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The R package NonProbEst for estimation

in non-probability surveys
by M. Rueda, R. Ferri-Garcia, L. Castro

Abstract Different inference procedures are proposed in the literature to correct selection bias that
might be introduced with non-random sampling mechanisms. The R package NonProbEst enables
the estimation of parameters using some of these techniques to correct selection bias in non-probability
surveys. The mean and the total of the target variable are estimated using Propensity Score Adjustment,
calibration, statistical matching, model-based, model-assisted and model-calibratated techniques.
Confidence intervals can also obtained for each method. Machine learning algorithms can be used
for estimating the propensities or for predicting the unknown values of the target variable for the
non-sampled units. Variance of a given estimator is performed by two different Leave-One-Out
jackknife procedures. The functionality of the package is illustrated with example data sets.

Introduction

Since sampling theory was formalized in the beginning of the 20th century, surveys have been the main
tool to obtain information from society and nature. Traditional surveys used telephone or face-to-face
interviews for questionnaire administration, as well as mailing lists. However, the increase of costs,
linked to the decrease in response rates, and the development of information and communication
technologies have favored the use of new survey modes such as online or smartphone questionnaires.
These modes make the sampling process cheaper and faster, but tend to amplify bias from several
sources. More precisely, online surveys are often performed through a non-probability sampling,
using self-selection procedures without a defined sampling frame where the inclusion probabilities are
known or with deficient sampling frames with coverage issues, leading to higher levels of selection
bias (Elliott and Valliant, 2017).

Some techniques can be used to correct selection bias in online non-probability surveys. A good
overview of the various methods is given in Elliott and Valliant (2017). There are three important
approaches: the pseudo-design based inference (or pseudo-randomisation (Buelens et al., 2018)),
statistical matching and predictive inference.

In the pseudo-design based inference, the idea is to construct weights to correct for selection bias.
The first method is estimating response probabilities and using them in Horvitz-Thompson or Hajek
type estimators to account for unequal selection probabilities. The most used method to estimate
response probabilities is Propensity Score Adjustment (see e.g. L.ee and Valliant (2009)). This method
uses a probability reference sample in addition to a non-probability convenience sample to construct a
response propensity model. Sample matching is another approach also applied to tackle selection bias.
A predictive model, with the target variable as the dependent variable, is built using data from the
non-probability sample. This model is subsequently applied to a probability sample (where the target
variable is not measured) to predict values of its individuals for an estimation of the population values.
Similarly, predictive methods are based on superpopulation models. In this approach, a predictive
model is fitted for the analysis variable from the sample and used to project the sample to the full
population. This approach (that can be used with probability and non-probability samples) allows
researchers to use the auxiliary information about covariates in different methods for predicting the
unknown values. Most of these methods require special software for their implementation. The
package NonProbEst implements some of these techniques.

The paper is structured as follows. First, we introduce the notation used throughout the paper and
we discuss the different ways to do inference for non-probability surveys. In section 2.3 we briefly
comment on the usefulness of Machine Learning (ML) Techniques in this context. Then, we describe
the R package NonProbEst. In section 2.5 we briefly describe the use of the functions, including
suitable examples, for each method.

Statistical methodology

Let U denote a finite population with N units, U = {1,...,k,...,N}. Let sy be a volunteer non-
probability sample of size ny, self-selected from an online population Uy which is a subset of the total
target population U. Let y be the variable of interest in the survey estimation. Without any auxiliary
information, the population total of y, Y, is usually estimated with the following Horvitz-Thompson
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type estimator: .
Yur = ) woryk )
kesy
being w,; a weight of the unit k set by the researcher to adjust the lack of response, lack of coverage,
voluntariness, ... (e.g. by means of post-stratification). A simple choice is w,, = N/ny, thatis, consider
the sample of volunteers as if it was obtained with a simple random sampling design of the population
u.

This estimator has a bias induced by various mechanisms regarding their application. The most
important are the selection bias (due to the difference between sampled and nonsampled individuals
on the probability to participate in a survey) and the coverage bias (the online population Uy is not the
same of the target population U).

The key to successful weighting to remove the bias in non-probability surveys lies in the use
of powerful auxiliary information. Auxiliary information can be available in different forms. We
distinguish three different cases, called InfoTP, InfoES and InfoEP, depending on the information at
hand.

