
CONTRIBUTED RESEARCH ARTICLE 367

SimilaR: R Code Clone and Plagiarism
Detection
by Maciej Bartoszuk and Marek Gagolewski

Abstract Third-party software for assuring source code quality is becoming increasingly popular.
Tools that evaluate the coverage of unit tests, perform static code analysis, or inspect run-time
memory use are crucial in the software development life cycle. More sophisticated methods allow
for performing meta-analyses of large software repositories, e.g., to discover abstract topics they
relate to or common design patterns applied by their developers. They may be useful in gaining a
better understanding of the component interdependencies, avoiding cloned code as well as detecting
plagiarism in programming classes.

A meaningful measure of similarity of computer programs often forms the basis of such tools.
While there are a few noteworthy instruments for similarity assessment, none of them turns out
particularly suitable for analysing R code chunks. Existing solutions rely on rather simple techniques
and heuristics and fail to provide a user with the kind of sensitivity and specificity required for
working with R scripts. In order to fill this gap, we propose a new algorithm based on a Program
Dependence Graph, implemented in the SimilaR package. It can serve as a tool not only for improving
R code quality but also for detecting plagiarism, even when it has been masked by applying some
obfuscation techniques or imputing dead code. We demonstrate its accuracy and efficiency in a
real-world case study.

Introduction

In recent years there has been a rise in the availability of tools related to code quality, including
inspecting run-time memory usage (Serebryany et al., 2012), evaluating unit tests coverage (Ammann
and Offutt, 2013), discovering abstract topics to which source code is related (Grant et al., 2012; Tian
et al., 2009; McBurney et al., 2014; Linstead et al., 2007; Maskeri et al., 2008), finding parts of code
related to a particular bug submission (Lukins et al., 2008), and checking for similarities between
programs. With regards to the latter, quantitative measures of similarity between source code chunks
play a key role in such practically important areas as software engineering, where encapsulating
duplicated code fragments into functions or methods is considered a good development practice or
in computing education, where any cases of plagiarism should be brought to a tutor’s attention, see
(Misic et al., 2016; Mohd Noor et al., 2017; Roy et al., 2009; Rattan et al., 2013; Ali et al., 2011; Hage
et al., 2011; Martins et al., 2014). Existing approaches towards code clone detection can be classified
based on the abstraction level at which they inspect programs’ listings.

• Textual – the most straightforward representation, where a listing is taken as-is, i.e., as raw
text. Typically, string distance metrics (like the Levenshtein one; see, e.g., van der Loo, 2014)
are applied to measure similarity between pairs of the entities tested. Then some (possibly
approximate) nearest neighbour search data structures seek matches within a larger code base.
Hash functions can be used for the same purpose, where fingerprints of code fragments might
make the comparison faster, see, e.g., (Johnson, 1993; Manber, 1994; Rieger, 2005). Another
noteworthy approach involves the use of Latent Semantic Analysis (Marcus and Maletic, 2001)
for finding natural clusters of code chunks.

• Lexical (token-based) – where a listing is transformed into tokens, which are generated by the
parser during the lexical analysis stage. This form is believed to be more robust than the textual
one, as it is invariant to particular coding styles (indentation, layout, comments, etc.). Typically,
algorithms to detect and analyse common token sub-sequences are used (Kamiya et al., 2002;
Ueda et al., 2002; Li et al., 2006; Wise, 1992; Prechelt et al., 2000; Hummel et al., 2011; Schleimer
et al., 2003).

• Syntactic – an approach based on abstract syntax trees (ASTs). Contrary to the previous repre-
sentation, which is “flat” by its nature, here the code is represented in a hierarchical manner.
This makes it possible to, for instance, distinguish between a top-level statement and a code
block that is executed within the else clause of an if-else construct. One way to quantify the
similarity of ASTs is to find common sub-trees. This might be an uneasy task, therefore, e.g.,
in (Baxter et al., 1998) a hash function is used to project a sub-tree into a discrete single value,
so that only the sub-trees in the same bucket are compared against each other. Another way
involves the computation of diverse tree metrics (based on node type count, their distribution,
connectivity, etc.) so that each AST is represented as a feature vector. Then the feature vectors
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can be compared against each other directly in a pairwise fashion (Mayrand et al., 1996; Pate-
naude et al., 1999; Fu et al., 2017) or by means of some cluster analysis-based approach (Jiang
et al., 2007).

• Semantic – the most sophisticated representation involving a set of knowledge-based, language-
dependent transformations of a program’s abstract syntax tree. Usually, a data structure
commonly known as a Program Dependence Graph (PDG) is created, see below for more
details. In such a data structure, the particular order of (control- or data-) independent code
lines is negligible. A popular approach to measure similarity between a pair of PDGs concerns
searching for (sub)isomorphisms of the graphs, see (Komondoor and Horwitz, 2001; Liu et al.,
2006; Qu et al., 2014).

There are a few generally available software solutions whose purpose is to detect code clones,
e.g., MOSS (see http://theory.stanford.edu/~aiken/moss/ and Schleimer et al., 2003) and JPlag
(see http://jplag.de/ and Prechelt et al., 2000), see also (Misic et al., 2016; Vandana, 2018) for an
overview. These tools are quite generic, offering built-in support for popular programming languages
such as Java, C#, C++, C, or Python.

