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NlinTS: An R Package For Causality
Detection in Time Series
by Youssef Hmamouche

Abstract The causality is an important concept that is widely studied in the literature, and has several
applications, especially when modelling dependencies within complex data, such as multivariate
time series. In this article, we present a theoretical description of methods from the NlinTS package,
and we focus on causality measures. The package contains the classical Granger causality test. To
handle non-linear time series, we propose an extension of this test using an artificial neural network.
The package includes an implementation of the Transfer entropy, which is also considered as a non-
linear causality measure based on information theory. For discrete variables, we use the classical
Shannon Transfer entropy, while for continuous variables, we adopt the k-nearest neighbors approach
to estimate it.

Introduction

The study of dependencies between variables is an important step in the analysis of multi-variate time
series. Not surprisingly, it can be exploited in causal discovery for financial and neuroscience datasets,
in feature selection to determine the most important variables as inputs of prediction models, etc.
Standard measures like correlation and mutual information are very used for analyzing relationships
between time series. Because these measures are symmetrical, they do not provide enough information
concerning the transfer of information over time from one variable to another one. Therefore, in cases
where we are interested in approximating non-symmetrical dependencies between variables, causality
is more adequate than correlation measures.

In the literature, two main causality measures have been well investigated in the field of time series
analysis; the Granger causality test (Granger, 1980), and the Transfer entropy (Schreiber, 2000). The
Granger causality is based on the principle that a variable causes another variable if it contains useful
information in terms of prediction. Consequently, it is mainly linked to the idea of using of a prediction
model to test the causality. The Transfer entropy in the other hand is based on information theory and
has gained an increasing attention during recent years. It measures the flow of information between
variables using the conditional Shannon entropy. Although these two measures seem radically
different, an interesting finding has been presented in Barnett et al. (2009) showing that they are
equivalent for variables that follow a normal distribution. In addition, Transfer entropy is considered
as a non-linear alternative for the Granger causality, since it does not model the relationships between
variables using a statistical model, instead, it is based on information theory.

This article covers a theoretical description of methods implemented in the NlinTS package
(Hmamouche, 2020). Particularly, we focus on methods and models that are related to causality
measures. This package includes the Granger causality test. To deal with non-linear dependencies
between time series, we propose an non-linear extension of the Granger causality test using feed-
forward neural networks. The package includes also an implementation of Transfer entropy. Two
versions are provided, one for discrete variables, and the second is an estimate for continuous variables
based on the k-nearest neighbors approach (Kraskov et al., 2004). Therefore, We detail the Granger
causality test, the proposed non-linear Granger causality test, the VARNN (Vector Auto-Regressive
Neural Network) model, since it is used in the later. Then, we represent the Transfer entropy, including
the original formulation and the continuous estimation, starting by the estimate of the entropy and the
mutual information, because they will be useful to understand the Transfer entropy estimator.

It is worth to mention that there are several R packages that contain an implementation of the
Granger causality test, such as vars (Pfaff, 2008), lmtest (Zeileis and Hothorn, 2002). However, for
Transfer entropy, especially for the continuous estimation, we found only the RTransferEntropy
package (Simon et al., 2019). The approach used for estimating the Transfer entropy for continu-
ous variables is based on discretization methods, by transforming continuous variables to discrete,
then, applying Shannon Transfert entropy. In this paper, our approach is based on the same princi-
ple proposed in Kraskov et al. (2004) to estimate the mutual information, which inherits from the
Kozachenko-Leonenko estimator of the Shannon entropy.

The organization of the paper is as follows, the two first sections are for the theoretical formulation
of the causality tests and the Transfer entropy measures. The third section provides R code examples
of the presented measures, illustrating the usage of the implemented methods. Finally, the last section
summarizes this paper.
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The Granger causality test

The Granger causality test (Granger, 1980) is the classical method to test the causality between time
series. To test if a variable X causes another variable Y, the principle of this test is to predict Y using
its own history, and to predict it using it history plus the history of the variable X, and finally to
evaluate the difference between these two situations to see if the added variable has some effect on the
predictions of the target variable.