¢ InfoTP: Only the population totals of the auxiliary variables are known (often called control
totals). Possible sources of information are a census of the target population, an administrative
register, ... One of the simplest and most frequently used control totals occurs when the
information consists of known counts for a set of population groups.

* InfoES: The auxiliary variable values are available for every element in a probability sample.
This reference survey is conducted on the same target population than the non-probability
survey, with the main difference that the former has a better coverage and higher response rates
than the latter, thus it is adequate to represent the behavior that the target population should
have when a probability survey is performed on it.

* InfoEP: The auxiliary variable values are available for every element in the whole population.
An example of this is when statistical agencies use auxiliary variables specified in different
existing registers, for all the elements in the population.

We will now explain the main methods used to treat these biases depending on the type of
information that is available.

InfoTP
Calibration

Let x; be the value taken on unit k by a vector of auxiliary variables which population total is assumed
to be known X = Z}c\jzl Xg. The calibration estimation of Y consists in the computation of a new
vector of weights wy for k € s which modifies as little as possible the original sample weights, wy,
which have the desirable property of producing unbiased estimations, respecting at the same time the
calibration equations

Z WiX = X. (2)
kesy

Given a pseudo-distance G(wy, wyy), the calibration process consists in finding the solution to the
minimization problem

fg})ikn{ Y G(wg, wy) } ®)

kesy

while respecting the calibration equation (2). Several distances were defined in Deville and Sarndal
(1992), being the linear distance one of the most commonly used. The resulting estimator of Y under
the chi-square distance is the general regression estimator

Yieg = Y wiyk = Y dxyk + (X = Y woixi)' Bs, 4)
Sy Sy Sy
where B is
st = Tsil Zkaxkyk (5)
Sy

s /
being Ty = Y, WorXpX-
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It is proved in Bethlehem (2010) that bias can be reduced through calibration only when the
non-response due to volunteering has a Missing At Random scheme, while it cannot be equally done
in Not Missing at Random situations (which are the most frequent).

InfoSP
Propensity Score Adjustment

The Propensity Score Adjustment method was originally developed by Rosenbaum and Rubin (1983)
which sought to reduce the confounding bias between treatment and control groups in experimental
designs. This approach would be considered in sampling research as well in combination with a
reference sample (Rubin, 1986), but it was not proposed for online surveys until the early 2000’s (Taylor
et al., 2001).

It is expected that a sample collected by online recruitment would not follow the principles of a
probability sampling, especially in those cases that the survey is filled by volunteer respondents. In
such a situation, every individual is associated to a probability of participating in the survey which
depends on her or his characteristics.

The propensity for an individual to take part on the non-probability survey is obtained by training
a predictive model (often a logistic regression) on the dichotomous variable, I;,, which measures
whether a respondent from the combination of both samples took part in the volunteer survey or in
the reference survey. Covariates used in the model, x, are measured in both samples (in contrast to the
target variable which is only measured in the non-probability sample), thus the formula to compute
the propensity of taking part in the volunteer survey with a logistic model, 77, can be displayed as

1

7T(X) = 737(7%‘) n 1

(6)
for some vector v, as a function of the model covariates.

We denote by sg the reference sample and wg;, the original design weight of the k individual in
the reference sample

Several options for using the propensity scores in estimation are listed below:

e We can use the inverse of the estimated response propensity as a weight for constructing the
estimator (Valliant, 2019):

Vpsa1 = Y wyrye/A(xe) = Y yrwp> M 7)
kesy kesy

where 7(x;) is the estimated response propensity for the individual k of the volunteer sample
as predicted using covariates x.

¢ Alternatively, the approach proposed in Schonlau and Couper (2017) can be used to obtain
weights for a Horvitz-Thompson type estimator using propensity scores. Weights are defined as

_ 1= 7A(x)
= ) ®

and resulting estimator for the population total is given by

Vpsar = Y yrwp>? ©)
kesy

¢ Valliant and Dever (2011) use the propensity scores to post-stratify the sample. The process
is: sort the combined sample by 7t(x); split the combined sample into g classes (g =5 as the
conventional choice following Cochran (1968)), each of which has about the same number of

cases in the combined sample; and compute an average propensity, 77 within subclass g. Use
7ty as the weight adjustment for every person in the subclass. Resulting estimator is:

