CONTRIBUTED RESEARCH ARTICLE 226

Tools for Analyzing R Code the Tidy Way

by Lucy D’Agostino McGowan, Sean Kross, Jeffrey Leek

Abstract With the current emphasis on reproducibility and replicability, there is an increasing need
to examine how data analyses are conducted. In order to analyze the between researcher variability
in data analysis choices as well as the aspects within the data analysis pipeline that contribute to
the variability in results, we have created two R packages: matahari and tidycode. These packages
build on methods created for natural language processing; rather than allowing for the processing of
natural language, we focus on R code as the substrate of interest. The matahari package facilitates the
logging of everything that is typed in the R console or in an R script in a tidy data frame. The tidycode
package contains tools to allow for analyzing R calls in a tidy manner. We demonstrate the utility of
these packages as well as walk through two examples.

Introduction

With the current emphasis on reproducibility and replicability, there is an increasing need to examine
how data analyses are conducted (Goecks et al., 2010; Peng, 2011; McNutt, 2014; Miguel et al., 2014;
Ioannidis et al., 2014; Richard, 2014; Leek and Peng, 2015; Nosek et al., 2015; Sidi and Harel, 2018). In
order to accurately replicate a result, the exact methods used for data analysis need to be recorded,
including the specific analytic steps taken as well as the software utilized (Waltemath and Wolkenhauer,
2016). Studies across multiple disciplines have examined the global set of possible data analyses that
can be conducted on a specific data set (Silberzhan et al., 2018). While we are able to define this global
set, very little is known about the actual variation that exists between researchers. For example, it is
possible that the true range of data analysis choices is realistically a much more narrow set than the
global sets that are presented. There is a breadth of excellent research and experiments examining
how people read visual information (Majumder et al., 2013; Loy et al., 2017; Wickham et al., 2015;
Buja et al., 2009; Loy et al., 2016), for example the Experiments on Visual Inference detailed here:
(http://mamajumder.github.io/html/experiments.html), but not how they actually make analysis
choices, specifically analysis coding choices. In addition to not knowing about the “data analysis choice”
variability between researchers, we also do not know which portions of the data analysis pipeline
result in the most variability in the ultimate research result. We seek to build tools to analyze these
two aspects of data analysis:

1. The between researcher variability in data analysis choices
2. The aspects within the data analysis pipeline that contribute to the variability in results

Specifically, we have designed a framework to conduct such analyses and created two R packages
that allow for the study of data analysis code conducted in R. In addition to answering these crucial
questions for broad research fields, we see these tools having additional concrete use cases. These tools
will facilitate data science and statistics pedagogy, allowing researchers and instructors to investigate
how students are conducting data analyses in the classroom. Alternatively, a researcher could use
these tools to examine how collaborators have conducted a data analysis. Finally, these tools could be
used in a meta-manner to explore how current software and tools in R are being utilized.

Tidy principles

We specifically employ tidy principles in our proposed packages. Tidy refers to an implementation strat-
egy propagated by Hadley Wickham and implemented by the Tidyverse team at RStudio (Wickham
and Grolemund, 2016) Here, by tidy we mean our packages adhere to the following principles:

1. Our functions follow the principles outlined in R packages (Wickham, 2015) as well as the
tidyverse style guide (Wickham, 2019).
2. Our output data sets are tidy, as in:

e Each variable has its own column.
¢ Each observation has its own row.
e Each value has its own cell.

By implementing these tidy principles, and thus outputting tidy data frames, we allow for data
manipulation and analysis to be conducted using a specific set of tools, such as those included in the
tidyverse meta package (Wickham et al., 2019).

Ultimately, we create a mechanism to utilize methods created for natural language processing;
here the substrate is code rather than natural language. We model our tools to emulate the tidytext

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=tidycode
http://mamajumder.github.io/html/experiments.html
http://style.tidyverse.org
https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=tidytext

CONTRIBUTED RESEARCH ARTICLE 227

Code
classification
get_classifications() \
tidycode
read_rfiles() group_by()
Static R code tidycode 1 surmarise()
(R file or URL) inner_join() plyr
e dplyr
‘ - dplyr _w Y\

|
i

. _dance_recitaty , | TidyR | callse) - Tidy R _countO _, |gummarized
ﬁ’ﬁiﬂfﬁggﬂ‘g matahari calls tidycode functions + delyr code ~ sl ~ | Visualizations
arguments

Dynamic R —/

dance_start()
code dance_stop()
(Captured in an R console) dance_tb1()
matahari

Figure 1: A flowchart of a typical analysis that uses matahari and tidycode to analyze and classify R
code.

package (Silge and Robinson, 2016, 2017); instead of analyzing tokens of text, we are analyzing tokens
of code.

We present two packages, matahari, a package for logging everything that is typed in the R console
or in an R script, and tidycode, a package with tools to allow for analyzing R calls in a tidy manner. In
this paper, we first explain how these packages work. We then demonstrate two examples, one that
analyzes data collected from an online experiment, and one that analyzes “old” data via previously
created R scripts.

Methods

We have created two R packages, matahari and tidycode. The former is a way to log R code, the latter
allows the user to analyze R calls on the function-level in a tidy manner. Figure 1 is a flowchart of the
process described in more detail below. This flowchart is adapted from Figure 2.1 in Text Mining with
R: A Tidy Approach (Silge and Robinson, 2017).

We demonstrate how to create these tidy data frames of R code and then emulate the data analysis
workflow similar to that put forth in the tidy text literature.