Formally, two VAR (p) (Vector Auto-Regressive) models are considered. The first one uses the
precedent values of Y, and the second uses both passed values of X and Y in order to predict Y:

Model1 Yt = α0 +
p

∑
i=1

αiYt−i + Ut, (1)

Model2 Yt = α0 +
p

∑
i=1

αiYt−i +
p

∑
i=1

βiXt−i + Ut, (2)

where p is the lag parameter, [α0, . . . , αp] and [β0, . . . , βp] are the parameters of the models, and U is a
white noise error term.

To quantify the causality, we have to evaluate the variances of the errors of Model1 and Model2. In
this case, the Granger causality index (GCI) can be used, and it is expressed as follows:

GCI = log

(
σ2

1
σ2

2

)
, (3)

where σ2
1 and σ2

2 are the variances of the errors of Model1 and Model2 resp. In order to evaluate
the statistical significance of the difference between these variances, the Fisher test can be used, where
the statistic is as follows:

F =
(RSS1 − RSS2) /p
RSS2/ (n− 2p− 1)

.

RSS1 and RSS2 are the residual sum of squares related to Model1 and Model2 resp., and n is the size of
the lagged variables. Two hypotheses have to be considered:

• H0: ∀i ∈ {1, . . . , p}, βi = 0,

• H1: ∃i ∈ {1, . . . , p}, βi 6= 0.

H0 is the hypothesis that X does not cause Y. Under H0, F follows the Fisher distribution with
(p, n− 2p− 1) as degrees of freedom.

A non-linear Granger causality test

Using artificial neural networks (ANNs) may be very important when computing causalities, especially
for time series that change non-linearly over time. We take advantage from the characteristics of
ANNs and propose an implementation of an extended version of the Granger causality test using the
VARNN model. Before describing the proposed causality test, let us first present briefly the VARNN
model which is also available in the package as a prediction model.

The VARNN model: Consider a training dataset that consists of a multivariate time series containing
one target variable Y, and k predictor variables {Y1, . . . , Yk}. The VARNN (p) model is a multi-layer
perceptron neural network model that takes into account the p previous values of the predictor
variables and the target variable (Y) in order the predict future values of Y. We made this choice to
allow for the possibility of predicting each target variable with a specific set of predictors, since target
variables do not necessarily have the same predictors. First, the model reorganizes the data in a form
of a supervised learning form with respect to the lag parameter. The optimization algorithm used to
update the weights of the network is based on the Stochastic Gradient Descent (SGD) algorithm. The
Adam algorithm can also be used to update the learning rate while using SGD (Kingma and Ba, 2015).
The global function of the VARNN (p) can be written as follows:

Yt = Ψnn

(
Yt−1, . . . , Yt−p, . . . , Yk(t−1), . . . , Yk(t−p)

)
+ Ut, (4)

where Ψnn is the network function, and Ut represents the error terms.
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Figure 1: Illustration of the ANN model for the Granger causality test.

A causality test using the VARNN model: Consider two variables X and Y. Similarly to the Granger
causality, to test the causality from X to Y, two prediction models are considered, the first takes into
account the passed values of the target time series, and the second takes the passed values of the target
and the predictor time series,

Model1 : Yt = Ψ1nn
(
Yt−1, . . . , Yt−p

)
+ Ut, (5)

Model2 : Yt = Ψ2nn
(
Yt−1, . . . , Yt−p, Xt−1, . . . , Xt−p

)
+ Ut, (6)

where Ψ1nn and Ψ2nn are the network functions of Model1 and Model2 resp., using the VARNN
model. Then, we evaluate the difference between these two models by comparing the residual sum
of squares of their errors, and the evaluation is carried out using the Fisher test to examine the null
hypothesis (the hypothesis that X does not cause Y). Figure 1 shows an illustration of the used
structure of the causality model.