Unfortunately, there is no package of this kind that natively supports the R language, which is
the GNU version of S (see, e.g., Becker et al., 1998; Venables and Ripley, 2000). It is a serious gap: R
is amongst the most popular languages1, and its use has a long, successful track record, particularly
with respect to all broadly-conceived statistical computing, machine learning, and other data science
activities (Wickham and Grolemund, 2017). With some pre-processing, MOSS and JPlag can be applied
on R code chunks, but the accuracy of code clones detection is far from optimal. This is due to the fact
that, while at a first glance being an imperative language, R allows plenty typical functional constructs
(see the next section for more details and also, e.g., Chambers, 1998; Wickham, 2014; Chambers, 2008).
On the one hand, its syntax resembles that of the C language, with curly braces to denote a nested
code block and classical control-flow expressions such as if..else conditionals, or while and for (for
each) loops. On the other hand, R’s semantics is based on the functional Scheme language (Abelson
et al., 1996), which is derived from Lisp. Every expression (even one involving the execution of a
for loop) is in fact a call to a function or any combination thereof, and each function is a first-class
object that (as a rule of thumb) has no side effects. Moreover, users might choose to prefer applying
Map–Filter–Reduce-like expressions on container objects instead of the classical control-flow constructs
or even mix the two approaches. Also, the possibility of performing the so-called nonstandard evaluation
(metaprogramming) allows to change the meaning of certain expressions during run-time. For instance,
the popular forward-pipe operator, %>%, implemented in the magrittr (Bache and Wickham, 2014)
package, allows for converting a pipeline of function calls to a mutually nested series of calls.

In this paper we describe a new algorithm that aims to fill the aforementioned gap (based on
Bartoszuk, 2018). The method’s implementation is included in the SimilaR2 package. It transforms
the analysed code base into a Program Dependence Graph that takes into account the most common
R language features as well as the most popular development patterns in data science. Due to this,
the algorithm is able to detect cases of plagiarism quite accurately. Moreover, thanks to a novel,
polynomial-time approximate graph comparison algorithm, its implementation has relatively low
run-times. This enables to conduct an analysis of a software repository whose size is significant.

This paper is set out as follows. First we introduce the concept of a Program Dependence Graph
along with its R language-specific customisations. Then we depict a novel algorithm for quantifying
similarity of two graphs. Further on we provide some illustrative examples for the purpose of showing
the effects of applying particular alterations to a Program Dependence Graph. What is more, we
demonstrate the main features of the SimilaR package version 1.0.8. Then we perform an experiment
involving the comparison of the complete code-base of two CRAN packages.

Program Dependence Graph

A Program Dependence Graph (PDG) is a directed graph representing various relations between individ-
ual expressions in a source code chunk. As we mentioned in the introduction, it is among the most
sophisticated data structures used for the purpose of code clones detection. First proposed by Ferrante
et al. (1987), it forms the basis of many algorithms, see, e.g., (Liu et al., 2006; Qu et al., 2014; Gabel et al.,
2008; Krinke, 2001; Horwitz and Reps, 1991; Komondoor and Horwitz, 2001; Ghosh and Lee, 2018;
Nasirloo and Azimzadeh, 2018).

1For instance, the 2018 edition of the IEEE Spectrum ranking places R on the No. 7 spot, see http://spectrum.
ieee.org/at-work/innovation/the-2018-top-programming-languages.

2See https://CRAN.R-project.org/package=SimilaR. SimilaR can be downloaded from the Comprehensive
R Archive Network (CRAN) repository (Silge et al., 2018) and installed via a call to install.packages("SimilaR").
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Abstract Syntax Tree. To create a PDG, we first need to construct an Abstract Syntax Tree (AST) of
a given program. In R, it is particularly easy to compute the AST corresponding to any expression,
due to its built-in support for reflection that facilitates metaprogramming. For instance, the parse()
function can be called to perform lexical analysis of a code fragment, yielding a sequence of language
objects. Moreover, a basic version of a function to print an AST takes just few lines of code:

R> show_ast <- function(x) {
+ as.list_deep <- function(x) # convert to a plain list (recursively)
+ { if (is.call(x)) lapply(as.list(x), as.list_deep) else x }
+ x <- substitute(x) # expression that generated the argument
+ str(as.list_deep(x)) # pretty-print
+ }

Let us visualise the AST corresponding to expression d <-sum((x-y)*(x-y)).

R> show_ast(d <- sum((x-y)*(x-y)))

List of 3
$ : symbol <-
$ : symbol d
$ :List of 2
..$ : symbol sum
..$ :List of 3
.. ..$ : symbol *
.. ..$ :List of 2
.. .. ..$ : symbol (
.. .. ..$ :List of 3
.. .. .. ..$ : symbol -
.. .. .. ..$ : symbol x
.. .. .. ..$ : symbol y
.. ..$ :List of 2
.. .. ..$ : symbol (
.. .. ..$ :List of 3
.. .. .. ..$ : symbol -
.. .. .. ..$ : symbol x
.. .. .. ..$ : symbol y

In R, both a constant (numeric, logical, string, etc.) and a symbol (name) constitute what we
call a simple expression. A compound expression is in turn a sequence of n + 1 expressions (simple or
compound ones) 〈 f , a1, . . . , an〉, n ≥ 0, which represents a call to f with arguments a1, . . . , an (which
we are typically used to denote as f (a1, . . . , an)).

The above AST can be written in the Polish (prefix) notation as

〈‘<-‘, d, 〈sum, 〈‘*‘, 〈‘-‘, x, y〉 , 〈‘-‘, x, y〉〉〉〉

Such a notation is used in Scheme and Lisp; we skipped a call to ‘(’ for readability, as (e) is equivalent
to e for each expression e. Alternatively, the above can be written as

‘<-’(d, sum(‘*‘(‘-‘(x, y), ‘-‘(x, y))))

in the “functional” form. Let us emphasise that even an application of a binary operator (here: <-, *,
and -) corresponds to some function call. Hence x-y is just a syntactic sugar for `-`(x,y). Moreover,
other expressions such as if..else and loops also correspond to some function calls. For example:

R> show_ast(for(i in 1:5) {
+ print("i = ", i)
+ if (i %% 2 == 0) print(":)") else print(":$")
+ })

List of 4
$ : symbol for
$ : symbol i
$ :List of 3
..$ : symbol :
..$ : num 1
..$ : num 5
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$ :List of 3
..$ : symbol {
..$ :List of 3
.. ..$ : symbol print
.. ..$ : chr "i = "
.. ..$ : symbol i
..$ :List of 4
.. ..$ : symbol if
.. ..$ :List of 3
.. .. ..$ : symbol ==
.. .. ..$ :List of 3
.. .. .. ..$ : symbol %%
.. .. .. ..$ : symbol i
.. .. .. ..$ : num 2
.. .. ..$ : num 0
.. ..$ :List of 2
.. .. ..$ : symbol print
.. .. ..$ : chr ":)"
.. ..$ :List of 2
.. .. ..$ : symbol print
.. .. ..$ : chr ":$"

Vertex and edge types. The vertices of a PDG represent particular expressions, such as a variable
assignment, a function call or a loop header. Each vertex is assigned its own type, reflecting the kind
of expression it represents. The comprehensive list of vertex types for the R language code-base
used in SimilaR is given in Table 1. The number of distinct types is a kind of compromise between
the algorithm’s sensitivity and specificity. It was set empirically based on numerous experiments
(Bartoszuk, 2018).