Vosaz =Y, Y wyn/7g =Y, Y ywp>* (10)

8 kESvg 8 kGSVg

¢ Following the approach described in Lee and Valliant (2009) propensity scores are divided in
g classes, where all units may have the same propensity score or at least be in a very narrow
range and an adjustment factor is calculated as:

 Lkesg, WRk/ Lkesg WRk
Lkesy, Wvk/ Lkes, Wyk

fe (11)
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where sg gis the set of individuals in the reference sample that are in the gth class of propensity
scores and sy is the set of individuals in the volunteer sample that are in the gth class of

propensity scores. Finally, the adjusted weights w44 are the product of the original weights

and the adjustment factor; following the same notation, the adjusted weight for individual k in
svg (i. e. the individual k of the gth propensity class in the volunteer sample) is computed as

0o = wyfy (12)
and the estimator is given by
Vpsas =3 Y yrwpot (13)
g k€SVg

Research findings have shown that PSA successfully removes bias in some situations, but at the
cost of increasing the variance (Lee and Valliant, 2009). Valliant and Dever (2011) showed that the
estimation of a variable using PSA must be complemented with further weighting adjustment in order
to make estimates less biased. The use of PSA with further calibration is studied in Lee and Valliant
(2009) and Ferri-Garcia and Rueda (2018), concluding that calibration adjustments are helpful if they
are applied using the right covariates.

Variance estimation in PSA is not a simple issue. Valliant (2019) proposes an estimator of the
variance for an estimator of a mean, 1/, based on linearization, but this estimator does not take into
account the randomness of weight estimation, therefore it will tend to underestimate the variance.

Jackknife’s variance estimator (Quenouille (1956)) can be seen as an acceptable alternative in
nonprobability samples after applying PSA. Let y= % Ykesy w]f SAyk be the estimator of the mean of
y, his Leave-One-Out Jackknife estimator of the variance is given by:

_1 n
— ];@(,-)—W (14)

V(y) =

where ¥ ;) is the value of the estimator ¥ after dropping unit j from sy and where ¥ is the mean of
values i i)

Given that PSA weights are estimated from the available data, the exclusion of one unit can have an
impact on the values of w; and affect the variability of the estimator. This variability can be taken into
account if propensities are recalculated for each of the n Leave-One-Out partitions. Thus a Jackknife
estimator with recalculating weights is defined as:

oA o on—1& _
Viw (]/) = n Z(yrw(]) - }/rw)z (15)
=1

e - . > WPSA i)y, with w PSA(j) the PSA weight obtained from the sample sy — {j}
kesy—{j}
and ¥,,, is the mean of values ¥,,,j)-

Statistical matching

The statistical matching method was introduced by Rivers (2007). The idea is to model the relationship
between vy and x; using the volunteer sample sy in order to predict y for the reference sample. That
is, the matching estimator is given by:

Yom =Y cwge
SR

being i the predict value of yy.

The key is how to predict the values yj. Usually §; = x;(f% being = Ykesy YiXe/ Lkes, XX but
other methods can be considered as donor imputation (Rivers, 2007) or fractional donor imputation
(Kim and Fuller, 2004).

A major drawback of matching is that the precision of the non-probability sample reduces to the
standard error of the reference sample (Buelens et al., 2018). These authors also justify that matching is
based on strong ignorability assumptions and can lead biased estimators if the assumptions are not
met.
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InfoUP

The prediction approach is based on superpopulation models, which assume that the population
under study y = (y1, ..., yn)’ is a realization of super-population random variables Y = (Y, ..., Yn)’
having a superpopulation model ¢. To incorporate auxiliary information x; available for all k € U on
assume a superpopulation for y built on some mean function of x:

Yk = m(xk) +€k, k= 1,..., N. (16)

The random vector e = (e, ...,en)’ is assumed to have zero mean and a positive definite covariance
matrix which is diagonal (Yy are mutually independent).

Using a set of covariates, x, measured in sy and 5y = U — sy it is possible to estimate the values
of y in 5y with regression modeling such that the estimated value of y for an individual k can be
calculated through the following expression:

Tk = Em(yi|xk) (17)

m alludes to the specific model which provides the expectation of v, and x; are the values of the k-th
individual in the covariates x.