The difference compared to the classical test, is that instead of using 2 VAR models (univariate and
bivariate), two VARNN models are used. Therefore, we have to change the statistic of the Fisher test
because there are more parameters in the VARNN models than in the VAR model. In this case, the
statistic of test is as follows:

F =
(RSS1 − RSS2) / (d2 − d1)

RSS2/ (n− d2)
,

where d1 and d2 are the number of parameters of the univariate and the bivariate model resp. They
depend on the chosen structure (number of layers and of neurons).

Let us emphasize an important point about this causality. It is evident that computing causalities
using ANNs may has the classical drawback of increasing the computational time. This is not exactly
precise in some cases, because suppose that we have a large number of time series and we have to
compute causalities between all variables. Also, suppose that relationships between variables change
over time. Therefore, this implies that we need to recalculate the causalities periodically or after each
change. In addition, the basic formulations of the classical causality measures (Granger causality test
and Transfer entropy) are not adaptive, which means they do not make it possible to update the new
values by using the old ones. In the other hand, with ANNs, the first computation of causalities may
be slow compared to the Granger test or the Entropy Transfer, but if we have new observations in the
time series, the model adapts more quickly thanks to the learning properties of ANNs.

Transfer entropy

Transfer entropy (Schreiber, 2000) between two time series X and Y, measures the information flow
from X to Y. It was developed to overcome the main drawback of mutual information, which provides
the common information between two variables (symmetric measure), but does not consider the
transfer of information from one variable to the other. To avoid this problem, time delay parameters
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are included in the equation of the mutual information to specify the direction of information:

TX→Y = ∑
Yt ,Y

q
t ,Xp

t

P
(

Yt, Yq
t , Xp

t

)
log

P
(

Yt | Y
q
t , Xp

t

)
P
(

Yt | Y
q
t

)


= I
(

Yt; Xp
t |Y

q
t

)
,

where Zl
t = (Zt−1, . . . , Zt−l) for Z = X, Y, p, q are the time delay parameters for X and Y resp.,

P represents the probability, and I represents the mutual information symbol. The transfer entropy
can also be seen as the difference between two conditional entropies, where in the first one, only past
values of Y are used, and in the second, both X and Y are considered:

TEX→Y = H
(
Yt|
(
Yt−1, . . . , Yt−q

))
− H

(
Yt|
(
Yt−1, . . . , Yt−q

)
, (Xt−1, . . . , Xt−p

)
),

where H represents the conditional entropy. Note that this expression resembles, in some sense,
the principle of the Granger causality test which compares two prediction models.

A continuous estimation of Shannon Transfer entropy

In this section, we describe the estimation of Transfer entropy based on the k-nearest neighbors. First,
we show the entropy estimator represented in Kraskov et al. (2004). Then, we show the mutual
information estimator that is based on an extended formulation based on the same principal. Then,
we use this approach to estimate the Transfer entropy.

Entropy estimation The basic approach for estimating the entropy of continuous variables is based
on binning the data, in order to get back to the classical definition of Shannon entropy. However, more
efficient approaches are proposed by estimating directly the continuous entropy:

H (X) = −
∫

p (x) log (x) dx,

where p represents the density function of X. One estimation of the continuous entropy of a
random variable X with n realizations is the expected value of log (p (X)):

Ĥ (X) = − 1
n

n

∑
1

ˆlog (p (xi))

The main point of the Kozachenko-Leonenko estimator to approximate log (p (xi)) by considering
p (xi) constant in the sphere centered at xi, with radius the distance from xi to the k-nearest neighbors
of each point. We do not show the details of the mathematical proof, but just the obtained formula:

Ĥ (X) = Γ (n)− Γ (k) + log (c) +
m
n

n

∑
i=1

di, (7)

where Γ is the gamma function, m is the dimension of X, i.e, the number of variables, di is twice the
distance from xi to its kth neighbor, and c is the volume of the unit ball of dimension m. To compute
the distances between two points xi and xj, we use the max norm, |xi − xj|, therefore, c = 1, and
log (c) = 0. In the rest of the equations, for simplicity, we neglect this term.