Terminology

In this paper, we refer to R “expressions” or “calls” as well as R “functions” and “arguments”. An R
call is a combination of an R function with arguments. For example, the following is an R call (Example
1).

library(tidycode)

Example 1. R call, library
Another example of an R call is the following piped chain of functions from the dplyr package
(Example 2).

starwars %>%
select(height, mass)

Example 2. Piped R call
Specifically, we know something is a call in R if is.call() is TRUE.

quote(starwars %>%
select(height, mass)) %>%
is.call()

[1] TRUE

Calls in R are made up of a function or name of a function, and arguments. For example, the
call library(tidycode) from Example 1 is comprised of the function library() and the argument
tidycode. Example 2 is a bit more complicated. The piped code can be rewritten, as seen in Example 3.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=dplyr

CONTRIBUTED RESEARCH ARTICLE

228

“%>% (starwars, select(height, mass))

Example 3. Rewritten piped R call

From this example, it is easier to see that the function for this R call is %>% with two argu-
ments, starwars and select(height, mass). Notice that one of these arguments is an R call itself,
select(height, mass).

matahari

matahari is a simple package for logging R code in a tidy manner. It can be installed from CRAN
using the following code.

install.packages("matahari”)
There are three ways to use the matahari package:

1. Record R code as it is typed and output a tidy data frame of the contents
2. Input a character string of R code and output a tidy data frame of the contents
3. Input an R file containing R code and output a tidy data frame of the contents

In the following sections, we will split these into two categories, tidy logging from the R console
(1) and tidy logging from an R script (2 and 3).

Tidy logging from the R console In order to begin logging from the R console, the dance_start()
function is used. Logging is paused using dance_stop() and the log can be viewed using dance_tb1().
For example, the following code will result in the subsequent tidy data frame.

library(matahari)
dance_start()

1+ 2

"here is some text”
sum(1:10)
dance_stop()
dance_tb1()

#> # A tibble: 6 x 6

#> expr value path contents selection dt

#> <list> <list> <list> <list> <list> <dttm>

#> 1 <languag... <S3: sessionIn... <lgl [1... <lgl [1... <1lgl [1]> 2018-09-11 22:22:12
#> 2 <languag... <lgl [1]> <lgl [1... <1gl [1... <1gl [11> 2018-09-11 22:22:12
#> 3 <languag... <lgl [11> <lgl [1... <1gl [1... <1lgl [11> 2018-09-11 22:22:12
#> 4 <chr [11> <lgl [11> <lgl [1... <1gl [1... <1gl [11> 2018-09-11 22:22:12
#> 5 <languag... <lgl [1]> <lgl [1... <1gl [1... <1gl [11> 2018-09-11 22:22:12
#> 6 <languag... <S3: sessionIn... <lgl [1... <1lgl [1... <1gl [1]> 2018-09-11 22:22:12

Example 4. Logging R code from the R console using matahari

The resulting tidy data frame consists of 6 columns: expr, the R call that was run, value, the value
that was output, path, if the code was run within RStudio, this will be the path to the file in focus,
contents, the file contents of the RStudio editor tab in focus, selection, the text that is highlighted
in the RStudio editor tab in focus, and dt, the date and time the expression was run. By default,
value, path, contents and selection will not be logged unless the argument is set to TRUE in the
dance_start() function. For example, if the analyst wanted the output data frame to include the
values computed, they would input dance_start(value = TRUE).

In this particular data frame, there are 6 rows. The first and final rows report the R session
information at the time when dance_start() was initiated (row 1) and when dance_stop() was run
(row 6). The second row holds the R call dance_start(), the first command run in the R console, was
run; the third row holds 1 + 2, the fourth holds here is some text, and the fifth holds sum(1:10).

dance_tbl1()[["expr"1]

[[1]1]
#> sessionInfo()
#>

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=matahari

CONTRIBUTED RESEARCH ARTICLE 229

#> [[2]]

#> dance_start()
#>

#> [[3]]

#> 1 + 2

#>

#> [[4]]

#> [1] "here is some text”
#>

#> [[5]]

#> sum(1:10)

#>

#> [[6]]

#> sessionInfo()

These functions work by saving an invisible data frame called .dance that is referenced by
dance_tb1(). Each time dance_start() is subsequently run after dance_stop(), new rows of data
are added to this data frame. This invisible data frame exists in a new environment created by the
matahari package. We can remove this data frame by running dance_remove().

This data frame can be manipulated using common R techniques. Below, we rerun the same code
as above, this time saving the values that are computed in the R console by using the value = TRUE
parameter.

dance_start(value = TRUE)
1+ 2

"here is some text”
sum(1:10)

dance_stop()

tbl <- dance_tbl()

As an example of the type of data wrangling that this tidy format allows for, using dplyr and
purrr, we can manipulate this to only examine expressions that result in numeric values.

library(dplyr)
library(purrr)

t_numeric <- tbl %>%
mutate(
numeric_output = map_lgl(value, is.numeric)
) %>%
filter(numeric_output)

t_numeric

#> # A tibble: 3 x 7

#> expr value path contents selection dt numeric_output
#> <list> <list> <list> <list> <list> <dttm> <lgl>

#> 1 <language> <int [11> <lgl [1]> <lgl [11> <lgl [1]> 2019-04-29 22:39:05 TRUE

#> 2 <language> <dbl [1]> <1gl [1]> <1gl [1]> <1gl [1]> 2019-04-29 22:39:05 TRUE

#> 3 <language> <int [1]> <lgl [11> <lgl [1]> <lgl [1]> 2019-04-29 22:39:05 TRUE

Here, three rows are output, since we have filtered to only calls with numeric output:

1. The dance_start() call (this defaults to have a numeric value of 1)
2. The 1 + 2 call, resulting in a value of 3
3. The sum(1:10), resulting in a value of 55

Tidy logging from an R script In addition to allowing for the logging of everything typed in
the R console, the matahari package also allows for the logging of pre-created R scripts. This
can be done using the dance_recital() function, which allows for either a .R file or a character
string of R calls as the input. For example, if we have a code file called sample_code.R, we can
run dance_recital("sample_code.R") to create a tidy data frame. Alternatively, we can enter code
directly as a string of text, such as dance_recital ("1 + 2") to create the tidy data frame. Below
illustrates this functionality.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=purrr
https://CRAN.R-project.org/package=matahari