We may also distinguish two types of edges: control dependency and data dependency ones. The
former represents the branches in a program’s control flow that result in a conditional execution of
expressions such as if-else-constructs or loops. A subgraph of a PDG consisting of all the vertices
and only the control dependency edges is called a Control Dependence Subgraph (CDS).

The latter edge vertex type is responsible for modelling data flow relations: there is an edge from a
vertex v to a vertex u, whenever a variable assigned in the expression corresponding to v is used in the

Id Color Type Description

0 Olive Entry marks the beginning of a function
1 Light yellow Header loop
2 – Next next
3 – Break break
4 Orange If a conditional expression
5 Light blue If_part an expression to execute conditionally
6 Gray assignment an assignment expression, e.g., name <- val
7 Violet parameter a function parameter
8 – oneBracketSingle an expression involving [i], e.g., vector[-1]
9 – oneBracketDouble an expression involving [i,j]

10 – oneBracketTripleOrMore an expression involving [i,j,k,. . .]
11 – twoBrackets an expression involving [[i]], e.g., list[["nameditem"]]
12 – dollar an expression involving $, e.g., df$column
13 – funNoArguments a function call with no actual parameters
14 Red funOneArgument a function call with one actual parameter
15 – funTwoArguments a function call with two actual parameters
16 – funThreeArguments a function call with three actual parameters
17 – funFourOrMoreArguments a function call with four or more actual parameters
18 – stopifnot a call to stopifnot()
19 – logicalOperator a logical operator-based expression, e.g., &, | or !
20 Green arithmeticOperator an arithmetic operator-based expression, e.g., +, - or *
21 Blue comparisonOperator a comparison operator-based expression, e.g., ==, <= or <
22 Green return a call to return()
23 Cyan colon a colon operator-based expression, e.g., from:to
24 Dark green symbol a symbol (name)
25 Dark green constant a constant value, e.g., 1, "string" or NA

Table 1: Assumed Program Dependence Graph vertex types for the R language.
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computation of the expression related to u. A spanning subgraph of a PDG that consists solely of the
data dependency edges is called a Data Dependence Subgraph (DDS).

Hence, a PDG of a function F() is a vertex- and edge-labelled directed graph F = (VF, EF, ζF, ξF),
where VF is the set of its vertices, EF ⊆ VF ×VF denotes the set of edges ((v, u) ∈ EF whenever there
is an edge from v to u), ζF : VF → {Entry, Header, . . . , constant} = {0, . . . , 25} gives the type of each
vertex and ξF : EF → {DATA, CONTROL}marks if an edge is a data- or control-dependency one. Note
that each PDG is rooted – there exists one and only one vertex v with indegree 0 and ζF(v) = Entry.

Example code chunks with the corresponding dependence graphs are depicted in Figures 1 and 2.
The meaning of vertex colors is explained in Table 1.

sum <- function(x)
{
s <- 0
m <- 1
for(i in x) {
s <- s + i
m <- m * i

}

if(s < 0) {
s <- -s
print("Negative s")

}
if(m < 0) {
m <- -m
print("Negative m")

}
return(s)

}

Entry

m < 0 

If

m ← -m

print
("Negative m")

s < 0

If

s ← -s
print

("Negative s")

s ← 0

x

m ← 1

return(s)

For

i : x

m ← m*i s ← s+i

Figure 1: An example function and the respective Control Dependence Subgraph.

sum <- function(x)
{

a <- 5
b <- 6
for(i in x)
{
c <- a + b - i

}
}

Entry

b ← 6 xa ← 5 F o r

i  :  x

c ← ab-i

ab ← a+b

Figure 2: An example function and the corresponding Program Dependence Graph; solid and dashed
arrows represent control and data dependency edges, respectively.
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The most basic version of an algorithm to create a PDG based on an abstract syntax tree is
described in (Harrold et al., 1993). Let us note the fact that a CDS is a subgraph of an AST: it provides
the information about certain expressions being nested within other ones, e.g., that some assignment
is part (child) of a loop’s body. Additionally, an AST includes a list of local variables and links them
with expressions that rely on them. This is a crucial piece of information used to generate DDS.

Note that, however, a PDG created for the purpose of code clones detection cannot be treated as a
straightforward extension of a raw AST. The post-processing procedure should be carefully customised
taking into account the design patterns and coding practices of a particular programming language.
Hence, below we describe the most noteworthy program transforms employed in the SimilaR package
so that it is invariant to typical attacks, i.e., transforms changing the way the code is written yet not
affecting its meaning.

Unwinding nested function calls. As mentioned above, in R, as in any functional language, func-
tions play a key role. A code chunk can be thought of as a sequence of expressions, each of which is
composed of function calls. Base or external library functions are used as a program’s building blocks
and often very complex tasks can be written with only few lines of code.

For instance, given a matrix X ∈ Rd×n representing n vectors in Rd and a vector y ∈ Rd,
the closest vector in X to y with respect to the Euclidean metric can be determined by evaluat-
ing X[,which.min(apply((X-y)ˆ2,2,sum))]. This notation is very concise and we can come up with
many equivalent forms of this expression written in a much more loquacious fashion.