Mutual Information estimation The mutual information between two variables X and Y having n
observations can be expressed as follows:

I (X; Y) = H (X) + H (Y)− H (X, Y) . (8)

It is possible to adopt the Kozachenko-Leonenko approach to estimate the mutual information. In
this case, we need to estimate the individual entropy of each variable and the joint entropy. For the
joint entropy, it can be computed using the same way by considering the joint space spanned by X
and Y. Let zi = (xi, yi) for i ∈ [1, n], and di be the distance for zi to its kth neighbor. The estimate of the
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joint entropy can be expressed as follows:

Ĥ (X, Y) = Γ (n)− Γ (k) +
mx + my

n

n

∑
i=1

di, (9)

where mx and my are the dimensions of X and Y.

In Kraskov et al. (2004), two new methods have been proposed to improve the Kozachenko-
Leonenko estimator for mutual information. The first method is based on the idea that when estimating
H (X) and H (Y), we do not have to use the same k as used in the joint entropy, but instead, it is more
precise to use the number of neighbors of each variable separately. Thus, the estimate of the individual
entropy, of X for example, is the following:

Ĥ (X) = Γ (n)− 1
n

n

∑
i=1

Γ (nx (i) + 1) +
m
n

n

∑
i=1

di, (10)

where nx (i) is the number of points where the distance from Xi is strictly less than di/2. As for Y,
Ĥ (Y) is computed with the same way. Finally, based on Equations 8, 9 and 10, the mutual information
estimator is as follows:

Î (X; Y) = Γ (k) + Γ (n)− 1
n

n

∑
i=1

(
Γ (nx (i) + 1) + Γ

(
ny (i) + 1

))
(11)

Following the same method and generalizing the previous formulation to l variables{X1, . . . , Xl},
the multivariate mutual information estimator is as follows:

Î (X1, . . . , Xl) = Γ (k) + (l − 1) Γ (n)− 1
n

n

∑
i=1

(Γ (n1 (i) + 1) + · · ·+ Γ (nl (i) + 1)), (12)

where nj (i), for (j, i) ∈ [1, l]× [1, n], is the number of points where the distance from the point Xji
is strictly less than di/2.

The motivation behind the second estimator of mutual information presented in Kraskov et al.
(2004) is that the Kozachenko-Leonenko estimation of the joint entropy (H (X, Y) in the bi-variate
case) may be more precise than the first estimator if we consider that the density is constant in hyper-
rectangles instead of hyper-cubes. Based on this remark, the second estimate of the mutual information
of l variables {X1, . . . , Xl}, with n observations, can be expressed as follows:

Î (X1, . . . , Xl) = Γ (k) +
l − 1

k
+ (l − 1) Γ (n)− 1

n

n

∑
i=1

(Γ (n1 (i) + · · ·+ Γ (nl(i))) , (13)

where nj (i), for (j, i) ∈ [1, l]× [1, n], is the number of points where the distance from the Xji is less
(not strictly) than dji/2, and dji is the distance from Xji to its kth neighbor.

Transfert entropy estimation Let us use the first strategy used by Kraskov for mutual information
estimation to estimate the Transfer entropy. Let X and Y be two time series. The goal is to estimate the
Transfer entropy from X to Y, with time delay parameters p and q resp.

