Tools for Analyzing R Code the Tidy Way

by Lucy D’Agostino McGowan, Sean Kross, Jeffrey Leek

Abstract
With the current emphasis on reproducibility and replicability, there is an increasing need to examine how data analyses are conducted. In order to analyze the between researcher variability in data analysis choices as well as the aspects within the data analysis pipeline that contribute to the variability in results, we have created two R packages: matahari and tidycode. These packages build on methods created for natural language processing; rather than allowing for the processing of natural language, we focus on R code as the substrate of interest. The matahari package facilitates the logging of everything that is typed in the R console or in an R script in a tidy data frame. The tidycode package contains tools to allow for analyzing R calls in a tidy manner. We demonstrate the utility of these packages as well as walk through two examples.

Introduction
With the current emphasis on reproducibility and replicability, there is an increasing need to examine how data analyses are conducted (Goecks et al., 2010; Peng, 2011; McNutt, 2014; Miguel et al., 2014; Ioannidis et al., 2014; Richard, 2014; Leek and Peng, 2015; Nosek et al., 2015; Sidi and Harel, 2018). In order to accurately replicate a result, the exact methods used for data analysis need to be recorded, including the specific analytic steps taken as well as the software utilized (Waltemath and Wolkenhauer, 2016). Studies across multiple disciplines have examined the global set of possible data analyses that can be conducted on a specific data set (Silberzhan et al., 2018). While we are able to define this global set, very little is known about the actual variation that exists between researchers. For example, it is possible that the true range of data analysis choices is realistically a much more narrow set than the global sets that are presented. There is a breadth of excellent research and experiments examining how people read visual information (Majumder et al., 2013; Loy et al., 2017; Wickham et al., 2015; Buja et al., 2009; Loy et al., 2016), for example the Experiments on Visual Inference detailed here: (http://mamajumder.github.io/html/experiments.html), but not how they actually make analysis choices, specifically analysis coding choices. In addition to not knowing about the “data analysis choice” variability between researchers, we also do not know which portions of the data analysis pipeline result in the most variability in the ultimate research result. We seek to build tools to analyze these two aspects of data analysis:

1. The between researcher variability in data analysis choices
2. The aspects within the data analysis pipeline that contribute to the variability in results

Specifically, we have designed a framework to conduct such analyses and created two R packages that allow for the study of data analysis code conducted in R. In addition to answering these crucial questions for broad research fields, we see these tools having additional concrete use cases. These tools will facilitate data science and statistics pedagogy, allowing researchers and instructors to investigate how students are conducting data analyses in the classroom. Alternatively, a researcher could use these tools to examine how collaborators have conducted a data analysis. Finally, these tools could be used in a meta-manner to explore how current software and tools in R are being utilized.

Tidy principles
We specifically employ tidy principles in our proposed packages. Tidy refers to an implementation strategy propagated by Hadley Wickham and implemented by the Tidyverse team at RStudio (Wickham and Grolemund, 2016) Here, by tidy we mean our packages adhere to the following principles:

1. Our functions follow the principles outlined in R packages (Wickham, 2015) as well as the tidyverse style guide (Wickham, 2019).
2. Our output data sets are tidy, as in:
 • Each variable has its own column.
 • Each observation has its own row.
 • Each value has its own cell.

By implementing these tidy principles, and thus outputting tidy data frames, we allow for data manipulation and analysis to be conducted using a specific set of tools, such as those included in the tidyverse meta package (Wickham et al., 2019).

Ultimately, we create a mechanism to utilize methods created for natural language processing; here the substrate is code rather than natural language. We model our tools to emulate the tidytext
CONTRIBUTED RESEARCH ARTICLE

Figure 1: A flowchart of a typical analysis that uses matahari and tidycode to analyze and classify R code.

We present two packages, matahari, a package for logging everything that is typed in the R console or in an R script, and tidycode, a package with tools to allow for analyzing R calls in a tidy manner. In this paper, we first explain how these packages work. We then demonstrate two examples, one that analyzes data collected from an online experiment, and one that analyzes “old” data via previously created R scripts.

Methods

We have created two R packages, matahari and tidycode. The former is a way to log R code, the latter allows the user to analyze R calls on the function-level in a tidy manner. Figure 1 is a flowchart of the process described in more detail below. This flowchart is adapted from Figure 2.1 in *Text Mining with R: A Tidy Approach* (Silge and Robinson, 2017).