CONTRIBUTED RESEARCH ARTICLE 230

code_file <- system.file("test”, "sample_code.R", package = "matahari")
dance_recital (code_file)

#> # A tibble: 7 x 6

#> expr value error output warnings messages
#> <list> <list> <list> <list> <list> <list>

#> 1 <language> <dbl [1]> <NULL> <chr [1]> <chr [0@]> <chr [0]>
#> 2 <chr [1]> <chr [1]> <NULL> <chr [1]> <chr [0]> <chr [0]>
#> 3 <language> <dbl [1]> <NULL> <chr [1]> <chr [0]> <chr [0]>
#> 4 <language> <NULL> <S3: simpleError> <NULL> <NULL> <NULL>

#> 5 <language> <chr [1]> <NULL> <chr [1]> <chr [1]> <chr [0]>
#> 6 <language> <NULL> <NULL> <chr [1]> <chr [0@]> <chr [1]>
#> 7 <language> <NULL> <NULL> <chr [1]> <chr [0@]> <chr [0]>

Example 5. R call, Logging code from a .R file using matahari

code_string <-
4+ 4
"wow!"
mean(1:10)
stop("Error!")
warning("Warning!")
message("Hello?")
cat("Welcome!")

1

dance_recital(code_string)

#> # A tibble: 7 x 6

#> expr value error output warnings messages
#> <list> <list> <list> <list> <list> <list>

#> 1 <language> <dbl [1]> <NULL> <chr [1]> <chr [0@]> <chr [0]>
#> 2 <chr [1]> <chr [1]> <NULL> <chr [1]> <chr [0]> <chr [0]>
#> 3 <language> <dbl [1]> <NULL> <chr [1]> <chr [@0]> <chr [0]>
#> 4 <language> <NULL> <S3: simpleError> <NULL> <NULL> <NULL>

#> 5 <language> <chr [1]> <NULL> <chr [1]> <chr [1]> <chr [0]>
#> 6 <language> <NULL> <NULL> <chr [1]> <chr [0]> <chr [1]>
#> 7 <language> <NULL> <NULL> <chr [1]> <chr [0@]> <chr [0]>

Example 6. Logging code from a character string using matahari

The resulting tidy data frame from dance_recital(), as seen in Examples 5 and 6, is different
from that of dance_tb1(). This data frame has 6 columns. The first is the same as the dance_tb1(),
expr, the R calls in the .R script or string of code. The subsequent columns are, value, the computed
result of the R call, error, which contains the resulting error object from a poorly formed call, output,
the printed output from a call, warnings, the contents of any warnings that would be displayed in the
console, and messages, the contents of any generated diagnostic messages. Now that we have a tidy
data frame with R calls obtained either from the R console or from a .R script, we can analyze them
using the tidycode package.

The development version of the matahari package can be found on GitHub at https://github.
com/jhudsl/matahari. Users can submit feature requests, issues, and bug reports here.

tidycode

The goal of tidycode is to allow users to analyze R scripts, calls, and functions in a tidy way. There are
two main tasks that can be achieved with this package:

1. We can “tokenize” R calls

2. We can classify the functions run into one of nine potential data analysis categories: “Setup”,
“Exploratory”, “Data Cleaning”, “Modeling”, “Evaluation”,”Visualization”, “Communication”,
“Import”, or “Export”.

The tidycode package can be installed from CRAN in the following manner.

install.packages("tidycode”)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=matahari
https://github.com/jhudsl/matahari
https://github.com/jhudsl/matahari
https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=tidycode

CONTRIBUTED RESEARCH ARTICLE 231

library(tidycode)

We can first create a tidy data frame using the matahari package. Alternatively, we can use a
function in the tidycode package that wraps the dance_recital() function called read_rfiles().
This function allows you to read in multiple .R files or links to .R files. There are a few example files
included in the tidycode package. The paths to these files can be accessed via the tidycode_example()
function. For example, running the following code will give the file path for the example_analysis.R
file.

tidycode_example("example_analysis.R")

#> [1] "/Library/Frameworks/R.framework/Versions/3.5/Resources/library/tidycode/extdata/example_analysis.R"
Running the function without any file specified will supply a vector of all available file names.

tidycode_example()

#> [1] "example_analysis.R"” "example_plot.R"
We can use these example files in the read_rfiles() function.

df <- read_rfiles(tidycode_example(c("example_analysis.R", "example_plot.R")))

df

#> # A tibble: 9 x 3

#> file expr line
#> <chr> <list> <int>
#> 1 /Library/Frameworks/R.framework/Versions/3.5/Resources/li~ <langua~ 1
#> 2 /Library/Frameworks/R.framework/Versions/3.5/Resources/1i~ <langua~ 2
#> 3 /Library/Frameworks/R.framework/Versions/3.5/Resources/li~ <langua~ 3
#> 4 /Library/Frameworks/R.framework/Versions/3.5/Resources/li~ <langua~ 4
#> 5 /Library/Frameworks/R.framework/Versions/3.5/Resources/1i~ <langua~ 5
#> 6 /Library/Frameworks/R.framework/Versions/3.5/Resources/li~ <langua~ 6
#> 7 /Library/Frameworks/R.framework/Versions/3.5/Resources/li~ <langua~ 7
#> 8 /Library/Frameworks/R.framework/Versions/3.5/Resources/1i~ <langua~ 1
#> 9 /Library/Frameworks/R.framework/Versions/3.5/Resources/li~ <langua~ 2

This will give a tidy data frame with three columns: file, the path to the file, expr the R call, and
line the line the call was made in the original .R file.