T̂EX→Y = Ĥ
(
Yt|Yt−1, . . . , Yt−q

)
− Ĥ

(
Yt|
(
Yt−1, . . . , Yt−p

)
,
(
Xt−1, . . . , Xt−p

))
. (14)

Consider the following notations :

• Ym
t = {Yt−1, . . . , Yt−q}

• Xm
t = {Xt−1, . . . , Xt−p}

• Y f
t = {Yt, Ym

t }

• X f
t = {Xt, Xm

t }
• Zm

t = {Ym
t , Xm

t }

• Z f
t = {Y f

t , Ym
t , Xm

t }
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We can rewrite then Equation 14 as follows:

T̂EX→Y = Ĥ
(
Yt, Yp

)
− Ĥ

(
Yt|Xp, Yp

)
, (15)

= Ĥ
(
Yt, Yp

)
− Ĥ

(
Yp
)
− Ĥ

(
Yt, Xp, Yp

)
+ Ĥ

(
Xp, Yp

)
= Ĥ

(
Y f

t

)
− Ĥ (Ym

t )− Ĥ
(

Z f
t

)
+ Ĥ (Zm

t ) .

The maximum joint space is defined by Z f
t = {Yt, Ym

t , Xm
t }. Consider that Z f

t contains n obser-
vations. The first step is to computes the distances di, i.e., the distance from the point zi to its kth

neighbor, for i ∈ [1, n]. In the same way as estimating mutual information, we compute the maximal

joint entropy Ĥ
(

Z f
t

)
using the Kozachenko-Leonenko estimator, and the other terms by projecting

the number of neighbors in each marginal space using the Kraskov approach:

Ĥ
(

Z f
t

)
= −Γ (k) + Γ (n) +

p + q + 1
n

n

∑
i=1

di,

Ĥ
(

Y f
t

)
= − 1

n

n

∑
i=1

Γ
(

ny f (i) + 1
)
+ Γ (n) +

p + 1
n

n

∑
i=1

di,

Ĥ (Ym
t ) = − 1

n

n

∑
i=1

Γ
(
nym (i) + 1

)
+ Γ (n) +

p
n

n

∑
i=1

di,

Ĥ (Zm
t ) = − 1

n

n

∑
i=1

Γ (nzm (i) + 1) + Γ (n) +
p + q

n

n

∑
i=1

di,

where ny f (i), nym (i) and nzm (i) are the numbers of points where the distance from the point Y f
i ,

Ym
i , and Zm

i resp., is strictly less than di/2, for i ∈ [1, n]. By replacing each oh these terms in Equation
15, we obtain:

T̂EX→Y = Γ (k)− Γ (n)− (p + 1)− p− (p + q + 1) + (p + q)
n

n

∑
i=1

di (16)

+
1
n

n

∑
i=1

(
−Γ
(

ny f (i) + 1
)
+ Γ

(
nym (i) + 1

)
− Γ (nzm (i) + 1)

)
,

By simplifying this expression, the Transfer entropy estimator can be expressed as follows:

T̂EX→Y = Γ (k)− Γ (n) +
1
n

n

∑
i=1

(
Γ
(
nym (i) + 1

)
− Γ

(
ny f (i) + 1

)
− Γ (nzm (i) + 1)

)
. (17)

And this is the classical Transfer entropy estimator investigated and discussed in Vicente et al.
(2011); Lizier (2014); Zhu et al. (2015).

Normalizing the Transfer entropy

The values obtained by the Transfer entropy (TE) are not normalized, and practically, it is hard to
quantify the causality in this case. Normalizing the values of TE between 0 and 1 simplifies the
interpretation of the amounts of transferred information. For discrete data, The Transfer entropy from
a variable X to a variable Y has a maximum value H (Yt|Ym

t ). Thus, the normalized TE (NTE) can be
obtained by dividing TE by its maximum value:

NTE =
Ĥ (Yt|Ym

t )− Ĥ (Yt|Ym
t , Xm

t )

Ĥ (Yt|Ym
t )

(18)

In Gourévitch and Eggermont (2007), a preparation step is added to compute NTE to consider
data that contain noise. It consists of subtracting first the average of TE by shuffling the variable X
several times (rearranged it randomly):

NTE =
TEX→Y −∑n

i=1 TEXshu f f led→Y

Ĥ (Yt|Ym
t )

In the package, we implemented just the first normalization (cf. Equation 18), because the second
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one depends on the way of shuffling the variable X. But it can be obtained easily by computing the
NTE with the original variables, and the average of NTE with several shuffled variables of X.