Therefore, in SimilaR, hierarchies of nested calls, no matter their depth, are always recursively
unwound by introducing as many auxiliary assignments as necessary. For instance, f(g(x)) is
decomposed as gx <- g(x); f(gx). This guarantees that all their possible variants are represented in
the same way in the PDG.

Forward-pipe operator, %>% Related to the above is the magrittr’s forward-pipe operator, %>%, which
has recently gained much popularity within the R users’ community. Even though the operator is
just a syntactic sugar for forwarding an object into the next function call/expression, at the time
of writing of this manuscript, the package has been used as a direct dependency by over 700 other
CRAN packages. Many consider it very convenient, as it mimics the “left-to-right” approach known
from object-orientated languages like Java, Python or C++. Instead of writing (from the inside and
out) f(g(x),y), with magrittr we can use the syntax x %>% g %>% f(y) (which would normally
be represented as x.g().f(y) in other languages). To assure proper similarity evaluation, SimilaR
unwinds such expressions in the same manner as nested function calls.

Calls within conditions in control-flow expressions. An expression serving as a Boolean condition
in an if or a while construct might be given as a composition of many function calls. The same
might be true for an expression generating the container to iterate over in a for loop. PDG vertices
representing such calls are placed on the same level as their corresponding control-flow expressions so
that they can be unwound just as any other function call.

Canonicalization of conditional statements. The following code chunk:

if (cond) {
return(A)

} else {
return(B)

}

is semantically equivalent to:

if (cond)
return(A)

return(B)

This exploits the fact that the code after the if statement is only executed whenever the logical
condition is false. To avoid generating very different control dependencies, we always unwind the
former to the latter by putting the code-richer branch outside of a conditional statement.
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Tail call to return(). The return value that is generated by evaluating a sequence of expressions
wrapped inside curly braces (the `{`() function) is determined by the value of its last expression. If a
function’s body is comprised of such a code block, the call to return() is optional if it is used in the
last expression. However, many users write it anyway. Therefore, a special vertex of type return()
have been introduced to mark an expression that generates the output of a function.

Map-like functions. Base R supports numerous Map-like operations that are available in many pro-
gramming languages. The aim of the members of the *apply() family (apply(), lapply(), sapply(),
etc.) is to perform a given operation on each element/slice of a given container. These are unwound as
an expression involving a for loop. For instance, a call to ret <-lapply(l,fun,...) can be written as

ret <- list(); for (el in l) ret[[length(ret)+1]] <- fun(el, ...)

Variable duplication. To prevent redundant assignments such as xcopy <-x made just in order to
refer to the original value under a new alias, a hierarchical variable dictionary is kept to generate data
dependency edges properly.

Memoization. In pure functional languages it is assumed that functions have no side effects, i.e., the
same arguments are mapped to the same return value. In R it is of course not always technically true
(e.g., when the pseudo-random number generator is involved), but such an assumption turns out to
be helpful in our context. Therefore, if a function call instance is invoked more than once, its value is
memorised by introducing a new variable.

Dead code. Many plagiarism detection algorithms can be easily misled by adding random code that
does not affect the main computations. In SimilaR, such dead code is identified and removed. This is
done by iteratively deleting all vertices whose outdegree is zero (except those of type return).

To sum up, SimilaR guarantees that the Program Dependence Graph is the same regardless of
the order of independent function calls, unwinding nested function calls, the use of the forward-pipe
operator, etc. Hence, it is invariant to the most typical attacks. Moreover, it has been implemented in
such a way that new kinds of transformations can be easily added in the future, as the R development
practices and common program design patterns evolve.

Comparing Program Dependence Graphs

In our setting, code similarity assessment reduces to a comparison between a pair of Program Depen-
dence Graphs. In this section we are interested in an algorithm µ such that µ(F, G) ∈ [0, 1] represents
a similarity degree between two PDGs F and G. A similarity of 1 denotes that two PDGs are identical,
while 0 means that they are totally different. Alternatively, we might be interested in a non-symmetric
measure µ̃(F, G) ∈ [0, 1] representing the degree to which the source code of F is contained within G.

Ideally, an algorithm to compare two PDGs should enjoy the following properties:

• it should be flexible in the sense that introducing a “small difference” in one of the graphs should
not affect the estimated similarity degree significantly;

• it should be fast to execute so that computing numerous pairwise similarities can be performed
in a reasonable time span.

Due to the latter, we immediately lose our interest in all currently known exact algorithms to
find subgraph isomorphisms or maximum common subgraphs because of their exponential-time
complexity (the problems are NP-hard; see, e.g., Wegener, 2005). To recall, two graphs are isomorphic
whenever there exists a mapping between the two graphs’ vertices preserving the node adjacencies.

In the SimilaR package, we use a modified version (for increased flexibility and better perfor-
mance in the plagiarism detection problem) of an algorithm described in (Shervashidze et al., 2011),
which itself is based on the Weisfeiler–Lehman isomorphism test (Weisfeiler and Lehman, 1968) and
graphs kernels. Note that the base method has been successfully used in many applications, e.g., in
cheminformatics (Mapar, 2018) and programming autonomous robots (Luperto and Amigoni, 2019).

In each of the h iterations of the SimilaR algorithm, we assign new labels to the vertices of a PDG
based on their neighbours’ labels. While in the original algorithm (Shervashidze et al., 2011), two
vertices are considered diverse already when one of their neighbours has been assigned a different
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label, here we might still be assigning the same label if the vertices’ adjacency differs only slightly. Our
approach turns out to be more robust (Bartoszuk, 2018) against minor code changes or some vertices
being missing in the graph.

SimilaR algorithm at a glance. Before we describe every step of the algorithm in detail, let us take a
look at it from a bird’s-eye perspective. If we are to assign each vertex a new label that is uniquely
determined by their current type as well the labels allocated to their neighbours, two identical graphs
will always be coloured the same way, no matter how many times we reiterate the labelling procedure.
In particular, after h iterations, a vertex’s label depends on the types of vertices whose distance from it
is at most h.