We can then use the unnest_calls() function to create a data frame of the calls, splitting each into
the individual functions and arguments. We liken this to the tidytext unnest_tokens() function. This
function has two parameters, . data, the data frame that contains the R calls, and input the name of
the column that contains the R calls. In this case, the data frame is m and the input column is expr.

u <- unnest_calls(df, expr)

u
#> # A tibble: 35 x 4

#> file line func args
#> <chr> <int> <chr> <list>

#> 1 /Library/Frameworks/R.framework/Versions/3.5/R~ 1 libra~ <list [1]>
#> 2 /Library/Frameworks/R.framework/Versions/3.5/R~ 2 libra~ <list [1]>
#> 3 /Library/Frameworks/R.framework/Versions/3.5/R~ 3 <- <list [2]>
#> 4 /Library/Frameworks/R.framework/Versions/3.5/R~ 3 %>% <list [2]>
#> 5 /Library/Frameworks/R.framework/Versions/3.5/R~ 3 %% <list [2]>
#> 6 /Library/Frameworks/R.framework/Versions/3.5/R~ 3 mutate <named lis~
#> 7 /Library/Frameworks/R.framework/Versions/3.5/R~ 3/ <list [2]>
#> 8 /Library/Frameworks/R.framework/Versions/3.5/R~ 3 (<list [11>
#> 9 /Library/Frameworks/R.framework/Versions/3.5/R~ 3 <list [2]>
#> 10 /Library/Frameworks/R.framework/Versions/3.5/R~ 3 (<list [1]>
#> # ... with 25 more rows

This results is a tidy data frame with two additional columns: func the name of the function called
and args the arguments of the function called. Because this function takes a data frame as the first
argument, it works nicely with the tidyverse data manipulation packages. For example, we could get
the same data frame as above by using the following code.

The R Journal Vol. 12/1, June 2020

ISSN 2073-4859

https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=tidytext

CONTRIBUTED RESEARCH ARTICLE

232

df %>%
unne

#> # A
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#> 10

W oo NO Ul WN =

#> # ...

We can further manipulate this, for example we could select just the func and args columns using

st_calls(expr)

tibble: 35 x 4

file
<chr>
/Library/Frameworks/R.
/Library/Frameworks/R.
/Library/Frameworks/R.
/Library/Frameworks/R.
/Library/Frameworks/R.
/Library/Frameworks/R.
/Library/Frameworks/R.
/Library/Frameworks/R.
/Library/Frameworks/R.
/Library/Frameworks/R.
with 25 more rows

dplyr’s select () function.

df %>%
unne
sele

#> # A
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#> 10

W o0 NO Ul WN =

#> # ...

The get_classifications() function calls a classification data frame that we curated that classifies
the individual functions into one of nine categories: setup, exploratory, data cleaning, modeling,
evaluation, visualization, communication, import, or export. This can also be merged into the data
frame. For this classification analysis, we are using an inner_join(), keeping only the functions that
are classified, similar to the workflow for a sentiment analysis in tidytext (Silge and Robinson, 2017). If
you did not want to remove unclassified functions from your dataframe, the left_join() function

st_calls(expr) %>%
ct(func, args)

tibble: 35 x 2
func args
<chr> <list>
library <list [1]>
library <list [1]>

<- <list [2]>
%>% <list [2]>
%>% <list [2]>
mutate <named list [1
/ <list [2]>
(<list [11>
o <list [2]>
(<list [1]>

with 25 more rows

would be appropriate.

u %>%

framework/Versions/3.
framework/Versions/3.
framework/Versions/3.
framework/Versions/3.
framework/Versions/3.
framework/Versions/3.
framework/Versions/3.
framework/Versions/3.
framework/Versions/3.
framework/Versions/3.

1>

inner_join(get_classifications()) %>%
select(func, classification, lexicon, score)

#> # A
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#> 10

W oo N Ul WN =

#> # ...

tibble: 322 x 4

func classification
<chr> <chr>

library setup

library import
library visualization
library data cleaning
library modeling
library exploratory
library communication
library evaluation
library export
library setup

with 312 more rows

lexicon score
<chr> <db1l>
crowdsource 0.687
crowdsource 0.213
crowdsource 0.0339
crowdsource 0.0278
crowdsource 0.0134
crowdsource 0.0128
crowdsource 0.00835
crowdsource 0.00278
crowdsource 0.00111
leeklab 0.994

The R Journal Vol. 12/1, June 2020

5/R~
5/R~
5/R~
5/R~
5/R~
5/R~
5/R~
5/R~
5/R~
5/R~

line
<int>

1
2
3
3
3
3
3
3
3
3

func
<chr>
libra~
libra~
<_

%>%
%>%
mutate
/

(

A

(

args
<list>

<list [11>
<list [1]>
<list [2]>
<list [2]>
<list [2]>
<named lis~
<list [2]>
<list [1]>
<list [2]>
<list [1]>

ISSN 2073-4859

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=tidytext

CONTRIBUTED RESEARCH ARTICLE 233

There are two lexicons for classification, crowdsource and leeklab. The former was created by
volunteers who classified R code using the classify shiny application. The latter was curated by Jeff
Leek’s Lab. To select a particular lexicon, you can specify the lexicon parameter. For example, the
following code will merge in the crowdsource lexicon only.

u %>%
inner_join(get_classifications("crowdsource”)) %>%

select(func, classification, score)

#> # A tibble: 271 x 3

#> func classification score
#> <chr> <chr> <dbl>
#> 1 library setup 0.687
#> 2 library import 0.213
#> 3 library visualization @.0339
#> 4 library data cleaning 0.0278
#> 5 library modeling 0.0134
#> 6 library exploratory 0.0128
#> 7 library communication @.00835
#> 8 library evaluation 0.00278
#> 9 library export 0.00111
#> 10 library setup 0.687

#> # ... with 261 more rows

It is possible for a function to belong to multiple classes. This will result in multiple lines (and
multiple classifications) for a given function. By default, these multiple classifications are included
along with the prevalence of each, indicated by the score column. To merge in only the most prevalent
classification, set the include_duplicates option to FALSE.

u %>%
inner_join(get_classifications("crowdsource”, include_duplicates = FALSE)) %>%
select(func, classification)

