, as the estimate for y;, and moment-based
unbiased estimators £,, for £,,; see the formulas in Appendix C. We further add the group LASSO
penalty for variable selection. Therefore, CATCH solves the following problem:

K

min | Y ((Bk, [Bi;E1, ..., Eml) 72<Bk,ﬁk—ﬁ1>) +A Y

(27)
B2Bi |25 jrim

CATCH can be solved by a coordinate descent algorithm with an explicit updating formula in
each iteration.

Covariates adjustment

When we have additional covariates U, the CA-LDA model or the CATCH model should be fitted.
Whether X is a vector or a tensor, a key step for the covariate adjustment is the estimation of &, the
dependence of X on U. We use the maximum likelihood estimator (MLE). Denote Uy, as the sample
mean of U within class k and X as the sample mean of X within class k. Define group-wise centered
data )~(i =X;— iyi, ﬁ,‘ =U; - Uy,..

For vector-variate X; € IR?, we adjust for covariate U by X; — «U;, where & € R7*? is the MLE,

a=(UTu)"'uTx (28)

For tensor-variate X; € RP1*"*PM we let &ji.jy € R7 be the regression coefficient of univariate
on multivariate U; € R7. Then the MLE for &;,...;,, is &j,...j,, = (UT0)-1UTX;

i which can

be expressed more explicitly as,

-1
&h...jM—{Z Y (U =T (U; - Tp)T } {Z Z (U; — Up)( ,h...]-M—Xk,jl...jM)}. (29)

1YY=k
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Parameters | A dfmax model option Covariate Cross validation
DSDA  Binary vector v v v
ROAD  Binary vector v
SOS Binary vector v
SeSDA  Binary vector v v
MSDA  Multi-class vector | v/ v v v v
CATCH Multi-class tensor | v/ v v v

Table 2: Method description and major parameters. Penalty parameter A controls the size of ¢1-penalty.
Parameter dfmax limits the maximum number of non-zero variables. Parameter model specifies the
version of implementation for MSDA.

Afterwards, the ensemble of all &jl...jM, «, is our estimator for a. The covariate-adjusted predictor
is then obtained as X; — & X p14+1U;.

Selection of the tuning parameter

We recommend selecting the tuning parameter in all methods by cross validation, which is imple-
mented in our package as supportive functions for most of the methods. In cross validation, a sequence
of potential tuning parameters is supplied. For each candidate tuning parameter A, the dataset is
random split into L folds. Then we fit L classifiers, each of which is fitted on L — 1 folds of the data and
validated on the remaining one fold. The average validation error rate of the L classifiers is used as a
measurement of the performance of the corresponding A. The A with the smallest average validation
error is used in our final model fitting.

If desired, our package can automatically generate a sequence of tuning parameters for all the
methods. They will first compute the smallest A that shrinks all coefficients to zero; this value is
taken as the upper bound of tuning range. Then the upper bound is multiplied by a small number to
generate the lower bound. Finally, a sequence of tuning parameters is uniformly generated between
the lower and the upper bound.

Using the R package

The R package TULIP provides user-friendly functions to fit discriminant analysis model and perform
predictions on vector and tensor data. The package can be downloaded through https://cran.r-
project.org/web/packages/TULIP or install in R through install.packages('TULIP'). In installing
package, the pre-required packages MASS(Venables and Ripley, 2002) for LDA model fitting, packages
Matrix (Bates and Maechler, 2016) and tensr (Gerard and Hoff, 2016) for matrix and tensor operations,
and the package glmnet(Friedman et al., 2010) for LASSO are also automatically installed. Users do
not need to install them separately. To guarantee higher computation efficiency of the package, core
algorithms of MSDA and CATCH are implemented in Fortran, which have already been compiled
and can also be used directly.