Concerning continuous Transfer entropy, the term Ĥ (Yt|Ym
t ) may be negative, which means that

if we apply the same method to normalize the discrete TE, we will not obtain values in [0, 1]. To avoid
this problem, we adopt another approach presented in Duan et al. (2013):

NTE =
TEX→Y −∑n

i=1 TEXshu f f led→Y

H0 − Ĥ (Yt|Ym
t )

,

where H0 is the maximum entropy of Y by considering the uniform distribution, i.e., H0 =
log (Ymax −Ymin), and Ymax and Ymin are the maximum and the minimum values of Y.

R code examples

In this section, we demonstrate worked examples about the usage of the methods implemented in the
package and discussed theoretically in the two previous sections. We use financial time series from
the package timeSeries (Wuertz et al., 2017). We will present the classical Granger causality test, the
VARNN prediction model, and the proposed non-linear Granger causality test. These functionalities
are provided via Rcpp modules. We present also the functions associated to Transfer entropy measures,
including the discrete and continuous estimate. Since other entropy measures are implemented, we
will present them as well, such as the entropy and the mutual information.

The Granger causality test

The causality.test module is based on an Rcpp module. The two first arguments of the constructor
of this module are two numerical vectors, (the goal is to test if the second vector causes the first one).
The third argument is the lag parameter, which is an integer value. The last argument is logical (false
by default) for the option of making data stationary using the Augmented Dickey-Fuller test, before
performing the causality test.

library (timeSeries)
library (NlinTS)
data = LPP2005REC
# Construct the causality model from the second column to the first one,
# with a lag equal to 2, and without taking into account stationarity
model = causality.test (data[,1], data[,2], 2, FALSE)

The causality.test module has a summary method to show all the results of the test, and 3
properties: the Granger causality index; gci (cf. 2.2), the statistic of the test (Ftest), and the p-value
(the probability of non causality) of the test (pvalue).

# Compute the causality index, the Ftest, and the pvalue of the test
model$summary ()
model$gci
model$Ftest
model$pvalue

The VARNN model

The varmlp module represents the implementation of the VARNN model. It is an Rcpp module,
where the constructor takes as arguments a numerical Dataframe. Each column represents a variable,
and the first column is the target variable. Note that the Dataframe may contain one column. In
this case, the model will be univariate (ARNN model). The second argument is the lag parameter,
then, a numerical vector representing the size of the hidden layers of the network, then, an integer
argument for the number of iterations to train the model. Other arguments with default values are
available about using the bias neuron, the activation functions to use in each layer, the learning rate,
and the optimization algorithm. More details about these arguments can be found in the manual of
the package (Hmamouche, 2020).

library (timeSeries)
library (NlinTS)
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# Load the data
data = LPP2005REC

# The lag parameter
lag = 1

# The training set
train_data = data[1:(nrow (data) - 1), ]

# Build and train the model
model = varmlp (train_data, 1, c(10,5), 100)

The varmlp module has 3 methods. The method named forecast compute predictions from an
input dataframe, in other words, to test the model. And a method train update the parameters of the
model from new data.

# Predict the last row of the data
predictions = model$forecast (train_data)

# Show the predictions
print (predictions[nrow (predictions),])

# Update the model (two observations are required at least since lag = 1)
model$train (data[nrow (data) - lag: nrow (data)])

The non-linear Granger causality test

Similarly to the previous test, the nlin_causality.test is an Rcpp module. The two first arguments
of the constructor of this module are two numerical vectors, (the goal is to test if the second causes the
first). The third argument is the lag parameter. The next two arguments are two numerical vectors
representing the size of the hidden layers used in models 1 and 2, resp. The next argument is an integer
for the number of the iterations to train the networks. Similarly to the varmlp model, other arguments
with default values are available about the bias neuron, the activation functions, the learning rate,
and the optimization algorithm. The manual of the package contain more details concerning these
arguments (Hmamouche, 2020). The following is an example of using the non-linear causality test:

library (timeSeries)
library (NlinTS)
data = LPP2005REC
# Build and train the model
model = nlin_causality.test (data[,1], data[,2], 2, c(2), c(4))

The nlin_causality.test module returns the same values as the causality.test; a summary
method to show all the results of the test, and 3 properties; the Granger causality index (gci), the
statistic of the test (Ftest), and the p-value of the test (pvalue).