#> # A tibble: 33 x 2
#> func classification
#> <chr> <chr>

#> 1 library setup

#> 2 library setup

#> 3 <- data cleaning
#> 4 %% data cleaning
#> 5 %% data cleaning
#> 6 mutate data cleaning
#> 7/ data cleaning
#> 8 (data cleaning
#> 9 4 modeling

#> 10 (data cleaning
#> # ... with 23 more rows

In text analysis, there is the concept of “stopwords”. These are often small common filler words
you want to remove before completing an analysis, such as “a” or “the”. In a tidy code analysis, we can
use a similar concept to remove some functions. For example we may want to remove the assignment
operator, <-, before completing an analysis. We have compiled a list of common stop functions in the

get_stopfuncs() function to anti join from the data frame.
u %>%
inner_join(get_classifications("crowdsource”, include_duplicates = FALSE)) %>%

anti_join(get_stopfuncs()) %>%
select(func, classification)

#> # A tibble: 15 x 2

#> func classification
#> <chr> <chr>
#> 1 library setup
#> 2 library setup
#> 3 mutate data cleaning
#> 4 select data cleaning

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://lucy.shinyapps.io/classify
https://jtleek.com
https://jtleek.com

CONTRIBUTED RESEARCH ARTICLE 234

#> 5 options setup

#> 6 summary exploratory
#> 7 plot visualization
#> 8 library setup

#> 9 select data cleaning
#> 10 filter data cleaning
#> 11 is.na data cleaning
#> 12 is.na data cleaning
#> 13 ggplot visualization
#> 14 aes visualization

#> 15 geom_point visualization

The development version of the tidycode package can be found on GitHub at https://github.com /jhudsl/tidycode.
Users can submit feature requests, issues, and bug reports here.

Examples
Online experiment: P-hack-athon

This first example demonstrates how to use the matahari and tidycode packages to analyze data from
a prospective study, using the “recording” capabilities of the matahari package to capture the code as
participants run it. Recently, we launched a “p-hack-athon” where we encouraged users to analyze
a dataset with the goal of producing the smallest p-value (IRB # IRB00008885, Not Human Subjects
Research Classification, Johns Hopkins Bloomberg School of Public Health IRB). We captured the code
the participants ran using the dance_start() and dance_stop() functions from the matahari package.
This resulted in a tidy data frame of R calls for each participant. We use the tidycode package to
analyze these matahari data frames.

Setup

library(tidyverse)
library(tidycode)

load the dataset, called df
load("data/df_phackathon.Rda")

The data from the “p-hack-a-thon” is saved as a data frame called df. This includes data from
29 participants. We have bound the expr column from the matahari data frame for each participant.
Using the unnest_calls() function, we unnest each of these R calls into a function and it’s arguments.

thl <- df %>%
unnest_calls(expr)

We can then remove the “stop functions” by doing an anti join with the get_stopfuncs() function
and merge in the crowd-sourced classifications with the get_classifications() function.

classification_tbl <- tbl %>%
anti_join(get_stopfuncs()) %>%
inner_join(get_classifications("crowdsource”, include_duplicates = FALSE))

Classifications We can use common data manipulation functions from dplyr. For example, on
average, “data cleaning” functions made up 36.4% of the functions run by participants (Table 1).

classification_tbl %>%
group_by(id, classification) %>%
summarise(n = n()) %>%
mutate(pct = n / sum(n)) %>%
group_by(classification) %>%
summarise(~Average percent® = mean(pct) * 100) %>%
arrange(-~Average percent”)

We can also examine the most common functions in each classification.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=tidycode
https://github.com/LucyMcGowan/tidycode
https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=dplyr

CONTRIBUTED RESEARCH ARTICLE 235
Table 1: Average percent of functions spent on each task.
classification Average percent
data cleaning 36.40
visualization 23.17
exploratory 21.32
setup 18.87
modeling 17.69
import 8.58
communication 5.14
evaluation 3.62
export 0.82
func_counts <- classification_tbl %>%
count(func, classification, sort = TRUE) %>%
ungroup()
func_counts
#> # A tibble: 152 x 3
#> func classification n
#> <chr> <chr> <int>
#> 1 summary exploratory 361
#> 2 1m modeling 277
#> 3 factor data cleaning 141
#> 4 select data cleaning 138
#> 5 library setup 128
#> 6 as.factor data cleaning 116
#> 7 filter data cleaning 107
#> 8 aes visualization 89
#> 9 ggplot visualization 82
#> 10 lmer modeling 80
#> # ... with 142 more rows
func_counts %>%
filter(classification %in% c("data cleaning”, "exploratory”, "modeling”, "visualization")) %>%

group_by(classification) %>%
top_n(5) %>%
ungroup() %>%

mutate(func = reorder(func, n)) %>%
ggplot(aes(func, n, fill = classification)) +

theme_bw() +
geom_col(show.legend = FALSE) +

facet_wrap(~classification, scales = "free_y") +
scale_x_discrete(element_blank()) +

scale_y_continuous("Number of function calls in each classification”) +

coord_flip()

We could then examine a word cloud of the functions used, colored by the classification. We can

do this using the wordcloud library.

li

cl

brary(wordcloud)

assification_tbl %>%
count(func, classification) %>%
with(

wordcloud(func, n,

colors = brewer.pal(9, "Set1")[factor(.$classification)],

random.order = FALSE,
ordered.colors = TRUE

The R Journal Vol. 12/1, June 2020

ISSN 2073-4859

https://CRAN.R-project.org/package=wordcloud

CONTRIBUTED RESEARCH ARTICLE 236

data cleaning exploratory
select 4 head 1 I
as.factor sum - I
filter 4 table I
is.na - dim A I
modeling visualization
Imer 4 - ggplot A -
cor.test 4 . geom_point - -
glm - . log A I
formula - . geom_smooth 4 I
6 160 260 360 6 160 260 360

Number of function calls in each classification

Figure 2: Functions that contribute to data cleaning, exploratory analysis, modeling and visualization
classifications in p-hack-athon trial. This plot ranks the most common functions in each classification
and displays the top 5, with the x-axis representing the number of times the given function was called.
For example, by far the most common function classified as "exploratory" is the ‘summary()’ function.
The most common function classified as "modeling" is the ‘Im()’ function.