Among all the six methods, there is always a tuning parameter A to control the size of sparsity.
On the implementation aspect, MSDA and CATCH also have parameter dfmax to limit the number of
selected variables and will only return the solutions with number of non-zero elements less than dfmax.
Furthermore, MSDA has a model option to specify version of implementation between multi.original
and multi.modified. The methods are summarized in Table 2.

The functions in the package consists of two parts. One part contains core functions which generate
solution paths of all the methods, including functions dsda, road, sos, SeSDA, msda and catch. Since
binary classification can be regarded as a special case of multi-class problems, we also embedded
DSDA into msda function. See Section 2.4.1 for details. The other part includes supportive functions to
perform covariate adjustment, prediction, cross validation and handle some special cases.

To illustrate how to use the functions, we first simulate a binary vector data set named dat.vec
with dimension p = 500 and sample size ny = 75. In the data set, we have X; | (Y; = k) ~ N(p, Z),
where y; =0, u, = L, gij = 03ifi #jando; =1, ,B]- =05forl <j<10and [3]- = 0 otherwise.
We further generate a testing data set with sample size 1000 from the same distribution. Variables in
dat.vec is summarized in Table 3. Data set dat. vec can be simulated by code

dat.vec<-sim.bi.vector(1000)
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Variable Type  Dimension

X matrix 150 x 500

y vector 150
testx matrix 1000 x 500
testy vector 1000

Table 3: Data set dat.vec. Variables type and dimension are listed.

Moreover, we include two real data sets, GDS1615 and colorimetric sensor array data set, in the
package to demonstrate usage of the functions. Data set GDS1615 (Burczynski et al., 2006) is a vector
data set where observations belong to three classes. The original data set contains 127 observations
and 22283 variables. Package msda preprocessed the data by computing F-test statistics of each
variable (Mai et al., 2015), whose definition is in appendix. Hence only 127 variables are kept in the
data set. Colorimetric sesor array data (CSA) was used to show the performance of discriminant
analysis method (Zhong and Suslick, 2015). It records information of chemical dyes after exposed to
volatile chemical toxicants to identify their classes. It contains 147 observations in 21 classes. For each
observation, the predictor is a 36 x 3 matrix. We include two conditions in our dataset, but focus on
the Immediately Dangerous to Life or Health (IDLH) condition.

Core functions

Function dsda

The following code shows an example of utilizing DSDA. Given the data set dat.vec, we fit DSDA
on {X, Y} by specifying the tuning range of parameter A to be a sequence between [0.005, 0.3]. Hence
the function will generate a solution path. Next, we apply predict function on the model and obtain
the prediction for each A and error rate. In the example, we report the minimum error rate and
corresponding parameter value.

obj <- dsda(dat.vec$x, y=dat.vec$y, lambda=seq(@.005, 0.3, length.out=20))
pred <- predict(obj, dat.vec$testx)

err<- apply(pred, 2, function(x){mean(x!=dat.vec$testy)?})

print(min(err))

[1] @.111

print(obj$lambdalwhich.min(err)])

[1] 0.02052632

If one wishes, dsda can also be used in a more automatic way. On one hand, it can be called
without supplying a sequence of value for tuning parameter. The function will automatically generate
a sequence based on data. On the other hand, the prediction can be performed along with model
fitting if testing data is supplied. The function dsda will produce the prediction error on the testing
data corresponding to each tuning parameter. See the following example.

obj <- dsda(dat.vec$x, y=dat.vec$y,testx=dat.vec$testx)

err <- apply(obj$pred, 2, function(x){mean(x!=dat.vec$testy)?})
print(min(err))

[1] @.107

print(obj$lambdalwhich.min(err)])

[1] 0.03180946

Figure 4 shows a solution path of DSDA model. As parameter A increases, more coefficients will
be shrunken towards 0. In addition, DSDA can also integrate the covariate adjustment, model fitting
and prediction. The usage is similar to the function catch, and we do not give a separate example
here to avoid redundancy.