We demonstrate how to create these tidy data frames of R code and then emulate the data analysis workflow similar to that put forth in the tidy text literature.

Terminology

In this paper, we refer to R “expressions” or “calls” as well as R “functions” and “arguments”. An R call is a combination of an R function with arguments. For example, the following is an R call (Example 1).

```r
library(tidycode)
```

Example 1. R call, library

Another example of an R call is the following piped chain of functions from the dplyr package (Example 2).

```r
starwars %>%
  select(height, mass)
```

Example 2. Piped R call

Specifically, we know something is a call in R if `is.call()` is TRUE.

```r
quote(starwars %>%
  select(height, mass)) %>%
is.call()
#> [1] TRUE
```

Calls in R are made up of a function or name of a function, and arguments. For example, the call `library(tidycode)` from Example 1 is comprised of the function `library()` and the argument `tidycode`. Example 2 is a bit more complicated. The piped code can be rewritten, as seen in Example 3.
Example 3. Rewritten piped R call

From this example, it is easier to see that the function for this R call is `%>%` with two arguments, `starwars` and `select(height, mass)`. Notice that one of these arguments is an R call itself, `select(height, mass).

matahari

matahari is a simple package for logging R code in a tidy manner. It can be installed from CRAN using the following code.

```
install.packages("matahari")
```

There are three ways to use the matahari package:

1. Record R code as it is typed and output a tidy data frame of the contents
2. Input a character string of R code and output a tidy data frame of the contents
3. Input an R file containing R code and output a tidy data frame of the contents

In the following sections, we will split these into two categories, tidy logging from the R console (1) and tidy logging from an R script (2 and 3).

Tidy logging from the R console

In order to begin logging from the R console, the `dance_start()` function is used. Logging is paused using `dance_stop()` and the log can be viewed using `dance_tbl()`.

```
library(matahari)
dance_start()
1 + 2
"here is some text"
sum(1:10)
dance_stop()
dance_tbl()
```

#> # A tibble: 6 x 6
#> expr value path contents selection dt
#> <list> <list> <list> <list> <list> <dttm>
#> 1 <language... <S3: sessionIn... <lgl [1... <lgl [1... <lgl [1]> 2018-09-11 22:22:12
#> 6 <language... <S3: sessionIn... <lgl [1... <lgl [1... <lgl [1]> 2018-09-11 22:22:12

Example 4. Logging R code from the R console using matahari

The resulting tidy data frame consists of 6 columns: `expr`, the R call that was run, `value`, the value that was output, `path`, if the code was run within RStudio, this will be the path to the file in focus, `contents`, the file contents of the RStudio editor tab in focus, `selection`, the text that is highlighted in the RStudio editor tab in focus, and `dt`, the date and time the expression was run. By default, `value`, `path`, `contents` and `selection` will not be logged unless the argument is set to `TRUE` in the `dance_start()` function. For example, if the analyst wanted the output data frame to include the values computed, they would input `dance_start(value = TRUE)`.

In this particular data frame, there are 6 rows. The first and final rows report the R session information at the time when `dance_start()` was initiated (row 1) and when `dance_stop()` was run (row 6). The second row holds the R call `dance_start()`, the first command run in the R console, was run; the third row holds `1 + 2`, the fourth holds `here is some text`, and the fifth holds `sum(1:10)`.

```
dance_tbl()[["expr"]]
```

#> [[1]]
#> sessionInfo()
#>
CONTRIBUTED RESEARCH ARTICLE

These functions work by saving an invisible data frame called .dance that is referenced by dance_tbl(). Each time dance_start() is subsequently run after dance_stop(), new rows of data are added to this data frame. This invisible data frame exists in a new environment created by the matahari package. We can remove this data frame by running dance_remove().