We can use the auxiliary information in several ways to define several estimators:

¢ the model-based estimator:

Y= 3 e+ ) Uk (18)
kesy kesy
¢ the model-assisted estimator:
Yia =Y 9+ Y (vk — Do) wvk (19)
kel kesy

¢ the model-calibrated estimator:

Yocal = Z ykw]((:AL (20)
kesy

where wEAL are such that they minimize ) ., G (wlgAL,ka), where G(-,-) is a particular

distance function, subject to

Y witlge =Y

kesy kel

Usually the linear regression model is used, Ey (yk|xr) = x; and the above estimators can be
rewritten as a type of regression estimators.

Prediction estimators need complete information about the auxiliary variables (InfoEP) and can
fail if the model is not true, but might potentially be fruitful to correct for selection bias in informative
sampling (Buelens et al., 2018).

Use of machine learning algorithms in non-probability samples

The emerging data sources like Big Data can be used in combination to traditional survey samples
for construct more valid inferences. Machine Learning (ML) methods can be used for the matter,
given their known advantages in high dimensional environments. There are several types of learning
algorithms but for this package we focus on classification and regression. Classification aims to
identify the category to which a new observation belongs while regression is used for prediction in
real-valuated variables. Both are trained with known observations to make predictions based on some
covariates.

There is a vast spectrum of classification and regression algorithms to take into account, starting
from the basic linear and logistic regressions and its extensions, like Ridge regression (Hoerl and
Kennard, 1970). Other examples are decision trees which uses tree-like graphs , like the C4.5 (Quinlan,
1993). More modern approaches even build ensembles of decision trees with outstanding results,
like XGBoost (Chen and Guestrin, 2016). During the last few years, deep learning models have been
dramatically improving the state-of-the-art (LeCun et al., 2015). However, many other techniques are
still being widely used and developed, like some bayesian methods (Park and Casella, 2008). Having
so many different options, choosing the right learning algorithm for each problem is key for obtaining
optimal results.
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Regarding survey research, the use of ML algorithms has been studied in the last few years for
deriving model-assisted estimators (Montanari and Ranalli (2007); Baffetta et al. (2009); Breidt et al.
(2017)). In the prediction approach ML algorithms uses the sample to train a model capturing the
behaviour of a target variable which is to be estimated, and applies it to the nonsampled individ-
uals to obtain population-level estimates. Applications of machine learning algorithms in PSA for
nonresponse propensity have been studied for classification and regression trees (Phipps et al., 2012)
and Random Forests (Buskirk and Kolenikov, 2015); their efficacy on reducing nonresponse bias
in comparison to logistic regression depends on the available covariates and the complexity of the
relationships. (Chen et al., 2019) use LASSO for calibrating non-probability surveys. (Buelens et al.,
2018) review existing inference methods to correct for selection bias and recommend adding ML
methods to deal with non-probability samples.

NonProbEst allows the use of a wide variety of classification and regression algorithms for model-
based, model-assisted and model-calibrated estimators, matching and PSA (which only works with
classification). It offers so many alternatives by relying on caret (Kuhn, 2018), a well known machine
learning package.

The R package NonProbEst

The package NonProbEst implements in R a set of techniques for estimation in non-probability
surveys, using various approaches which correspond to several frameworks. Functions in the pack-
age allow to obtain calibration weights via calib_weights, propensity scores via propensities and
matching predictions for a reference sample via matching. Propensity scores can be transformed
into weights by all of the approaches mentioned in previous sections via functions lee_weights,
sc_weights, valliant_weights, vd_weights. These weights can be used for estimation of total, mean
and proportion of a given target variable measured in a sample using functions total_estimation,
mean_estimation, prop_estimation. Alternatively, total and mean can also be calculated using a
model-based, a model-assisted or a model-calibrated approach with the functions model_based,
model_assisted and model_calibrated respectively. The variance of the estimators can be calculated
using the Leave-One-Out Jackknife method, this is, recalculating the set of weights after substracting
one unit or not, by means of the functions generic_jackknife_variance and jackknife_variance,
and without recalculating the weights via fast_jackknife_variance. Frequentist confidence intervals
of the estimates can be directly computed with the confidence_interval function.