Function SeSDA

Function SeSDA fits a semiparametric sparse discriminant analysis model on the input vector data.
The simulated data dat.vec follows normal distribution within each class. We take an exponential
transformation on it to violate the normality assumption. The following example shows that SeSDA
achieves error rates 11%. However, if we directly apply DSDA on the data set, the minimum error rate
is as high as 15.8%. Therefore, the preprocessing of SeSDA can indeed help to improve performance
under this scenario.
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Solution path of DSDA
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Figure 4: Solution path of five selected variables in a DSDA model. Five trends correspond to the
parameter values of five elements given different parameter A values.

x <- exp(dat.vec$x)

testx <- exp(dat.vec$testx)

obj.SeSDA <- SeSDA(x, y=dat.vec$y)

pred.SeSDA <- predict(obj.SeSDA, testx)

err <- apply(pred.SeSDA, 2, function(x){mean(x!=dat.vec$testy)})
min(err)

[1] 0.1

Further, Figure 5 shows how the distribution of the first variable changes after transformation. It is
clear that both pooled and naive transformatins result in approximately normal distribution.

Functions ROAD and SOS

Functions ROAD and SOS can generate equivalent solution paths as ROAD (Fan et al., 2012) and SOS
(Clemmensen et al., 2011) methods on binary vector data, respectively. Both of the two models are fit
by calling dsda function. Compared to the original package for SOS, sparseLDA, our implementation
is usually faster, especially when a solution path or parameter tuning is needed. For example, to fit a
solution path with 10 possible values of As on a toy example with p = 40, our implementation reduces
the computation time by half compared to sparseLDA. An example of fitting ROAD and SOS model
is as follows. The lambdas passed into ROAD and SOS functions will be directly used by dsda function.
The lambdas returned by the two functions are their corresponding parameters in ROAD and SOS
model, respectively. Figure 6 shows the relationship between the A’s that generate the same solution.

obj.dsda <- dsda(dat.vec$x, y=dat.vec$y, lambda=seq(@.1, @.5, length.out=20))
obj.road <- ROAD(dat.vec$x, y=dat.vec$y, lambda=seq(@.1, 0.5, length.out=20))
obj.sos <- SOS(dat.vec$x, y=dat.vec$y, lambda=seq(@.1, 0.5, length.out=20))

Function msda

The function msda provides an interface to fit MSDA. Similarly to dsda, without specification of
possible values of A, the function will automatically generate a sequence of As. Function msda can
also perform predictions when testing data is supplied and make adjustments on covariates when
covariates exist. We apply msda on GDS1615 data set to as a demonstration. We report the minimum
training error, its corresponding parameter value and the number of non-zero variables selected by
the model.

data(GDS1615)

X <- GDS1615%x

y <- GDS1615%y

set.seed(123456)

teindex <- c(sample(which(y==1), sum(y==1)/3), sample (which(y==2),
sum(y==2)/3), sample(which(y==3), sum(y==3)/3))

obj <- msda(x[-teindex, 1, y=y[-teindex], testx=x[teindex, 1)

err <- apply(obj$pred, 2, function(x){mean(x!=y[teindex])3})

paste(min(err), obj$lambdalwhich.min(err)], obj$df[which.min(err)] )

[1] "0.04878049 1.446872 19"

If one wishes to visualize the discriminant effect, plots of projections on the discriminant coeffi-
cients is helpful. A principle component analysis is also optional to show the classification even more
clearly. For illustration, we perform principle component analysis on Xg where g = {B,, B3} is the
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Figure 5: The distribution of the 1st variable in simulated data set among two classes before transfor-
mation and after transformation. The top row is before transformation. The second row is after pooled

transformation. The bottom row is after naive transformation.
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Figure 6: Parameters in ROAD vs. Parameters in DSDA. Notice that the parameters in DSDA are

double those of SOS.

discriminant coefficient. The scatter plot on the two principle components is shown in Figure 7. It is

clear to see that the three classes are separated well.