This data frame can be manipulated using common R techniques. Below, we rerun the same code as above, this time saving the values that are computed in the R console by using the value = TRUE parameter.

dance_start(value = TRUE)
1 + 2
"here is some text"
sum(1:10)
dance_stop()
tbl <- dance_tbl()

As an example of the type of data wrangling that this tidy format allows for, using dplyr and purrr, we can manipulate this to only examine expressions that result in numeric values.

library(dplyr)
library(purrr)

t_numeric <- tbl %>%
 mutate(
 numeric_output = map_lgl(value, is.numeric)
) %>%
 filter(numeric_output)

t_numeric

Here, three rows are output, since we have filtered to only calls with numeric output:
1. The dance_start() call (this defaults to have a numeric value of 1)
2. The 1 + 2 call, resulting in a value of 3
3. The sum(1:10), resulting in a value of 55

Tidy logging from an R script In addition to allowing for the logging of everything typed in the R console, the matahari package also allows for the logging of pre-created R scripts. This can be done using the dance_recital() function, which allows for either a .R file or a character string of R calls as the input. For example, if we have a code file called sample_code.R, we can run dance_recital("sample_code.R") to create a tidy data frame. Alternatively, we can enter code directly as a string of text, such as dance_recital("1 + 2") to create the tidy data frame. Below illustrates this functionality.
Example 5. R call, Logging code from a .R file using `matahari`

```r
code_string <- ' 4 + 4
  "wow!"
  mean(1:10)
  stop("Error!")
  warning("Warning!")
  message("Hello?")
  cat("Welcome!")

dance_recital(code_string)
```

Example 6. Logging code from a character string using `matahari`

The resulting tidy data frame from `dance_recital()`, as seen in Examples 5 and 6, is different from that of `dance_tbl()`. This data frame has 6 columns. The first is the same as the `dance_tbl()`, `expr`, the R calls in the .R script or string of code. The subsequent columns are, `value`, the computed result of the R call, `error`, which contains the resulting error object from a poorly formed call, `output`, the printed output from a call, `warnings`, the contents of any warnings that would be displayed in the console, and `messages`, the contents of any generated diagnostic messages. Now that we have a tidy data frame with R calls obtained either from the R console or from a .R script, we can analyze them using the `tidycode` package.

The development version of the `matahari` package can be found on GitHub at https://github.com/jhudsl/matahari. Users can submit feature requests, issues, and bug reports here.

tidycode

The goal of `tidycode` is to allow users to analyze R scripts, calls, and functions in a tidy way. There are two main tasks that can be achieved with this package:

1. We can “tokenize” R calls
2. We can classify the functions run into one of nine potential data analysis categories: “Setup”, “Exploratory”, “Data Cleaning”, “Modeling”, “Evaluation”, “Visualization”, “Communication”, “Import”, or “Export”.

The `tidycode` package can be installed from CRAN in the following manner.

```r
install.packages("tidycode")
```
library(tidycode)

We can first create a tidy data frame using the `matahari` package. Alternatively, we can use a function in the `tidycode` package that wraps the `dance_recital()` function called `read_rfiles()`. This function allows you to read in multiple .R files or links to .R files. There are a few example files included in the `tidycode` package. The paths to these files can be accessed via the `tidycode_example()` function. For example, running the following code will give the file path for the `example_analysis.R` file.

```r
tidycode_example("example_analysis.R")
```

Running the function without any file specified will supply a vector of all available file names.

```r
tidycode_example()
#> [1] "example_analysis.R" "example_plot.R"
```

We can use these example files in the `read_rfiles()` function.

```r
df <- read_rfiles(tidycode_example(c("example_analysis.R", "example_plot.R")))
df
#> # A tibble: 9 x 3
#> file                                  expr            line
#> <chr>                                  <list>         <int>
#> 1 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/tidycode/extdata/fake 함수 파일 1
#> 2 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/tidycode/extdata/fake 함수 파일 2
#> 3 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/tidycode/extdata/fake 함수 파일 3
#> 4 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/tidycode/extdata/fake 함수 파일 4
#> 5 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/tidycode/extdata/fake 함수 파일 5
#> 6 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/tidycode/extdata/fake 함수 파일 6
#> 7 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/tidycode/extdata/fake 함수 파일 7
#> 8 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/tidycode/extdata/fake 함수 파일 8
#> 9 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/tidycode/extdata/fake 함수 파일 9
```

This will give a tidy data frame with three columns: `file`, the path to the file, `expr` the R call, and `line` the line the call was made in the original .R file.