Calibration weights are obtained using the calib function of the sampling package (Tillé and
Matei, 2016) for g-weights computation. calib_weights offers a wrapper for calculation of final
weights straight from the dataset. Functions that require prediction techniques, such as propensities,
matching, model_based, model_assisted, model_calibrated and jackknife_variance, use the train
function from the caret package (Kuhn, 2018). This function allows the user to use any of the algo-
rithms in the large list of functions which are covered by train, with the possibility of optimizing
hyperparameters for a better performance of the predictors. For propensity estimation, only classifica-
tion algorithms should be used as the target variable is binary (participation in the probability sample
vs participation in the non-probability sample). Case weights are used to balance both classes (for
models that accept them). For matching, model-based and model-assisted estimations, algorithms
should account for the type of variable of the target feature.

Note that weighting formulas for PSA from Lee (2006) and Valliant and Dever (2011) require
applying a stratification procedure. In both lee_weights and vd_weights the same procedure is
applied: the vector of propensities is sorted increasingly, and the individuals are equally divided in
g strata of the same length according to their position in the sorted vector. g is defined by the user,
and the procedure results in a vector with the strata number (from 1 to g) to which a given individual
corresponds. This stratification avoids errors that could arise from the lack of unique values.

Three datasets are available in the package: sampleP, sampleNP and population. These fictitious
datasets were created as described in Ferri-Garcia and Rueda (2018); sampleP represents a probability
sample of size n, = 500 extracted by simple random sampling from a frame covering the entire
population, while sampleNP represents a non-probability sample of size 11, = 1000 extracted by simple
random sampling from a frame covering only the subpopulation of individuals who have access
to Internet. The dataset of the complete population of size N = 50000 is available in population.
Variables available in each dataset differ, with sampleNP having the largest amount of variables. In
the aforementioned dataset, three variables (vote_gen, vote_pens, vote_pir) measuring whether an
individual would vote to a given party ("gen", "pens" or "pir") in an election or not. Probabilities of
voting to party "gen", "pens" or "pir" are higher if the individual is a woman, and elder person and
has access to the Internet, respectively. These variables are only measured in sampleNP, meaning that
adjustment methods have to be applied in order to produce reliable estimates of voting intentions.
For the matter, the rest of the available variables in the dataset, which are also included in sampleP
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(except for the language) and population, can be used. education_primaria, education_secundaria,
education_terciaria are three disjunct variables measuring the education level of the individual
(Primary, Secondary or Tertiary Education), while age and sex measures the numeric age and the
gender (0 female, 1 male). Finally, 1anguage measures whether the individual’s native language is the
official language or not. The absence of certain variables in the datasets accounts for real situations
where not all the information is available at individual level.

It must be mentioned that the use of jackknife_variance for calculating the variance of the estima-
tors via Leave-One-Out Jackknife will be computationally slower than the fast_jackknife_variance
alternative. Recalculating the weights in each iteration means that the weighting procedure has to
be repeated as many times as individuals are in the non-probability sample. If Propensity Score
Adjustment is used for weighting, the models have to be rebuilt in each iteration, resulting in larger
computation times which will depend on the computational costs of the algorithms used for propensity
estimation. Note that generic_jackknife_variance will behave similarly if the estimator passed as
argument involves predictive modelling algorithms or other costly procedures. To show the difference
of procedures, we calculated the Leave-One-Out Jackknife estimated variance of the estimator of the
mean for the variable vote_pir in a non-probability sample of size n, = 100 extracted by simple
random sampling on the sampleNP dataset, using a probability sample of size 1, = 100 extracted by
simple random sampling on the sampleP dataset as the reference sample data. Considering a popula-
tion of N = 50000, variance estimates of the estimator weighted by PSA using different algorithms
were computed, measuring the computation elapsed time. All the calculations were performed in a
Intel(R) Core(TM) i7-3770 CPU up to 3.40GHz. Results can be consulted in Table 1

Weight recalculation PSA algorithm R function Elapsed time (seconds)

No Logistic regression glm 0.004999876
Yes Logistic regression glm 75.56034
Yes CART rpart 102.3409
Yes Random Forest rf 203.7737
Yes GBM gbm 453.731
Yes Neural Network nnet 719.733

Table 1: Total elapsed time of Leave-One-Out Jackknife variance estimation under recalculation of
weights in each iteration for a set of predictive models, with sample sizes of 100 for both the probability
and the non-probability sample

In this example, the variance estimation with recalculations takes more than 15000 times the
seconds that it takes without recalculations if logistic regression is the method used for propensity
estimation, and almost 144000 times if feed-forward neural networks are used. Time differences
might be different depending on the data, the estimator and the algorithm, but they will be largely
appreciable in all cases.