We also note that msda has an argument model that can be specified by users to use different
algorithms in MSDA. The options for model include binary, multi.original and multi.modified.
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Figure 7: The GDS data projected onto the two principle components of Xp. Three classes are

PC1

separated.
Variable  Type Dimension
X list 150. Each element is a 10 x 10 x 10 array.
y vector 150
z matrix 150 x 2
vec_X matrix 1000 x 150
testx list 1000. Each element is a 10 x 10 x 10 array.
testy vector 1000
testz matrix 150 x 2
vec_testx matrix 1000 x 1000

Table 4: Data set dat.ten. Variables type and dimension are listed.

The option binary can only be used in binary problems. If selected, MSDA is solved by DSDA, which
gives the same solution with usually less time. However, using this option in multi-class problems
will result in an error. The option multi.original indicates that MSDA is solved by the original
algorithm, which requires the calculation of the full covariance matrix. When the dimension is low,
multi.original is often efficient. The option multi.modified, on the other hand, solves MSDA with
the modified algorithm, where only part of the covariance matrix is calculated in each iteration. This
option allows MSDA to be applicable in much higher dimensions. Also, when multi.modified is
selected, we suggest using relatively larger tuning parameters to account for the high dimensionality.
If unspecified, model is set to be binary in binary problems. If the response variable is multi-class, the
function will call multi.original implementation for p < 2000 and multi.modified implementation for
p > 2000.

Function catch

To illustrate usage of function catch, we first simulate a data set named dat.ten with tensor
predictors X; € R10%10x10 and covariates U; € R?. The data is simulated from model X; | (Y; = k) ~
TN(py, L1, X2, Z3) where py = 0, py, = [B; X1, X2, Z3], Lj=1Iforj=123, ,8[1:2,1:2/1:2] =0.8and 0
otherwise. Let U; | (Y; = k) ~ N(¢, ) where ¢; =0, ¢, = (0.3,0.3) and ¢ = I. The connection
between X and U is measured by a € R10x10x10x2 ang ®[1:51:5,1:5,1) = 1 and 0 otherwise. Variables in
dat. ten are summarized in Table 4.

Data set dat . vec can be simulated by code
dat.ten<-sim.tensor.cov(1000)

Function catch fits a CATCH model on the input tensor data. Covariates are optional for the
function and the function will fit a TDA model when there is no covariate. Function catch has already
integrated the adjustment step and model fitting step, hence it will automatically adjust for covariates
when covariates exist. If one prefers to seperate the adjustment step, he/she can call adjten function
to make adjustments and then supply the adjusted predictors into catch, which we will discuss in
supportive functions.
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Similar to the two functions above, function catch can generate a solution path on default or
user specified potential values of the parameter. It will also perform prediction when testing data is
specified. To make predictions on CATCH model, user can directly apply catch function or separating
adjustment and model fitting step and then call the predict function. The following example shows
how to fit the model and make prediction when covariates exist. As mentioned above, functions dsda
and msda shares the same arguments name for covariates.

obj <- catch(dat.ten$x, dat.ten$z, dat.ten$y, dat.ten$testx, dat.ten$testz)
pred <- obj$pred

err <- apply(pred, 2, function(x){mean(x!=dat.ten$testy)})

min(err)

[1] @.167

obj$lambdalwhich.min(err)]

[1] 0.4270712

An example of applying CATCH to fit model and perform prediction on CSA data is as follows. catch
function takes list of multi-dimensional array as input. In the dataset, x is a list of length 148, where
each element is a matrix of dimension 36 x 3; y is a vector whose value ranges between 1 and 21.
We use default parameter sequence of length 100 and the prediction for each value of parameter is
generated.

data(csa)

x <- csa$IDLH

y <- csa$y

teindex <- seq(1,147,7)

obj <- catch(x[-teindex, 1, y=y[-teindex], testx=x[teindex, ], nlambda=10)
err <- apply(obj$pred, 2, function(x){mean(x!=y[teindex]1)3})

print(err)

[1] ©.9523819 0.1904762 0.0952381 0.0000000 0.0952381 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000

Other functions

Two special cases

We provide two more functions for two common problems in practice, binary classification and
matrix classification, respectively. First, the function catch_matrix fits CATCH model on matrix data
(2-way tensor), which is a special case of catch. The usage of catch_matrix is exactly the same as that
of catch, with the only exception that the predictor has to be a matrix instead of higher-order tensor.