We are of course interested in assigning equivalent labels to vertices in graphs that are not
necessarily identical, but still similar to each other. Otherwise, two vertices which have all but one
neighbour in common, would get distinct labels. After h iterations, all the vertices at distance at most
h would all already be assigned different colours. This would negatively affect the overall graph
similarity assessment.

In order to overcome this problem, we introduce the concept of vertex importance, which is based
upon the number of vertices that depend on a given node. Only important enough differences in the
vertex neighbourhoods will be considered as sufficient to trigger a different labelling. Then, after h
iterations, two vectors of label type counts can be compared with each other to arrive at a final graph
similarity degree.

SimilaR algorithm in detail. The following description of the SimilaR algorithm will be illustrated
based on a comparison between two functions, clamp1() (whose PDG from now on we will denote
with F = (VF, EF, ζF, ξF), see Fig. 3) and standardise() (denoted G = (VG, EG, ζG, ξG), see Fig. 4).

v Entry x min(x) max(x) - (1) < If If_part NULL - (2) /

raw δF(v) 7.80 3.04 1.35 1.12 0.93 0.65 0.30 0.20 0.10 0.21 0.10
normalised 0.49 0.19 0.09 0.07 0.06 0.04 0.02 0.01 0.01 0.01 0.01

Table 2: Vertex importance degrees in clamp1() (sum = 15.79, median = 0.04).

v Entry x sd(x) < If If_part NULL mean(x) - /

raw δG(v) 4.33 1.71 0.93 0.65 0.30 0.20 0.10 0.33 0.21 0.1
normalised 0.49 0.19 0.10 0.07 0.03 0.02 0.01 0.04 0.02 0.01

Table 3: Vertex importance degrees in standardise() (sum = 8.86, median = 0.03).

v Entry x min(x) max(x) - (1) < If If_part NULL - (2) /

ζF(v) 0 24 14 14 20 21 4 5 25 20 20

ζ1
F(v) 0 1 2 2 3 4 5 6 7 3 3

ζ2
F(v) 7 1 2 2 8 3 4 5 0 6 6

ζ3
F(v) 8 5 6 6 7 1 2 3 0 4 4

Table 4: clamp1(): Labels assigned to vertices in each iteration.

v Entry x sd(x) < If If_part NULL mean(x) - /

ζG(v) 0 24 14 21 4 5 25 14 20 20

ζ1
G(v) 0 1 2 4 5 6 7 2 3 3

ζ2
G(v) 7 1 9 3 4 5 0 2 6 6

ζ3
G(v) 12 9 10 1 2 3 0 11 4 4

Table 5: standardise(): Labels assigned to vertices in each iteration.
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R> clamp1 <- function(x)
+ {
+ if (max(x)-min(x) < 1e-5)
+ NULL
+ else
+ (x - min(x))/(max(x)-min(x))
+ }

Entry

max(x)

x

min(x)

If

If_part

NULL

- (1)

<
/

- (2)

Figure 3: The clamp1() function with the respective PDG.

R> standardise <- function(x)
+ {
+ if (sd(x) < 1e-5)
+ NULL
+ else
+ (x - mean(x))/sd(x)
+ }

Entry

mean(x)

x

sd(x) If

If_part

NULL

<
/

- 

Figure 4: The standardise() function with the respective PDG.

1. Vertex importance degrees. Firstly, each vertex in F is assigned an importance degree, δF :
VF → R+,

δF(v) = 0.1 + ∑
(v,u)∈EF

(
1 + 0.1IξF((v,u))=DATA

)
δF(u),

where Icond is an indicator function with value 1 if cond is true and 0 otherwise. In other words,
a vertex v with outdegree equal to 0 has importance δ(v) = 0.1. Otherwise, its importance
degree is set to δ(v) = 0.1 plus the sum of importances of its outgoing control-dependent
neighbours plus the sum of importances of its outgoing data-dependent neighbours multiplied
by 1.1.
Note that if F is an acyclic graph, then it has a topological ordering, i.e., an arrangement of the
vertices such that every edge is directed from earlier to later in the sequence. In such a case δF
is well-defined. Otherwise, we shall be computing the importance degrees in the depth-first
manner.
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Next, the importance degrees are normalised, δF(v) 7→ δF(v)/ ∑u∈VF
δF(u). Tables 2 and 3 give

the importance degrees of the vertices in the two graphs studied.

2. Vertex labels. Recall from the previous section that each vertex v ∈ VF, u ∈ VG has been
assigned a label, ζF(v), ζG(u) ∈ {0, . . . , 25}, based on the type of operation it represents (see
Tables 4 and 5).
In the i-th (out of h in total, here we fix h = 3; see Bartoszuk, 2018 for discussion) iteration of the
SimilaR algorithm, we assign new labels ζ i

F, ζ i
G according to the labels previously considered.

(a) Iteration i = 1. In the first iteration, the initial labels, ζF, ζG, are simply remapped to
consecutive integers. This yields ζ1

F and ζ1
G as given in Tables 4 and 5.

(b) Iterations i = 2 and i = 3. In subsequent iterations, we seek groups of similar vertices
so as to assign them the same label. Two vertices v, u ∈ VF ∪ VG are considered similar
(with no loss in generality, we are assuming v ∈ VF and u ∈ VG below), whenever they
have been assigned the same label in the previous iteration and have outgoing neighbours
with the same labels. However, for greater flexibility, we allow for the neighbourhoods to
differ slightly – unmatched neighbours of lesser importance degrees will not be considered
significant. Formally, v ∈ VF and u ∈ VG are similar, whenever ζ i−1

F (v) = ζ i−1
G (u) and:

∑
(v,w)∈EF ,ζ i−1

F (w) 6∈C(v,u)

δF(w) ≤ min{MF, MG},

where C(v, u) = {ζ i−1
F (w) : (v, w) ∈ EF} ∩ {ζ i−1

G (w) : (u, w) ∈ EG} denotes the multiset
of common neighbours’ vertex labels and MF and MG denote the medians of importance
degrees of vertices in F and G, respectively.
The above similarity relation in obviously reflexive and symmetric. When we compute its
transitive closure, we get an equivalence relation whose equivalence classes determine
sets of vertices that shall obtain identical labels.