In order to ilustrate how the resources in the package can be used for estimation in non-probability
surveys, some examples of each adjustment covered by the package are developed in the following
section.

Inference in non-probability samples with NonProbEst

InfoTP: Calibration

Suppose that a non-probability sample of 1000 individuals recruited via online surveying is available
for estimating the vote intention in a given election. For the matter, sampleNP will be used as the
non-probability sample data.

> library(NonProbEst)

> head(sampleNP)
vote_gen vote_pens vote_pir education_primaria education_secundaria education_terciaria age sex language

1 [4 1 0 1 0 0 66 1 1
2 0 4 0 1 30 1 1
3 1 [4 0 [4 1 0 62 0 1
4 [4 [4 1 1 0 0 33 0 1
5 [4 [4 1 [4 1 o 30 0 1
6 [4 [ 0 1 0 o 69 1 1

Some auxiliary information is available in the sample; more precisely, individual data on education,
age, gender and language (as described in the previous Section) can be used for mitigating the effects
of coverage error. Population totals are available for all of these auxiliar variables, as they have been
measured for the entire population. They can be retrieved from the population dataset:
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> head(population)
education_primaria education_secundaria education_terciaria age sex language

1 0 1 0 39 1 1
2 0 1 5 @ 1
3 1 0 0 35 0 1
4 1 ) 0 58 1 1
5 1 0 0 36 1 1
6 0 1 0 61 1 1
> totals <- colSums(population)
> totals
education_primaria education_secundaria education_terciaria age sex language
25287 10546 14167 2539340 24430 45429

If the variables of which population totals are available are not disjunct, Raking calibration can
be applied in order to estimate cell counts and account for the lack of information. This can be done
with the calib_weights function; in this case, the Xs argument were the dataset sampleNP selecting the
auxiliar variables only. Other arguments involve the totals previously obtained and the initial weights,
which allows the user to specify whether sampling design weights were used or not. In the latter case,
unitary weights should be provided as a vector of ones of length equal to the number of individuals
in the non-probability sample. Population size and method to be used by the calib function from
sampling have to be specified.

> covariates <- colnames(sampleNP)[4:9]

> initial_weights <- rep(1, nrow(sampleNP))

> w <- calib_weights(sampleNP[, covariates], totals, initial_weights,
N = 50000, method = "raking")

Once we obtain the weights, estimates for the mean (proportion if the variable is binary) or the
total of any variable present in the non-probability sample can be obtained using mean_estimation or
total_estimation respectively. For example, the estimated proportion of votes for each party can be
obtained with the following code:

> mean_estimation(sampleNP, w, "vote_gen”, N = 50000)
vote_gen

0.09824163

> mean_estimation(sampleNP, w, "vote_pens”, N = 50000)

vote_pens

0.3726149

> mean_estimation(sampleNP, w, "vote_pir"”, N = 50000)
vote_pir

0.3905399

If these estimates are compared to those which would be obtained if no adjustment was used, the
effect of calibration is notorious. As the presence of "gen" voters in the sample is MCAR, estimates do
not differ, but in the case of "pens"” voters whose presence is MAR, the calibration approach gives a
larger estimate which can be explained by the fact that the overrepresentation of younger people in
the sample has been corrected up to a point. To a much lesser extent, this correction is also noticeable
in the estimation of vote to "pir" (presence of their voters in the sample is NMAR).

> sum(sampleNP$vote_gen)/nrow(sampleNP)

[1] 0.096

> sum(sampleNP$vote_pens)/nrow(sampleNP)

[1] 0.346

> sum(sampleNP$vote_pir)/nrow(sampleNP)

[1] 0.404

> sum(sampleNP$vote_gen)/nrow(sampleNP) -

+ mean_estimation(sampleNP, w, "vote_gen”, N = 50000)
vote_gen

-0.00224163

> sum(sampleNP$vote_pens)/nrow(sampleNP) -

+ mean_estimation(sampleNP, w, "vote_pens”, N = 50000)
vote_pens

-0.02661494

> sum(sampleNP$vote_pir)/nrow(sampleNP) -

+ mean_estimation(sampleNP, w, "vote_pir"”, N = 50000)
vote_pir

0.01346014

The variance of the estimates can be assessed through Leave-One-Out Jackknife, both with or
without reweighting in each iteration. In the former case, a function must be created by the user for
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such a task. In the following lines, a function example is developed for estimating the variance on the
estimation of the proportion of votes for the "pir" party:

### Leave-One-Out Jackknife variance estimation with reweighting
> estimator <- function(s){
initial_weights <- rep(1, nrow(s))
w <- calib_weights(s[,covariates], totals, initial_weights, N = 50000,
method = "raking")
return(mean_estimation(s, w, "vote_pir", N = 50000))
}
> v_r <- generic_jackknife_variance(sampleNP, estimator, N = 50000)
> v_r
[1] 0.0003352199
#i## Leave-One-Out Jackknife variance estimation without reweighting

> v_nr <- fast_jackknife_variance(sampleNP, w, estimated_vars = "vote_pir", N = 50000)
> v_nr
vote_pir

0.0003189449

These estimates of the variance can be used for the construction of confidence intervals for the
estimation of the proportion via confidence_interval function. This function requires the point
estimator and the standard deviation as arguments, with the option to fix the confidence level. If not
specified by the user, the confidence interval is calculated at 95% confidence level.

> ic_r <- confidence_interval( mean_estimation(sampleNP, w, "vote_pir”, N = 50000),

sqrt(v_r)
)
> ic_r
lower.vote_pir upper.vote_pir
0.3546549 0.4264249
> ic_nr <- confidence_interval( mean_estimation(sampleNP, w, "vote_pir"”, N = 50000),
sqrt(v_nr)
)
> ic_nr
lower.vote_pir upper.vote_pir
0.3555368 0.4255429

InfoSP: Propensity Score Adjustment

Suppose that, in addition to the non-probability sample, a probability sample of the same target
population is available as auxiliary information. The target variable is not measured, but some other
variables which are also available in the non-probability sample have been measured on it. For the
matter, sampleP will be used as data from the probability sample.

> head(sampleP)
education_primaria education_secundaria education_terciaria age sex

1 1 4 o0 35 1
2 0 0 1 64 @
3 1 Q @ 55 1
4 0 1 o 61 1
5 0 0 1 35 @
6 1 Q 0 51 1

In order to reduce the selection bias, Propensity Score Adjustment can be used in this case for
reweighting. This procedure is implemented in the propensities function; it requires both samples,
the list of covariates to be used to build the models for propensity estimation, and three arguments
regarding technical aspects of the adjustment: the prediction algorithm (must match any of the list of
caret supported algorithms), a boolean indicating whether smoothing of propensities is applied or
not, and a vector of strings specifying the preprocessing procedures to be passed to train (by default,
preprocessing is not applied). Further arguments to be passed to train can be specified.

In this example, the propensity of participating will be estimated using k-Nearest Neighbors with
further smoothing and a parameter grid of all the odd numbers between 3 and 11 for optimization of k.
The covariates will be all the variables measured in sampleP. The result will be a list with two vectors:
the estimated propensities for individuals in the non-probability (convenience) and the probability
(reference) sample respectively.
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> covariates <- colnames(sampleP)
> pi <- propensities(sampleNP, sampleP, covariates,
algorithm = "knn", smooth = T, tuneGrid = data.frame(k = seq(3, 11, by = 2)))

> summary(pi$convenience)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.3079 0.6249 0.6873 0.6834 0.7584 0.9995
> summary(pi$reference)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.3079 0.5384 0.6388 0.6236 0.6998 0.9469

The propensities must be subsequently transformed into weights for their application in sur-
vey estimation. Transformations available in NonProbEst include approaches developed by Lee
(2006) and Lee and Valliant (2009) in the lee_weights function, Valliant and Dever (2011) in the
vd_weights function, Schonlau and Couper (2017) in the sc_weights function and Valliant (2019)
in the valliant_weights function. lee_weights and vd_weights require propensities of both sam-
ples and a number of strata (5 by default), while sc_weights and valliant_weights only require
propensities of the non-probability sample.