Second, our package includes the function dsda. all that integrates cross validation, model fitting
and prediction. It requires the input of the training set and testing set. Then the optimal tuning
parameter is chosen by cross validation on the training set, and the corresponding testing error is
reported. See the following example.

obj <- dsda.all(dat.vec$x, dat.vec$y, dat.vec$testx, dat.vec$testy, nfolds = 10)
print(obj$err)
[1] @.116

Supportive functions

The package provides functions cv.dsda, cv.msda, cv.SeSDA and cv.catch to perform cross val-
idation. For all of these functions, user can give a sequence of potential values to tune parameter.
Otherwise, the function will first fit a model on the entire data set and then perform cross validation
on the automatically generated As from the entire data set. Similar as msda, user can specify which
model to use in cv.msda or let the function determine by input data.

Users can also specify the number of folds by the argument nfolds. Another argument lambda.opt
has two options "min” and "max”. When multiple As lead to same error rate, "min” will return the
smallest tuning parameter with the lowest error rate while "max"” will return the largest one. We take
cv.dsda and cv.catch as two examples.

obj.dsda <- cv.dsda(dat.vec$x, dat.vec$y, nfolds = 10)
obj.catch <- cv.catch(dat.ten$x, dat.ten$z, dat.ten$y, lambda.opt="min"

Function adjten and adjvec implement the adjustment step for tensor and vector data, respectively.
It takes training tensor/vector, covariate and response as input, and outputs the adjusted tensor/vector
and adjustment coefficients «. The adjustement step has already been incorporated into the modeling
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Method Binary Multi-class
Error rate (%) / Time (seconds) Mean SE  Time Mean SE  Time
DSDA /multi.modified 2358 023 3630 3585 024 888
SeSDA 2368 024 73128 NA NA NA
CATCH 2279 024 78,6 3522 025 1014
¢/1-GLM 2399 0.16 3623 3566 021 1344
SOS 23.87 0.26 100.8 37.07 029 11148

Table 5: ADHD classification. Average error rates based on 100 replicates and running time of 20
replicates are reported.

fitting functions dsda, msda and catch. When user input covariates along with tensor/vector, the
model fitting functions will automatically make the adjustment. But if user do not want to use the
automatic prediction in model fitting function and prefer to predict via predict, user need to first
make the adjustment to obtain adjustment coefficient gamma, and pass it into function predict. Notice
that making adjustment and fitting a model on the adjusted tensor and response without covariate is
equivalent as fitting a model by inputting the original tensor, covariate and response labels. Examples
of two approaches are given as follows.

obj <- catch(dat.ten$x, dat.ten$z, dat.ten$y, dat.ten$testx, dat.ten$testz)

obj.adj <- adjten(dat.ten$x, dat.ten$z, dat.ten$y, dat.ten$testx,
dat.ten$testz)

obj.fit <- catch(dat.ten$x, dat.ten$z, dat.ten$y)

pred <- predict(obj.fit, obj.adj$testxres, dat.ten$z, dat.ten$testz,
obj.adj$gamma)

There are three prediction functions corresponding to dsda, msda and catch, respectively. All of
them can be directly called by predict and the function will recognize which function to use based
on the input fitted model object. When covariate exists, user needs to pass the adjustment coefficient
obtained from function adjten, the fitted model and testing data altogether to make predictions.
Therefore, we encourage user to direct use model fitting functions msda and catch to fit model and
predict categorical responses.