We can then use the `unnest_calls()` function to create a data frame of the calls, splitting each into the individual functions and arguments. We liken this to the `tidytext unnest_tokens()` function. This function has two parameters, `.data`, the data frame that contains the R calls, and `input` the name of the column that contains the R calls. In this case, the data frame is `df` and the input column is `expr`.

```r
u <- unnest_calls(df, expr)
u
#> # A tibble: 35 x 4
#> file                                             line func args
#> <chr>                                           <int> <chr> <list>
#> 1 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/tidycode/extdata/fake 함수 파일 1 libra- <list [1]>
#> 2 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/tidycode/extdata/fake 함수 파일 2 libra- <list [1]>
#> 3 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/tidycode/extdata/fake 함수 파일 3 <- <list [2]>
#> 4 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/tidycode/extdata/fake 함수 파일 4 %>% <list [2]>
#> 5 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/tidycode/extdata/fake 함수 파일 5 %>% <list [2]>
#> 6 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/tidycode/extdata/fake 함수 파일 6 mutate <named lis-
#> 7 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/tidycode/extdata/fake 함수 파일 7 / <list [2]>
#> 8 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/tidycode/extdata/fake 함수 파일 8 ( <list [1]>
#> 9 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/tidycode/extdata/fake 함수 파일 9 ( <list [2]>
#> 10 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/tidycode/extdata/fake 함수 파일 10 ( <list [1]>
```

This results is a tidy data frame with two additional columns: `func` the name of the function called and `args` the arguments of the function called. Because this function takes a data frame as the first argument, it works nicely with the tidyverse data manipulation packages. For example, we could get the same data frame as above by using the following code.
We can further manipulate this, for example we could select just the `func` and `args` columns using `dplyr`'s `select()` function.

```r
df %>%
  unnest_calls(expr) %>%
  select(func, args)
```

The `get_classifications()` function calls a classification data frame that we curated that classifies the individual functions into one of nine categories: setup, exploratory, data cleaning, modeling, evaluation, visualization, communication, import, or export. This can also be merged into the data frame. For this classification analysis, we are using an `inner_join()`, keeping only the functions that are classified, similar to the workflow for a sentiment analysis in `tidytext` (Silge and Robinson, 2017). If you did not want to remove unclassified functions from your dataframe, the `left_join()` function would be appropriate.

```r
u %>%
  inner_join(get_classifications()) %>%
  select(func, classification, lexicon, score)
```

The `get_classifications()` function calls a classification data frame that we curated that classifies the individual functions into one of nine categories: setup, exploratory, data cleaning, modeling, evaluation, visualization, communication, import, or export. This can also be merged into the data frame. For this classification analysis, we are using an `inner_join()`, keeping only the functions that are classified, similar to the workflow for a sentiment analysis in `tidytext` (Silge and Robinson, 2017). If you did not want to remove unclassified functions from your dataframe, the `left_join()` function would be appropriate.
There are two lexicons for classification, crowdsource and leeklab. The former was created by volunteers who classified R code using the classify shiny application. The latter was curated by Jeff Leek’s Lab. To select a particular lexicon, you can specify the lexicon parameter. For example, the following code will merge in the crowdsource lexicon only.

```r
u %>%
inner_join(get_classifications("crowdsource")) %>%
select(func, classification, score)
```

> # A tibble: 271 x 3
> # func classification score
> 1 library setup 0.687
> 2 library import 0.213
> 3 library visualization 0.0339
> 4 library data cleaning 0.0278
> 5 library modeling 0.0134
> 6 library exploratory 0.0128
> 7 library communication 0.00835
> 8 library evaluation 0.00278
> 9 library export 0.00111
> 10 library setup 0.687
> # ... with 261 more rows

It is possible for a function to belong to multiple classes. This will result in multiple lines (and multiple classifications) for a given function. By default, these multiple classifications are included along with the prevalence of each, indicated by the score column. To merge in only the most prevalent classification, set the include_duplicates option to FALSE.

```r
u %>%
inner_join(get_classifications("crowdsource", include_duplicates = FALSE)) %>%
select(func, classification)
```

> # A tibble: 33 x 2
> # func classification
> 1 library setup
> 2 library setup
> 3 <- data cleaning
> 4 %>% data cleaning
> 5 %>% data cleaning
> 6 mutate data cleaning
> 7 / data cleaning
> 8 (data cleaning
> 9 ^ modeling
> 10 (data cleaning
> # ... with 23 more rows

In text analysis, there is the concept of “stopwords”. These are often small common filler words you want to remove before completing an analysis, such as “a” or “the”. In a tidy code analysis, we can use a similar concept to remove some functions. For example we may want to remove the assignment operator, `<-`, before completing an analysis. We have compiled a list of common stop functions in the get_stopfuncs() function to anti join from the data frame.

```r
u %>%
inner_join(get_classifications("crowdsource", include_duplicates = FALSE)) %>%
anti_join(get_stopfuncs()) %>%
select(func, classification)
```