For example, if we want to apply propensities via weights developed in Valliant and Dever (2011)
for the estimation of voting intention to party "pir", we can do it with the following code:

> wi <- vd_weights(convenience_propensities = pi$convenience,
reference_propensities = pi$reference)
> summary (wi)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.233  1.376 1.493 1.505 1.632 2.011
> mean_estimation(sample = sampleNP, weights = wi,
estimated_vars = "vote_pir")
vote_pir
0.4006072
#Estimation of the 95% confidence interval
> estim <- mean_estimation(sample = sampleNP, weights = wi,
estimated_vars = "vote_pir")
> std_dev <- fast_jackknife_variance(sample = sampleNP, weights = wi,
estimated_vars = "vote_pir”, N = 50000)
> confidence_interval(estimation = estim, std_dev = std_dev, confidence = 0.95)
lower.vote_pir upper.vote_pir
0.4001341 0.4010803

Note that for those weights that are calculated by means of propensity stratification, propensities of
the individuals in the convenience and reference sample are needed. If they are calculated by inverting
propensities, only those for the individuals in the convenience sample are needed. For example, if we
calculate weights via the formula developed in Schonlau and Couper (2017), the code is:

> wi <- sc_weights(propensities = pi$convenience)
> summary (wi)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0004998 0.3185741 0.4549419 0.5044062 0.6003197 2.2479720

Apart from direct estimation, resulting weights can be used as inputs in the initial_weights
argument of the calib_weights function for the estimation with PSA and calibration, or with the
package survey (Lumley, 2018) for more complex analysis.

InfoUP: superpopulation estimators

In this case, in addition to the non-probability sample, the population itself is avaliable for some
covariates. However, the target variable is only measured in the non-probability sample. For the
matter, sampleNP will be used as the non-probability sample data and population will be used as the
population data.

The model-based estimator can be used to estimate the population total (or mean) for the target
variable. In this example, the expected number of votes for "pens" will be estimated with regularized
logistic regression as learning algorithm. This procedure is implemented in the model_based function.
It requires the sample, the population, the covariates names and the target variable as arguments. In
our example, the specific algorithm and a normalization preprocessing are passed to change default
behaviour. Since no optimization strategy is specified in this case, a default bootstrap will be applied.
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> covariates <- c("education_primaria”, "education_secundaria”,
"education_terciaria”, " , "language")
> mySample = sampleNP
> mySample$vote_pens = factor(mySample$vote_pens, c(@, 1), c('F', 'T"))
> model_based(mySample, population, covariates, "vote_pens”,
positive_label = 'T', algorithm = "glmnet", proc = c("center”, "scale"))
[1] 18282.51

n "

age", "sex

n

If the proportion of votes has to be estimated, rather than the total, it would be as simple as adding
the estimate_mean argument as follows:

> model_based(mySample, population, covariates, "vote_pens”, positive_label = 'T',
algorithm = "glmnet”, proc = c("center”, "scale"), estimate_mean = TRUE)
[1] 0.366757

Alternatively, model-calibrated estimator can be used to achieve higher efficiency in some situa-
tions. In that case, design weights have to be specified in the argument "weights", in addition to the
rest of arguments previously described. If no sampling design was followed in data collection, which
is the case that we suppose in our example, we can specify unitary weights by turning the parameter
to 1, as it is done in the following code:

> model_calibrated(sample_data = mySample, weights = 1, full_data = population,

+ covariates = covariates, estimated_var = "vote_pens"”, positive_label = 'T',
+ algorithm = "glmnet"”, proc = c("center”,"scale"),
+ estimate_mean = TRUE)

[1] 0.365945

Conclusion and future developments

In this paper we show how the NonProbEst package can simplify the application of different weighting
methods to correct selection bias in non-probability surveys. This package is, to the best of our
knowledge, the first package that supports the user beyond estimation in PSA, PSA+calibration,
statistical matching or model-calibration. Another important feature is that a wide range of ML
techniques can be used to optimize the information provided by the auxiliary variables.

Additional features will be integrated in future versions of the package. Some simplified wrappers
will be developed for some methods so non-expert users can also easily apply them, more parameters
will be avaliable for estimation and further support for weighted models will be added. Also, other
techniques for variance estimation can be considered. Many of these features can already be applied
combining NonProbEst with the survey package, as noted before.

Regarding Machine Learning, methods for variable selection will be studied as well as the use
of more advanced deep learning libraries outside of caret’s scope. Variable selection would help
explaining the bias and choosing the best covariates for its correction. Better deep learning libraries
would allow the use of state-of-the-art algorithms.
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