For instance, let i = 2 and v be the Entry vertex in F and u be the Entry vertex in u. We
have ζ1

F(v) = ζ1
G(u) = 0. Outgoing neighbours of v have types: 1 (x), 3 (- (2)), 3 (/), 2

(min(x)), 2 (max(x)), 4 (<), 3 (- (1)) and 5 (If ). Neighbours of u are labelled as 1 (x), 3 (-), 2
(mean(x)), 3 (/), 2 (sd(x)), 4 (<), 5 (If ). Hence, v has one unmatched neighbour of type 3
(here: an arithmetic operation). However, as there are 3 such neighbours of v (importances:
0.01, 0.01, 0.06) and 2 of u (importances: 0.01, 0.02), we need a rule for determining the
left-out importance degree. Here, for greater algorithm’s flexibility, we always assume that
the unmatched importances are considered in an increasing order. Therefore, we get that
0.01 ≤ min{MF, MG} = min{0.04, 0.03} = 0.03 and thus v and u are considered similar.
As another example, let i = 3 and v be the x vertex in F and u be the x vertex in G. We
have ζ2

F(v) = ζ2
G(u) = 1. Their neighbours are: - (2) (importance=0.01; type=6), min(x)

(importance=0.09; type=2), max(x) (importance=0.07; type=2) and - (importance=0.02;
type=6), mean(x) (importance=0.04; type=2), sd(x) (importance=0.10; type=9). The sum of
the importance degrees of the unmatched neighbours is now equal to 0.07 + 0.10 > 0.03,
hence, u and v are not considered similar. They are also not in the transitive closure with
respect to the other similarities. Therefore, they will be assigned different labels.

3. Partial similarity degrees. Let m be the maximal integer label assigned above and Li
F =

(Li
F,1, . . . , Li

F,m) be a vector of label counts, where Li
F,j = |{v ∈ VF : ζ i

F(v) = j}|, see Table 6. We

define Li
G in much the same way, see Table 7. We introduce the following “partial” similarity

measures of the label sequences – the symmetric:

µ(Li
F, Li

G) = 1−
∑m

k=1 |Li
F,k − Li

G,k|
∑m

k=1 Li
F,k + ∑m

k=1 Li
G,k

and its nonsymmetric version:

µ̃(Li
F, Li

G) =
∑m

k=1 min(Li
F,k, Li

G,k)

∑m
k=1 Li

F,k
.

The partial similarities for i = 1, 2, 3 are given in Table 8.

4. Final similarity degrees. The overall similarity degree is defined as the arithmetic mean of the
h = 3 partial similarities (reported in Table 8):

µ(F, G) =
1
h

h

∑
i=1

µ(Li
F, Li

G) =
0.95 + 0.86 + 0.57

3
= 0.79, (1)
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j 0 1 2 3 4 5 6 7 8 9 10 11 12

L1
F,j 1 1 2 3 1 1 1 1 0 0 0 0 0

L2
F,j 1 1 2 1 1 1 2 1 1 0 0 0 0

L3
F,j 1 1 1 1 2 1 2 1 1 0 0 0 0

Table 6: clamp1(): Label counts in each iteration.

j 0 1 2 3 4 5 6 7 8 9 10 11 12

L1
G,j 1 1 2 2 1 1 1 1 0 0 0 0 0

L2
G,j 1 1 1 1 1 1 2 1 0 1 0 0 0

L3
G,j 1 1 1 1 2 0 0 0 0 1 1 1 1

Table 7: standardise(): Label counts in each iteration.

i µ(Li
F, Li

G) µ̃(Li
F, Li

G) µ̃(Li
G, Li

F)

1 0.95 0.91 1.00
2 0.86 0.82 0.90
3 0.57 0.55 0.60

Final 0.79 0.76 0.83

Table 8: Similarity measures in each iteration.

We obtain its nonsymmetric versions in the same way:

µ̃(F, G) =
1
h

h

∑
i=1

µ̃(Li
F, Li

G) =
0.91 + 0.82 + 0.55

3
= 0.76,

µ̃(G, F) =
1
h

h

∑
i=1

µ̃(Li
G, Li

F) =
1.00 + 0.90 + 0.60

3
= 0.83.

(2)

Having discussed the algorithms behind the SimilaR package, let us proceed with the description
of its user interface.

Illustrative examples

The SimilaR package can be downloaded from CRAN and installed on the local system via a call to:

R> install.packages("SimilaR")

Here we are working with version 1.0.8 of the package.

Once the package is loaded and its namespace is attached by calling:

R> library("SimilaR")

two functions are made available to a user. SimilaR_fromTwoFunctions() is responsible for assessing
the similarity between a pair of function objects (R is a functional language, hence assuming that
functions constitute basic units of code seem natural). Moreover, SimilaR_fromDirectory(), which
we shall use in the next section, is a conveniently vectorised version of the former, performing the
comparison of all the scripts in a given directory.

Let us evaluate the similarity between the F = clamp1() and G = standardise() functions
defined above:

R> SimilaR_fromTwoFunctions(clamp1, standardise) # aggregation="sym"

name1 name2 SimilaR decision
1 clamp1 standardise 0.7954545 1
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Here, SimilaR denotes the (symmetric) measure µ(F, G) ∈ [0, 1] as given by Eq. (1). decision uses
a built-in classifier model to assess whether such a similarity degree is considered significant (1) or not
(0).