Real data example

In this section, we will show the performance of the models by a real data set. We considered
the attention deficit hyperactivity disorder (ADHD) data set. The dataset is available on NITRC
(http://fcon_1000.projects.nitrc.org/indi/adhd200) (Bellec et al., 2017). It contains three parts
of information: s-MRI data which is a 3-D tensor, covariate information including age, gender and
handedness which is a vector, and response label. Among all 930 individuals, there are four types of
categorical labels: Typically Developing Childrem (TDC), ADHD Combined, ADHD Hyperactive and
ADHD Inattentive.

We downsize the tensor to dimension 24 x 27 x 24 and consider two classification scenarios. One
is to combine ADHD Hyperactive with the ADHD Combined since there are only 13 subjects in class
ADHD Hyperactive. This results in a multi-class problem with three classes. The second one is to
further combine TDC and ADHD Inattentive since none of these two categories have hyperactivity
symptoms. This give us a binary problem. We split the dataset into a training set and testing set by
ratio 8 : 2.

Given the tensor structure and existence of covariates, the most suitable approach is to apply
CATCH on that. We also vectorize the tensor into vectors and stack covariates along with the long
vector to apply vector methods. For binary case, DSDA is applied. For multi-class case, MSDA model
with multi.modified is applied since the dimension is too large to employ multi.original. We also
compared with SOS (Clemmensen et al., 2011) by its own package sparseLDA and ¢1-GLM (Friedman
et al.,, 2010) by package glmnet.

For each replicate, we perform cross validation on training data and record the classification error
on testing data. The entire process was repeated for 100 times and we report the mean and standard
error of the error rates. The performance is shown in Table 5.
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Discussion

Package TULIP provides a toolbox to fit various sparse discriminant analysis models, including
parametric models DSDA, ROAD, SOS for binary vector data, semiparametric model SeSDA for
binary vector data, MSDA for multiclass vector data, and CATCH for multiclass tensor data. As a
comprehensive toolbox, the package provides prediction and cross validation functions as well.

Meanwhile, the package propose an approach to handle cases when both predictor and covariates
are supplied. The predictor can be vector and tensor, while the covariates are usually low-dimensional
vectors. Covariates may have an effect on both response and the predictor. Therefore making
adjustment and excluding the influence of covariates from predictor is important. The package
includes functions to make the adjustments and can be called easily by supplying covariates in the
model fitting function.

Appendices

Tensor notation

On each dimension, which is named mode, a tensor is composed by vectors of length (py x 1) called
mode-k fiber, defined as A;,...;,_ i .;--ips Ik = 1, - - pi- Stacking the mode-1 fiber by row gives the
vectorization of a tensor vec(A), which is a ([T, pm X 1) column vector. If we unfold the tensor along
the k-th mode, we obtain a matrix A(k) € RP<Ilizcpr,

Denote the mode-k product of a tensor A and a matrix & € R?*Pt by A x; & € IR, which results in a
tensor of dimension p; X - -+ X px_1 X d X pgy1 X - - - X pp1. Each element of the product is the product
of a mode-k fiber of A and a row vector of «. In particular, the mode-k vector product of a tensor A and a
vector ¢ € RPrisa (M — 1)-way tensor as a special case when d = 1. The Tucker decomposition of a tensor
is defined as A = C x1 Gy X3 - - - X1 Gy, in short of [C; Gy, ..., Gy]. In particular, the vectorization
of tucker decomposition has the fact that vec([C; G1,...,Gpm]) = (G ® - - - @ G1) vec(C), where ®
denotes Kronecker product. If X = u + [Z; Z%/Z, e, Z}sz]], where Z € RP1X%PM and all elements
of Z independently follow the univariate standard normal distribution, we say X follows a tensor
normal distribution X ~ TN(p, X1, ..., Zpr). The dependence structure on the j-th mode is measured
by E; > 0. Hence, vec(X) = vec(u) + /2vec(Z), where L =E) ® - - @ Lq.