Additionally, we could examine the variability in the types of functions used between groups.
For example, we asked participants whether they perform analyses as part of their job. 82.76% of
participants (n = 24) answered “Yes”.

classification_tbl %>%
group_by(id, analysis_job, classification) %>%
summarise(n = n()) %>%
mutate(pct = n / sum(n)) %>%
group_by(analysis_job, classification) %>%
summarise(n = n()) %>%
mutate(avg_pct = n / sum(n)) %>%
ggplot(aes(x = analysis_job, y = avg_pct, fill = classification)) +
geom_bar(stat = "identity") +
scale_y_continuous("Average percent”, labels = scales::percent) +
scale_x_discrete("Participant conducts analyses as part of their job")

Figure 4 demonstrates the variability in the types of functions users ran, split by whether they
conduct analyses as part of their jobs. It appears that users who conduct analyses as part of their jobs
ran a larger percentage of functions classified as “modeling”, “exploratory”, and “communication”,
whereas those who do not ran a larger percentage of “setup” functions. Of note, among those who do
not conduct analyses as part of their job, there were 0 functions used that classify as “communication”.
Had this experiment been run on a larger scale, we could potentially draw inference on the differences

between these two groups and how they choose to code.

Static Analysis

This second example demonstrates how to use the matahari and tidycode packages to analyze data
from a retrospective study, or static R scripts. Here, we use the read_rfiles() function from the
tidycode package. This wraps the dance_recital() matahari function and allows for multiple file
paths or URLs to be read, resulting in a tidy data frame. As an example, we are going to scrape all
of the R files from two of the most widely used data manipulation packages, the data.table package

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=data.table

CONTRIBUTED RESEARCH ARTICLE 237

replace log10

distinct arrange
set seegunique geom_line §
ifelse mean group b
sessioninfo ! Sum gim.np sample
> dim f la duplicated
dim Mmutate ormlaa p
tabl i
geom_p0|nt roun habc;acosgfn;ég?nse
ncol i minvars Imer eat rownames
Filter h : paS e which.min
2 %in%l_o% I ' l :AES function =
Bseq rin I t gplot -_5
str_extract list tibble e eC aov

wselect_if

starts_with I | braryﬁl aCtorch) nest

map
scale as data.frame Nrow -2 ‘Uas Date

a§ aCtOI’ filterexp s W£g PPy

me_minimal P ungroup
na.omit|g. na gIm setdiff
greplView fidy — » plot month
as.numeric for O.Q ol o e mat
class namesSU o>
append @) ool 3
geom_smooth O) Qsarprly =
g||mpse o 3 predlct
scale_y 10g10 length quantile

install.packages sqrt

Figure 3: Word cloud of functions used in the p-hack-athon trial, colored by classification. This
provides another view of the most common functions run in the p-hack-athon. The size of the function
corresponds to the number of times the function is called. For example, the ‘summary()’ function is
the largest, as this was the most frequently called function. The color of the function corresponds to
the classification of the function: red: communication, blue: data cleaning, green: evaluation, purple:
exploratory, orange: export, yellow: import, brown: modeling, pink: setup, grey: visualization.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 238

100% -

classification

oz L
75% . communication

data cleaning
evaluation
exploratory
50% -
export

import

Average percent

modeling

2504 - setup

visualization

0% -

No Yes
Participant conducts analyses as part of their job

Figure 4: Variability in the types of functions used by whether the participant performs analyses as
part of their job. The bar on the left represents the distribution of average classifications among those
who do not perform analyses as part of their job, the bar on the right represents the distribution of
the average classifications among those who do perform analyses as part of their job. It appears that
users who conduct analyses as part of their jobs ran a larger percentage of functions classified as
"modeling", "exploratory", and "communication”, whereas those who do not ran a larger percentage of
"setup” functions. Of note, among those who do not conduct analyses as part of their job, there were 0
functions used that classify as "communication".

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 239

(Dowle and Srinivasan, 2019) and the dplyr package. We are going to use the gh package (Bryan and
Wickham, 2017) to scrape these files from GitHub.

Setup We access the files via GitHub using the gh() function from the gh package. This gives a list
of download URLs that can be passed to the read_rfiles() function from the tidycode package.

library(tidyverse)
library(gh)
library(tidycode)

dplyr_code <- gh("/repos/tidyverse/dplyr/contents/R") %>%
purrr::map("download_url"”) %>%
read_rfiles()

datatable_code <- gh("/repos/Rdatatable/data.table/contents/R") %>%
purrr::map("download_url") %>%
read_rfiles()

Data Cleaning We can combine these two tidy data frames. We will do some small data manipula-
tion, removing R calls that were either NULL or character. For example, in the dplyr package some .R
files just reference data frames as a character string.

pkg_data <- bind_rows(
list(
dplyr = dplyr_code,
datatable = datatable_code

),
.id = "pkg"
) %%
filter(
Imap_lgl(expr, is.null),
Imap_lgl(expr, is.character)
)

Analyze R functions Now we can use the tidycode unnest_calls() function to create a tidy data
frame of the individual functions along with the arguments used to create both packages. Notice
here we are not performing an anti join on “stop functions”. For this analysis, we are interested
in examining some key differences in the commonly used functions contained the two packages.
Common operators may actually be of interest, so we do not want to drop them from the data frame.
We can count the functions by package.