To obtain the non-symmetric measures, µ̃(F, G) and µ̃(G, F) (see Eq. (2)), we pass aggregati-
on="both" as an argument:

R> SimilaR_fromTwoFunctions(clamp1, standardise, aggregation="both")

name1 name2 SimilaR12 SimilaR21 decision
1 clamp1 standardise 0.7575758 0.8333333 1

Example: clamp2(). Let us recall the source code of the clamp1() function:

R> clamp1

function(x)
{
if (max(x)-min(x) < 1e-5)
NULL

else
(x - min(x))/(max(x)-min(x))

}

By applying numerous transformations described above, we may arrive at its following version:

R> library("magrittr")
R> clamp2 <- function(y)
+ {
+ longName <- y # variable duplication
+ longName2 <- min
+ z <- { sum(longName**2) } # dead code
+ min_y <- longName %>% longName2 # forward-pipe
+ max_y <- y %>% max
+ max_y_min_y <- max_y-min_y # memoization
+ if(!(max_y_min_y >= 1e-5)) # canonicalization of the if statement
+ {
+ return(NULL)
+ }
+ ((y - min_y)/max_y_min_y) # tail call to return removed
+ }

SimilaR correctly identifies the two functions as equivalent:

R> SimilaR_fromTwoFunctions(clamp1, clamp2, aggregation="both")

name1 name2 SimilaR12 SimilaR21 decision
1 clamp1 clamp2 1 1 1

Example: A vectorised version of clamp1(). Let us now consider two different vectorised versions
of the clamp1() function for list-type inputs. The first one is based on a call to lapply(), which takes
care of applying a given anonymous function on each list member:

R> clamp1_vectorised1 <- function(x) {
+ x %>% lapply(function(y) {
+ if (max(y)-min(y) < 1e-5) {
+ {{{{NULL}}}}
+ } else {
+ {{{{(y - min(y))/(max(y)-min(y))}}}}
+ }
+ })
+ }

The second function unwinds the Map-like construct, adding a for-loop instead. It also relies on
some domain knowledge, namely, that a new list is pre-allocated with NULLs.
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R> clamp1_vectorised2 <- function(x) {
+ n <- length(x)
+ res <- vector("list", n) # NULLs
+ for (i in 1:n) { # assumed n>0
+ m <- min(x[[i]])
+ mm <- max(x[[i]])-m
+ if (mm >= 1e-5)
+ res[[i]] <- (x[[i]] - m)/mm
+ }
+ return(res)
+ }

Note that the function only works for non-empty input lists.

The pairwise comparison yields:

R> SimilaR_fromTwoFunctions(clamp1_vectorised1, clamp1_vectorised2,
+ aggregation="both")

name1 name2 SimilaR12 SimilaR21 decision
1 clamp1_vectorised1 clamp1_vectorised2 0.7833333 0.9215686 1

Which indicates a significant degree of similarity, which is indeed the case.

A case study

In the previous section we illustrated that SimilaR is easily able to identify the code chunks that can be
transformed onto each other. Now we shall demonstrate its usefulness in a real-world scenario: let us
compare the code-base of two R packages: nortest (Gross and Ligges, 2015) and DescTools (Signorell
et al., 2020). The former implements five significance tests for normality, while the latter advertises
itself as

A collection of miscellaneous basic statistic functions and convenience wrappers for efficiently
describing data. [. . . ] Many of the included functions can be found scattered in other packages
and other sources written partly by Titans of R. The reason for collecting them here, was primarily
to have them consolidated in ONE instead of dozens of packages (which themselves might depend
on other packages which are not needed at all), and to provide a common and consistent interface
as far as function and arguments naming, NA handling, recycling rules, etc. are concerned. [. . . ]
(DescTools package DESCRIPTION; Signorell et al., 2020)

1. Set-up. First we attach the required packages and set up the directory where we shall store the
data that we are going to feed the algorithm with at a later stage.

R> library("SimilaR")
R> dir_output <- tempfile("dir")
R> dir.create(dir_output)

2. Generate code-base. SimilaR does not offer direct support for comparing two R packages.
Therefore, below we export each package’s code-base to a single source file, getting rid of non-function
objects:

R> for (pkg in c("DescTools", "nortest"))
+ {
+ library(pkg, character.only=TRUE) # attach the package
+ env <- as.environment(paste0("package:", pkg)) # package's environment
+ fun_names <- ls(envir=env) # list of all exported objects
+ file_text <- character(0) # the to-be code-base (1 function == 1 string)
+ for (fun in fun_names)
+ {
+ f <- get(fun, env) # get function object
+ if (!is.function(f)) next
+
+ f_char <- paste0(deparse(f), collapse="\n") # extract source code
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+ file_text[length(file_text)+1] <- sprintf("`%s`<-%s", fun, f_char)
+ }
+ file_name <- file.path(dir_output, paste0(pkg, ".R"))
+ writeLines(file_text, file_name) # write source file
+ cat(sprintf("%s: %d functions processed.\n", pkg, length(file_text)))
+ }

DescTools: 549 functions processed.
nortest: 5 functions processed.

Here the list of the objects exported by both packages is determined by querying their corre-
sponding package:DescTools and package:nortest environments. Moreover, a call to deparse() on
a function object gives a plain-text representation of its source code.

3. Run the algorithm. Now we ask the algorithm to fetch the two source files in the output directory
and execute all the pairwise comparisons between the functions defined therein.

R> time0 <- Sys.time()
R> results <- SimilaR_fromDirectory(dir_output,
+ fileTypes="file", aggregation="both")
R> print(Sys.time()-time0)

Time difference of 15.41459 secs

The above gives the time to execute all the 2745 pairwise comparisons on an Intel Core i7 laptop
with 16GB RAM, running the GNU/Linux 4.19.30-041930-generic SMP x86_64 kernel.

4. Report results. Let us inspect the top 10 results returned by the algorithm (in terms of overall
similarity).

R> print(head(results, 10))

For greater readability, the results are reported in Table 9.

Name1 (DescTools) Name2 (nortest) SimilaR12 SimilaR21 Decision

CramerVonMisesTest() cvm.test() 1.0000000 1.0000000 1
LillieTest() lillie.test() 1.0000000 1.0000000 1
PearsonTest() pearson.test() 1.0000000 1.0000000 1
ShapiroFranciaTest() sf.test() 1.0000000 1.0000000 1
CramerVonMisesTest() ad.test() 0.9451477 0.9105691 1

CramerVonMisesTest() lillie.test() 0.7299578 0.5339506 0
LillieTest() cvm.test() 0.5339506 0.7299578 0
LillieTest() ad.test() 0.5339506 0.7032520 0
Eps() sf.test() 0.5333333 0.6315789 0
ShapiroFranciaTest() ad.test() 0.7719298 0.3577236 0

Table 9: Similarity report (the top 10 results) for the comparison between the code-base of the
DescTools and nortest packages.