Simulation code

Data sets dat.vec and dat.ten are used to illustrate usage of the functions. Detailed model settings are
described in Section 2.4. Here are the code to simulate the two data sets.

Code to simulate data set dat.vec:

set.seed(123456)

sigma <- matrix(0.3, 500, 500)

diag(sigma) <- 1

dsigma <- t(chol(sigma))

#define beta and mean

beta <- matrix(@, nrow = 500, ncol = 1)

beta[1:10,1] <- 0.5

M <- matrix(@, nrow = 2, ncol = 500)

M[2,] <- sigma%*%beta

y <= c(rep(1, 75), rep(2, 75))

#tgenerate test data

telabel <- ceiling(runif(1000)=*2)

x <= matrix(rnorm(150%500),ncol = 500)%*%t(dsigma)

x[y==2, 1 <- x[y==2, 1 + M[2,]

testx <- matrix(rnorm(1000x500), ncol = 500) %*% t(dsigma)
testx[telabel==2, ] <- testx[telabel==2, ] + M[2, ]
dat.vec <- list(x = x, y =y, testx = testx, testy = telabel)

Code to simulate data set dat.ten:

set.seed(123456)
sigma <- array(list(), 3) #define covariance matrices
dsigma <- array(list(), 3)
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for (i in 1:3){
sigmal[i]] <- diag(10)
dsigmal[i]] <- t(chol(sigmall[ill))
}
B2 <- array(@, dim=c(10,10,10)) #define B and mean
B2[1:2, 1:2, 1:2] <- 0.8
M <- array(list(), 2)
M[[1]] <- array(@, dim=c(10,10,10))
ML[2]] <- atrans(B2, sigma)
y <= c(rep(1,75), rep(2,75))
coef <- array(@, dim=c(10,10,10,2)) #define alpha
coef[1:5, 1:5, 1:5, 1] <= 1
telabel <- ceiling(runif(1000)*2)
z <- matrix(rnorm(2x150), nrow=150, ncol=2) #generate covariates
z[y==2,] <- z[y==2,1 + 0.3
testz <- matrix(rnorm(2%1000), nrow=1000, ncol=2)
testz[telabel==2, ] <- testz[telabel==2, ] + 0.3
vec_x <- matrix(rnorm(1000x150), ncol=150) #generate tensor
x <- array(list(),150)
for (i in 1:150){
x[[i]] <- array(vec_x[,i], c(10,10,10)) + amprod(coef, t(z[i,]1), 4)L,,,1]
x[[i1] <= MLLy[i111 + atrans(x[[il], dsigma)
}
vec_testx <- matrix(rnorm(1000*1000), ncol=1000)
testx <- array(list(), 1000)
for (i in 1:1000){
testx[[i]] <- array(vec_testx[,i], c(10,10,10)) + amprod(coef, t(testz[i,]),
HL,,,11]
testx[[i]] <- M[[telabel[il]] + atrans(testx[[il], dsigma)
}
dat.ten <- list(x=x, z=z, testx=testx, testz=testz, vec_x=t(vec_x),
vec_testx=t(vec_testx), y=y, testy=telabel)

Estimation of covariance matrices in the TDA/CATCH model

Denote the sample mean of Class k by X;. We first center X; within class to obtain the residuals:
E = X; — iy = Xi = X

Further unfold E; along the j-th mode to obtain W) and find §j =(n Hf\fé]- p) e, Wi (Wl-(j))T.
Then our estimator for Z; is defined as

ﬁr(Xl..41)~

F —513. fori Fo_
Zj:Sj,115jf0r]:1/~-~/M*1/EM* ]_[M ~ Sm- (30)
j=1 7,11

Definition of F-test statistic
The F-test statistic used to preprocess GDS1615 data is defined as

f = Y1 ey — 1)*/ (K= 1)
! ?—1(X}: - ﬁyi,j)z/(” -K)

/ (1)
where X;'. is the j-th variable of i-th observation and 7 is the grand mean.
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