func_counts <- pkg_data %>%
unnest_calls(expr) %>%
count(pkg, func, sort = TRUE)

func_counts

#> # A tibble: 1,163 x 3

#> pkg func n
#> <chr> <chr> <int>
#> 1 datatable = 1640
#> 2 dplyr <- 1634
#> 3 datatable if 1590
#> 4 datatable { 1172
#> 5 dplyr { 1047
#> 6 dplyr function 724
#> 7 datatable ! 616
#> 8 datatable <- 579
#> 9 datatable [564
#> 10 datatable length 557
#> # ... with 1,153 more rows

Using this data frame, we can visualize which functions are most commonly called in each package.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=gh
https://CRAN.R-project.org/package=gh
https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=tidycode

CONTRIBUTED RESEARCH ARTICLE 240

datatable dplyr
a

<— -

length A
&& A names -

stop A

@

>

«Q

=

>

' .
—

1

C
C
C
[
[

E

T T T T T
500 1000 1500 500 1000 1500

o

Figure 5: Most frequent functions used in data.table and dplyr package development. The y-axis
displays the 10 most frequently used functions for each package, the x-axis represents the number
of times that function is implemented. This allows us to examine coding style, for example the most
frequent function in the data.table packages is ‘=", compared to ‘<-’ in the dplyr package. The authors
of data.table use the ‘=" as an assignment operator at times, explaining this difference.

top_funcs <- func_counts %>%
group_by(pkg) %>%
top_n(10) %>%
ungroup() %>%
arrange(pkg, n) %>%
mutate(i = row_number())

ggplot(top_funcs, aes(i, n, fill = pkg)) +
theme_bw() +
geom_col(show.legend = FALSE) +
facet_wrap(~pkg, scales = "free") +
scale_x_continuous(
element_blank(),
breaks = top_funcs$i,
labels = top_funcs$func,
expand = c(@, @)
) +
coord_flip()

We can glean a few interesting details from Figure 5. First, the data.table authors sometimes
use the = as an assignment operator, resulting in this being the most frequent function used. The
dplyr authors always use <- for assignment, therefore this is the most frequent function seen in this
package (Wickham, 2019). Additionally, the dplyr authors often create modular code as a combination
of small functions to complete specific tasks. This may explain why function is the third most frequent
R call in this package, and less prevalent in the data.table package. This just serves as a glimpse of
what can be accomplished with these tools.

Discussion

We have designed a framework to analyze the data analysis pipeline and created two R packages
that allow for the study of data analysis code conducted in R. We present two packages, matahari,

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=matahari

CONTRIBUTED RESEARCH ARTICLE 241

a package for logging everything that is typed in the R console or in an R script, and tidycode, a
package with tools to allow for analyzing R calls in a tidy manner. These tools can be applied both
to prospective studies, where a researcher can intentionally record code typed by participants, and
retrospectively, where the researcher can retrospectively analyze code. We believe that these tools will
help shape the next phase of reproducibility and replicability, allowing the analysis of code to inform
data science pedagogy, examine how collaborates conduct data analyses, and explore how current
software tools are being utilized.

Acknowledgements

We would like to extend a special thank you to the members of the Leek Lab at Johns Hopkins
Bloomberg School of Public Health as well as volunteers who used the “classify” shiny application for
helping classify R functions.

Bibliography

J. Bryan and H. Wickham. Gh: 'GitHub” "API’, 2017. URL https://CRAN.R-project.org/package=gh.
R package version 1.0.1. [p239]

A. Buja, D. Cook, H. Hofmann, M. Lawrence, E.-K. Lee, D. F. Swayne, and H. Wickham. Statistical
inference for exploratory data analysis and model diagnostics. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1906):4361-4383, 2009. URL
https://doi.org/10.1098/rsta.2009.0120. [p226]

M. Dowle and A. Srinivasan. Data.table: Extension of ‘data.frame’, 2019. URL https://CRAN.R-project.
org/package=data.table. R package version 1.12.0. [p239]

J. Goecks, A. Nekrutenko, J. Taylor, and G. Team. Galaxy: a Comprehensive Approach for Supporting
Accessible, Reproducible, and Transparent Computational Research in the Life Sciences. Genome
biology, 11(8), 2010. URL https://doi.org/10.1186/gb-2010-11-8-r86. [p226]

J. P. A. Ioannidis, M. R. Munafo, P. Fusar-Poli, B. A. Nosek, and S. P. David. Publication and Other
Reporting Biases in Cognitive Sciences: Detection, Prevalence, and Prevention. Trends in Cognitive
Sciences, 18(5):235-241, 2014. URL https://doi.org/10.1016/j.tics.2014.02.010. [p226]

J. T. Leek and R. D. Peng. Opinion: Reproducible Research Can Still Be Wrong: Adopting a Prevention
Approach. Proceedings of the National Academy of Sciences, 112(6):1645-1646, 2015. URL https:
//doi.org/10.1073/pnas.1421412111. [p226]

A. Loy, L. Follett, and H. Hofmann. Variations of q—q plots: The power of our eyes! The American
Statistician, 70(2):202-214, 2016. URL https://doi.org/10.1080/00031305.2015.1077728. [p226]

A. Loy, H. Hofmann, and D. Cook. Model choice and diagnostics for linear mixed-effects models
using statistics on street corners. Journal of Computational and Graphical Statistics, 26(3):478-492, 2017.
URL https://doi.org/10.1080/10618600.2017.1330207. [p226]

M. Majumder, H. Hofmann, and D. Cook. Validation of visual statistical inference, applied to linear
models. Journal of the American Statistical Association, 108(503):942-956, 2013. URL https://doi.
org/10.1080/01621459.2013.808157. [p226]

M. McNutt. Reproducibility. Science, 343(6168):229-229, 2014. URL https://doi.org/10.1126/
science.1250475. [p226]

E. Miguel, C. Camerer, K. Casey, J. Cohen, K. M. Esterling, A. Gerber, R. Glennerster, D. P. Green,
M. Humphreys, G. Imbens, D. Laitin, T. Madon, L. Nelson, B. A. Nosek, M. Petersen, R. Sedlmayr,
J. P. Simmons, U. Simonsohn, and M. Van der Laan. Promoting Transparency in Social Science
Research. Science, 343(6166):30-31, 2014. URL https://doi.org/10.1126/science.1245317. [p226]