# Compute the causality index, the Ftest, and the pvalue of the test
model$summary ()
model$gci
model$Ftest
model$pvalue

The discrete entropy

The function entropy_disc permits to compute the Shannon entropy, where the first argument is a
discrete vector, and the second argument is the logarithm function to use (log2 by default):

library (NlinTS)
# The entropy of an integer vector
print (entropy_disc (c(3,2,4,4,3)))
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The continuous estimation of the entropy

The function entropy_disc permits to compute the continuous estimation of Shannon entropy, where
the first argument is a numerical vector, and the second argument is the number of neighbors (see
2.4.1):

library (timeSeries)
library (NlinTS)
# Load data
data = LPP2005REC
# The entropy of the first column with k = 3
print (entropy_cont (data[,1], 3))

The discrete mutual information

The function mi_disc permits to compute the Shannon multivariate mutual information, where the
first argument is an integer dataframe, and the second argument is the logarithm function to use (log2
by default):

library (NlinTS)
# Construct an integer dataframe with 2 columns
df = data.frame (c(3,2,4,4,3), c(1,4,4,3,3))
# The mutual information between columns of df
mi = mi_disc (df)
print (mi)

The continuous estimation of the mutual information

The function mi_cont permits to compute the continuous estimate of the mutual information between
two variables. The two first arguments are two vectors, and the third argument is the number of
neighbors (see 2.4.1):

library (timeSeries)
library (NlinTS)
# Load data
data = LPP2005REC
# The mutual information between of the two first columns of the data with k = 3
print (mi_cont (data[,1], data[,2], 3))

The discrete Transfer entropy

The function associated to the discrete TE is named te_disc. The two first arguments are two integer
vectors. Here we allow the two time series to have different lag parameters. Therefore, the second
two arguments are the lag parameters associated to the first and the second arguments resp. The next
argument indicates the logarithm function to use (log2 by default). The last argument is logical for the
option of normalizing the value of TE, with a false value by default. The te_disc function returns the
value of Transfer entropy from the second variable to the first variable:

library (NlinTS)
# The transfer entropy between two integer vectors with lag = 1 to 1
te = te_disc (c(3,2,4,4,3), c(1,4,4,3,3), 1, 1)
print (te)

The continuous estimation of the Transfer entropy

The associated function is named te_cont. The two first arguments are two vectors. Then, the second
two arguments are the associated lag parameters for the first and the second arguments resp. The fifth
argument is the number of neighbors. The last argument is logical for the option of normalizing the
value of TE, with a false value by default. The te_cont function returns the value of Transfer entropy
from the second variable to the first one:

library (timeSeries)
library (NlinTS)
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# Load data
data = LPP2005REC
# The transfer entropy between two columns with lag = 1 and k = 3
te = te_cont (data[,1], data[,2], 1, 1, 3)
print (te)

Conclusion

In this paper, we have presented methods of our NlinTS package for computing causalities in time
series. We have considered two main measures well studied in the literature, the Granger causality
test and the Transfer entropy. The Transfer entropy is originally formulated for discrete variables. For
continuous variables, we adopted a k-nearest neighbors estimation based on the same strategy used to
estimate the Mutual Information in Kraskov et al. (2004). To deal with non-linear time series, we have
proposed another causality measure as an extension of the Granger causality test using an artificial
neural network. Finally, we showed examples for the usage of these methods.
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