Discussion. We observe that 5 function pairs were marked as similar (Decision = 1). The top 4
results accurately indicate the corresponding normality tests from the two packages – their sources are
identical.

However, the 5th result is a false positive: CramerVonMisesTest() is reported as similar to ad.test(),
which implements the Anderson–Darling normality test. Let us “visually” compare their sources:

CramerVonMisesTest <- function(x) {
DNAME <- deparse(substitute(x))
x <- sort(x[complete.cases(x)])
n <- length(x)
if (n < 8)
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stop("sample size must be greater than 7")
p <- pnorm((x - mean(x))/sd(x))
W~<- (1/(12 * n) + sum((p - (2 * seq(1:n) - 1)/(2 * n))^2))
WW <- (1 + 0.5/n) * W
if (WW < 0.0275) {

pval <- 1 - exp(-13.953 + 775.5 * WW - 12542.61 * WW^2)
}
else if (WW < 0.051) {

pval <- 1 - exp(-5.903 + 179.546 * WW - 1515.29 * WW^2)
}
else if (WW < 0.092) {

pval <- exp(0.886 - 31.62 * WW + 10.897 * WW^2)
}
else if (WW < 1.1) {

pval <- exp(1.111 - 34.242 * WW + 12.832 * WW^2)
}
else {

warning("p-value is smaller than 7.37e-10,
cannot be computed more accurately")

pval <- 7.37e-10
}
RVAL <- list(statistic = c(W = W), p.value = pval,

method = "Cramer-von Mises normality test",
data.name = DNAME)

class(RVAL) <- "htest"
return(RVAL)

}

ad.test <- function(x) {
DNAME <- deparse(substitute(x))
x <- sort(x[complete.cases(x)])
n <- length(x)
if (n < 8)

stop("sample size must be greater than 7")
logp1 <- pnorm((x - mean(x))/sd(x), log.p = TRUE)
logp2 <- pnorm(-(x - mean(x))/sd(x), log.p = TRUE)
h <- (2 * seq(1:n) - 1) * (logp1 + rev(logp2))
A~<- -n - mean(h)
AA <- (1 + 0.75/n + 2.25/n^2) * A
if (AA < 0.2) {

pval <- 1 - exp(-13.436 + 101.14 * AA - 223.73 * AA^2)
}
else if (AA < 0.34) {

pval <- 1 - exp(-8.318 + 42.796 * AA - 59.938 * AA^2)
}
else if (AA < 0.6) {

pval <- exp(0.9177 - 4.279 * AA - 1.38 * AA^2)
}
else if (AA < 10) {

pval <- exp(1.2937 - 5.709 * AA + 0.0186 * AA^2)
}
else pval <- 3.7e-24
RVAL <- list(statistic = c(A = A), p.value = pval,

method = "Anderson-Darling normality test",
data.name = DNAME)

class(RVAL) <- "htest"
return(RVAL)

}

Basically, the main difference between the two functions is in the numeric constants used, which
we know is a kind of detail purposefully ignored by SimilaR. Indeed, knowing that the Anderson–
Darling test is a generalisation of the Cramér–von Mises test (both of them are based on the L2-distance
between the empirical and true cumulative distribution function, the former is a weighted version of
the latter), makes the reported decision concerning the similarity judgement quite justified.

Interestingly, DescTools does provide the AndersonDarlingTest function, but this is a version of
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the goodness-of-fit measure to test against any probability distribution provided. In other words, a
c.d.f. of a normal distribution is not hard-coded in its source, and thus is significantly different from
the code of ad.test().

It is also worth noting that there are no false positives in terms of statistical tool types – all the
functions deal with some form of goodness-of-fit testing and we recall that DescTools defines ca. 550
functions in total.

Discussion

We have introduced an algorithm to quantify the similarity between a pair of R source code chunks.
The method is based on carefully prepared Program Dependence Graphs, which assure that semantically
equivalent code pieces are represented in the same manner even if they are written in much different
ways. This makes the algorithm robust with respect to the most typical attacks. In a few illustrative
examples, we have demonstrated typical code alterations that the algorithm is invariant to, for instance,
aliasing of variables, changing the order of independent code lines, unwinding nested function calls,
etc.

In the presented case study we have analysed the similarities between the DescTools and nortest
packages. Recall that most of the cloned function pairs are correctly identified, proving the practical use-
fulness of the SimilaR package. The reported above-threshold similarity between CramerVonMisesTest()
and ad.test() is – strictly speaking – a false positive, nevertheless our tool correctly indicates that
the two functions have been implemented in much the same way. This might serve as a hint to
package developers that the two tests could be refactored so as to rely on a single internal function –
de-duplication is among the most popular ways to increase the broadly conceived quality of software
code.

On the other hand, the algorithm failed to match the very much-different (implementation-
wise) AndersonDarlingTest() (generic distribution) with its specific version of ad.test() (normal
distribution family). However, comparisons of such a kind, in order to be successful, would perhaps
require the use of an extensive knowledge-base and are of course beyond the scope of our tool.

Finally, let us note that due to the use of a new polynomial-time algorithm, assessing the similarity
of two Program Dependence Graphs is relatively fast. This makes SimilaR appropriate for mining
software repositories even of quite considerable sizes. However, some pre-filtering of function pairs
(e.g., based on cluster analysis) to avoid performing all the pairwise comparisons would make the
system even more efficient and scalable.

Future versions of the SimilaR package will be equipped with standalone routines aiming at
improving the quality and efficiency of R code, such as detecting dead or repeated code, measuring
cyclomatic complexity, checking if the program is well structured, etc.
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