B. A. Nosek, G. Alter, G. C. Banks, D. Borsboom, S. D. Bowman, S. J. Breckler, S. Buck, C. D. Chambers,
G. Chin, G. Christensen, M. Contestabile, A. Dafoe, E. Eich, J. Freese, R. Glennerster, D. Goroff,
D. P. Green, B. Hesse, M. Humphreys, J. Ishiyama, D. Karlan, A. Kraut, A. Lupia, P. Mabry,
T. A. Madon, N. Malhotra, E. Mayo-Wilson, M. McNutt, E. Miguel, E. L. Paluck, U. Simonsohn,
C. Soderberg, B. A. Spellman, J. Turitto, G. VandenBos, S. Vazire, E.]. Wagenmakers, R. Wilson,
and T. Yarkoni. Promoting an Open Research Culture. Science, 348(6242):1422-1425, 2015. URL
https://doi.org/10.1126/science.aab2374. [p226]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=gh
https://doi.org/10.1098/rsta.2009.0120
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=data.table
https://doi.org/10.1186/gb-2010-11-8-r86
https://doi.org/10.1016/j.tics.2014.02.010
https://doi.org/10.1073/pnas.1421412111
https://doi.org/10.1073/pnas.1421412111
https://doi.org/10.1080/00031305.2015.1077728
https://doi.org/10.1080/10618600.2017.1330207
https://doi.org/10.1080/01621459.2013.808157
https://doi.org/10.1080/01621459.2013.808157
https://doi.org/10.1126/science.1250475
https://doi.org/10.1126/science.1250475
https://doi.org/10.1126/science.1245317
https://doi.org/10.1126/science.aab2374

CONTRIBUTED RESEARCH ARTICLE 242

R. D. Peng. Reproducible Research in Computational Science. Science, 334(6060):1226-1227, 2011. URL
https://doi.org/10.1126/science.1213847. [p226]

B. Richard. Reproducibility Undergoes Scrutiny. BioScience, 64(4):368-368, 2014. [p226]

Y. Sidi and O. Harel. The Treatment of Incomplete Data: Reporting, Analysis, Reproducibility, and
Replicability. Social Science & Medicine, 209:169-173, 2018. URL https://doi.org/10.1016/7.
socscimed.2018.05.037. [p226]

R. Silberzhan, E. L. Uhlmann, D. P. Martin, P. Anselmi, F. Aust, E. Awtrey, étépén Bahnik, F. Bai,
C. Bannard, E. Bonnier, and others. Many analysts, one data set: Making transparent how variations
in analytic choices affect results. Advances in Methods and Practices in Psychological Science, 1(3):
337-356, 2018. URL https://doi.org/10.1177/2515245917747646. [p226]

J. Silge and D. Robinson. Tidytext: Text mining and analysis using tidy data principles in r. The Journal
of Open Source Software, 1(3):37,2016. URL https://doi.org/10.21105/joss.00037. [p227]

J. Silge and D. Robinson. Text Mining with R: A Tidy Approach. " O'Reilly Media, Inc.", 2017. [p227, 232]

D. Waltemath and O. Wolkenhauer. How Modeling Standards, Software, and Initiatives Support
Reproducibility in Systems Biology and Systems Medicine. Ieee Transactions on Biomedical Engineering,
63(10):1999-2006, 2016. URL https://doi.org/10.1109/TBME.2016.2555481. [p226]

H. Wickham. R Packages: Organize, Test, Document, and Share Your Code. " O’Reilly Media, Inc.", 2015.
[p226]

H. Wickham. The tidyverse style guide, 2019. URL https://style.tidyverse.org. [p226, 240]

H. Wickham and G. Grolemund. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. "
O'Reilly Media, Inc.", 2016. [p226]

H. Wickham, D. Cook, and H. Hofmann. Visualizing statistical models: Removing the blindfold.
Statistical Analysis and Data Mining: The ASA Data Science Journal, 8(4):203-225, 2015. URL https:
//doi.org/10.1002/sam.11271. [p226]

H. Wickham, M. Averick, J. Bryan, W. Chang, L. D. McGowan, R. Frangois, G. Grolemund, A. Hayes,
L. Henry, J. Hester, M. Kuhn, T. L. Pedersen, E. Miller, S. M. Bache, K. Miiller, J. Ooms, D. Robinson,
D. P. Seidel, V. Spinu, K. Takahashi, D. Vaughan, C. Wilke, K. Woo, and H. Yutani. Welcome to the
tidyverse. Journal of Open Source Software, 4(43):1686, 2019. URL https://doi.org/10.21105/joss.
01686. [p226]

Lucy D’Agostino McGowan

Wake Forest University
Winston-Salem, North Carolina, USA
lucydagostino@gmail.com

Sean Kross

UC San Diego

La Jolla, California, USA
seankross@ucsd. edu

Jeffrey Leek

Johns Hopkins Bloomberg School of Public Health
Baltimore, Maryland, USA

jtleek@gmail.com

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1126/science.1213847
https://doi.org/10.1016/j.socscimed.2018.05.037
https://doi.org/10.1016/j.socscimed.2018.05.037
https://doi.org/10.1177/2515245917747646
https://doi.org/10.21105/joss.00037
https://doi.org/10.1109/TBME.2016.2555481
https://style.tidyverse.org
https://doi.org/10.1002/sam.11271
https://doi.org/10.1002/sam.11271
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.01686
mailto:lucydagostino@gmail.com
mailto:seankross@ucsd.edu
mailto:jtleek@gmail.com

	Tools for Analyzing R Code the Tidy Way
	Introduction
	Methods
	Examples
	Discussion
	Acknowledgements