> # A tibble: 15 x 2
> # func classification
> 1 library setup
> 2 library setup
> 3 mutate data cleaning
> 4 select data cleaning
> 5
> 6
> 7
> 8
> 9
> 10
> # ... with 9 more rows

In text analysis, there is the concept of “stopwords”. These are often small common filler words you want to remove before completing an analysis, such as “a” or “the”. In a tidy code analysis, we can use a similar concept to remove some functions. For example we may want to remove the assignment operator, `<-`, before completing an analysis. We have compiled a list of common stop functions in the get_stopfuncs() function to anti join from the data frame.

```r
u %>%
inner_join(get_classifications("crowdsource", include_duplicates = FALSE)) %>%
anti_join(get_stopfuncs()) %>%
select(func, classification)
```

> # A tibble: 15 x 2
> # func classification
> 1 library setup
> 2 library setup
> 3 mutate data cleaning
> 4 select data cleaning
Examples

Online experiment: P-hack-a-thon

This first example demonstrates how to use the `matahari` and `tidycode` packages to analyze data from a prospective study, using the “recording” capabilities of the `matahari` package to capture the code as participants run it. Recently, we launched a “p-hack-a-thon” where we encouraged users to analyze a dataset with the goal of producing the smallest p-value (IRB # IRB00008885, Not Human Subjects Research Classification, Johns Hopkins Bloomberg School of Public Health IRB). We captured the code the participants ran using the `dance_start()` and `dance_stop()` functions from the `matahari` package. This resulted in a tidy data frame of R calls for each participant. We use the `tidycode` package to analyze these matahari data frames.

Setup

```r
library(tidyverse)
library(tidycode)
```

```r
## load the dataset, called df
load("data/df_phackathon.Rda")
```

The data from the “p-hack-a-thon” is saved as a data frame called `df`. This includes data from 29 participants. We have bound the `expr` column from the `matahari` data frame for each participant. Using the `unnest_calls()` function, we unnest each of these R calls into a function and it’s arguments.

```r
tbl <- df %>%
    unnest_calls(expr)
```

We can then remove the “stop functions” by doing an anti join with the `get_stopfuncs()` function and merge in the crowd-sourced classifications with the `get_classifications()` function.

```r
classification_tbl <- tbl %>%
    anti_join(get_stopfuncs()) %>%
    inner_join(get_classifications("crowdsource", include_duplicates = FALSE))
```

Classifications We can use common data manipulation functions from `dplyr`. For example, on average, “data cleaning” functions made up 36.4% of the functions run by participants (Table 1).

```r
classification_tbl %>%
    group_by(id, classification) %>%
    summarise(n = n()) %>%
    mutate(pct = n / sum(n)) %>%
    group_by(classification) %>%
    summarise("Average percent" = mean(pct) * 100) %>%
    arrange("Average percent")
```

We can also examine the most common functions in each classification.

The development version of the `tidycode` package can be found on GitHub at https://github.com/jhudsl/tidycode. Users can submit feature requests, issues, and bug reports here.
Table 1: Average percent of functions spent on each task.

<table>
<thead>
<tr>
<th>classification</th>
<th>Average percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>data cleaning</td>
<td>36.40</td>
</tr>
<tr>
<td>visualization</td>
<td>23.17</td>
</tr>
<tr>
<td>exploratory</td>
<td>21.32</td>
</tr>
<tr>
<td>setup</td>
<td>18.87</td>
</tr>
<tr>
<td>modeling</td>
<td>17.69</td>
</tr>
<tr>
<td>import</td>
<td>8.58</td>
</tr>
<tr>
<td>communication</td>
<td>5.14</td>
</tr>
<tr>
<td>evaluation</td>
<td>3.62</td>
</tr>
<tr>
<td>export</td>
<td>0.82</td>
</tr>
</tbody>
</table>

```
func_counts <- classification_tbl %>%
  count(func, classification, sort = TRUE) %>%
  ungroup()

func_counts
#> # A tibble: 152 x 3
#> func classification   n
#> <chr> <chr>           <int>
#> 1 summary exploratory 361
#> 2 lm modeling         277
#> 3 factor data cleaning 141
#> 4 select data cleaning 138
#> 5 library setup       128
#> 6 as.factor data cleaning 116
#> 7 filter data cleaning 107
#> 8 aes visualization   89
#> 9 ggplot visualization 82
#> 10 lmer modeling      80
#> # ... with 142 more rows

func_counts %>%
  filter(classification %in% c("data cleaning", "exploratory", "modeling", "visualization")) %>%
  group_by(classification) %>%
  top_n(5) %>%
  ungroup() %>%
  mutate(func = reorder(func, n)) %>%
  ggplot(aes(func, n, fill = classification)) +
  theme_bw() +
  geom_col(show.legend = FALSE) +
  facet_wrap(~classification, scales = "free_y") +
  scale_x_discrete(element_blank()) +
  scale_y_continuous("Number of function calls in each classification") +
  coord_flip()

We could then examine a word cloud of the functions used, colored by the classification. We can
do this using the `wordcloud` library.

library(wordcloud)

classification_tbl %>%
  count(func, classification) %>%
  with(
    wordcloud(func, n,
      colors = brewer.pal(9, "Set1")[factor(.classification)],
      random.order = FALSE,
      ordered.colors = TRUE
    )
  )
```
Figure 2: Functions that contribute to data cleaning, exploratory analysis, modeling and visualization classifications in p-hackathon trial. This plot ranks the most common functions in each classification and displays the top 5, with the x-axis representing the number of times the given function was called. For example, by far the most common function classified as “exploratory” is the `summary()` function. The most common function classified as “modeling” is the `lm()` function.

Additionally, we could examine the variability in the types of functions used between groups. For example, we asked participants whether they perform analyses as part of their job. 82.76% of participants (n = 24) answered “Yes”.

classification_tbl %>%
group_by(id, analysis_job, classification) %>%
summarise(n = n()) %>%
mutate(pct = n / sum(n)) %>%
group_by(analysis_job, classification) %>%
summarise(n = n()) %>%
mutate(avg_pct = n / sum(n)) %>%
ggplot(aes(x = analysis_job, y = avg_pct, fill = classification)) +
geom_bar(stat = "identity") +
scale_y_continuous("Average percent", labels = scales::percent) +
scale_x_discrete("Participant conducts analyses as part of their job")

Figure 4 demonstrates the variability in the types of functions users ran, split by whether they conduct analyses as part of their jobs. It appears that users who conduct analyses as part of their jobs ran a larger percentage of functions classified as “modeling”, “exploratory”, and “communication”, whereas those who do not ran a larger percentage of “setup” functions. Of note, among those who do not conduct analyses as part of their job, there were 0 functions used that classify as “communication”. Had this experiment been run on a larger scale, we could potentially draw inference on the differences between these two groups and how they choose to code.

Static Analysis

This second example demonstrates how to use the matahari and tidycode packages to analyze data from a retrospective study, or static R scripts. Here, we use the read_rfiles() function from the tidycode package. This wraps the dance_recital() matahari function and allows for multiple file paths or URLs to be read, resulting in a tidy data frame. As an example, we are going to scrape all of the .R files from two of the most widely used data manipulation packages, the data.table package...
Figure 3: Word cloud of functions used in the p-hackathon trial, colored by classification. This provides another view of the most common functions run in the p-hackathon. The size of the function corresponds to the number of times the function is called. For example, the `summary()` function is the largest, as this was the most frequently called function. The color of the function corresponds to the classification of the function: red: communication, blue: data cleaning, green: evaluation, purple: exploratory, orange: export, yellow: import, brown: modeling, pink: setup, grey: visualization.
Figure 4: Variability in the types of functions used by whether the participant performs analyses as part of their job. The bar on the left represents the distribution of average classifications among those who do not perform analyses as part of their job, the bar on the right represents the distribution of the average classifications among those who do perform analyses as part of their job. It appears that users who conduct analyses as part of their jobs ran a larger percentage of functions classified as "modeling", "exploratory", and "communication", whereas those who do not ran a larger percentage of "setup" functions. Of note, among those who do not conduct analyses as part of their job, there were 0 functions used that classify as "communication".
(Dowle and Srinivasan, 2019) and the dplyr package. We are going to use the gh package (Bryan and Wickham, 2017) to scrape these files from GitHub.

Setup We access the files via GitHub using the gh() function from the gh package. This gives a list of download URLs that can be passed to the read_rfiles() function from the tidycode package.

```r
library(tidyverse)
library(gh)
library(tidycode)

dplyr_code <- gh("/repos/tidyverse/dplyr/contents/R") %>%
purrr::map("download_url") %>%
  read_rfiles()

datatable_code <- gh("/repos/Rdatatable/data.table/contents/R") %>%
purrr::map("download_url") %>%
  read_rfiles()
```

Data Cleaning We can combine these two tidy data frames. We will do some small data manipulation, removing R calls that were either NULL or character. For example, in the dplyr package some .R files just reference data frames as a character string.

```r
pkg_data <- bind_rows(
  list(
    dplyr = dplyr_code,
    datatable = datatable_code
  ),
  .id = "pkg"
) %>%
  filter(  
    !map_lgl(expr, is.null),
    !map_lgl(expr, is.character)
  )
```

Analyze R functions Now we can use the tidycode unnest_calls() function to create a tidy data frame of the individual functions along with the arguments used to create both packages. Notice here we are not performing an anti join on “stop functions”. For this analysis, we are interested in examining some key differences in the commonly used functions contained the two packages. Common operators may actually be of interest, so we do not want to drop them from the data frame. We can count the functions by package.

```r
func_counts <- pkg_data %>%
  unnest_calls(expr) %>%
  count(pkg, func, sort = TRUE)

func_counts
```

```
# A tibble: 1,163 x 3
#   pkg func     n
#  <chr> <chr> <int>
# 1 datatable = 1640
# 2 dplyr <- 1634
# 3 datatable if 1590
# 4 datatable { 1172
# 5 dplyr { 1047
# 6 dplyr function 724
# 7 datatable ! 616
# 8 datatable <- 579
# 9 datatable [ 564
#10 datatable length 557
# ... with 1,153 more rows
```

Using this data frame, we can visualize which functions are most commonly called in each package.
Figure 5: Most frequent functions used in data.table and dplyr package development. The y-axis displays the 10 most frequently used functions for each package, the x-axis represents the number of times that function is implemented. This allows us to examine coding style, for example the most frequent function in the data.table packages is ‘=', compared to '<-' in the dplyr package. The authors of data.table use the ‘=’ as an assignment operator at times, explaining this difference.

top_funcs <- func_counts %>%
group_by(pkg) %>%
top_n(10) %>%
ungroup() %>%
arrange(pkg, n) %>%
mutate(i = row_number())
ggplot(top_funcs, aes(i, n, fill = pkg)) +
theme_bw() +
gem_col(show.legend = FALSE) +
facet_wrap(~pkg, scales = "free") +
scale_x_continuous(
 element_blank(),
 breaks = top_funcs$i,
 labels = top_funcs$func,
 expand = c(0, 0)
) +
coord_flip()

We can glean a few interesting details from Figure 5. First, the data.table authors sometimes use the ‘=’ as an assignment operator, resulting in this being the most frequent function used. The dplyr authors always use ‘<’ for assignment, therefore this is the most frequent function seen in this package (Wickham, 2019). Additionally, the dplyr authors often create modular code as a combination of small functions to complete specific tasks. This may explain why function is the third most frequent R call in this package, and less prevalent in the data.table package. This just serves as a glimpse of what can be accomplished with these tools.

Discussion

We have designed a framework to analyze the data analysis pipeline and created two R packages that allow for the study of data analysis code conducted in R. We present two packages, matahari,
a package for logging everything that is typed in the R console or in an R script, and \texttt{tidycode}, a package with tools to allow for analyzing R calls in a tidy manner. These tools can be applied both to prospective studies, where a researcher can intentionally record code typed by participants, and retrospectively, where the researcher can retrospectively analyze code. We believe that these tools will help shape the next phase of reproducibility and replicability, allowing the analysis of code to inform data science pedagogy, examine how collaborators conduct data analyses, and explore how current software tools are being utilized.

Acknowledgements

We would like to extend a special thank you to the members of the Leek Lab at Johns Hopkins Bloomberg School of Public Health as well as volunteers who used the “classify” shiny application for helping classify R functions.

Bibliography

R package version 1.0.1. [p239]

Lucy D’Agostino McGowan
Wake Forest University
Winston-Salem, North Carolina, USA
lucydagostino@gmail.com

Sean Kross
UC San Diego
La Jolla, California, USA
seankross@ucsd.edu

Jeffrey Leek
Johns Hopkins Bloomberg School of Public Health
Baltimore, Maryland, USA
jtleek@gmail.com