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Linear Fractional Stable Motion with
the rlfsm R Package
by Stepan Mazur and Dmitry Otryakhin

Abstract Linear fractional stable motion is a type of a stochastic integral driven by symmetric
alpha-stable Lévy motion. The integral could be considered as a non-Gaussian analogue of the
fractional Brownian motion. The present paper discusses R package rlfsm created for numerical
procedures with the linear fractional stable motion. It is a set of tools for simulation of these processes
as well as performing statistical inference and simulation studies on them. We introduce: tools that
we developed to work with that type of motions as well as methods and ideas underlying them.
Also we perform numerical experiments to show finite-sample behavior of certain estimators of the
integral, and give an idea of how to envelope workflow related to the linear fractional stable motion
in S4 classes and methods. Supplementary materials, including codes for numerical experiments, are
available online. rlfsm could be found on CRAN and gitlab.

Introduction

The linear fractional stable motion (shortly, lfsm) (Xt)t∈R on a filtered space (Ω,F , (Ft)t∈R, P) is
defined via

Xt =

∫
R

{
(t− s)H−1/α

+ − (−s)H−1/α
+

}
dLs, x+ := max{x, 0}, (1)

where Ls is a symmetric α-stable Lévy motion, α ∈ (0, 2), with the scaling parameter σ > 0 and
the self-similarity parameter H ∈ (0, 1). The lfsm is heavy-tailed process with infinite variance and
long-range dependence. A good overview on the role which this process plays in natural sciences
is done by Watkins et al. (2008). One could also find a review of stochastic properties of lfsm in
Mazur et al. (2020).

We proceed with introduction to existing software, with interest towards study of numerical
properties of statistical estimators for lfsm as the main motivation. So far, there is no standard
approach for software development to operating the general class of stochastic processes driven by
Lévy processes. Moreover, there was no systematic indexed and pier-reviewed software for simulating
sample paths of lfsm and related estimators prior to rlfsm. There is a particularly simple and useful
numerical algorithm for simulating lfsms developed by Stoev and Taqqu (2004). Other methods
for simulation of the processes can be found in (Wu et al., 2004) and (Biermé and Scheffler, 2008).
The paper (Stoev and Taqqu, 2004) contains a minimalistic implementation of lfsm generator as a
MATLAB function. However, some useful packages, that could be used in numerical routines with
Lévy-driven processes (e.g. to create lfsm generator and perform unit testing), exist and have been
implemented in R. For instance, R package somebm (Huang, 2013) contains functions for generation
of fractional Brownian motion (fBM). Currently archived by CRAN dvfBm (Coeurjolly, 2009) has
routines for generation of fBm and estimator of the Hurst parameter of the latter. stabledist (Wuertz
et al., 2016) and stable (Swihart et al., 2017) contain different functions for stable distributions
and random variables. A generator of random variables of the kind has been also implemented in
MATLAB (see the code in Chapter 1.7 in (Samorodnitsky and Taqqu, 1994)).

The paper is organized as follows. In Section 2.2 we present the simulation method for sample
paths of lfsm and its implementation in our path function. Then, we present functions for finite sample
studies of statistical estimators, and some other functions. Section 2.3 describes implementations of
the high- and the low-frequency parameter estimators and discusses reasons behind their numerical
behavior. Finally, in Section 2.4 we suggest an object oriented system that simplifies software
programming of Lévy-driven integrals.

Basic R functions

Types of data we use

The latest version of the package (1.0.0) suggests that we work with two types of sample paths.
In the low-frequency setting we only use points spaced 1 temporal index apart from each other,
X1,X2, . . . ,Xn. In the case of high-frequency, we use points with discretization equal to the length
of the path vector, X1/n,X2/n, . . . ,X1. This division is dictated by two issues: 1) the same division
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in the setting of limit theorems obtained by Mazur et al. (2020), and 2) the fact that there is
no inference technique for an arbitrary mixture of the two frequencies. Consequently, temporal
coordinates of low-frequency lfsm coincide with point index (compare coordinates and point_num
in the example in Section 2.2.2) which varies from 0 to N . Analogously, in case of high-frequency
scheme, temporal coordinates equal to point indexes divided by the total number of sampled points.
When after sampling the index set is different from either (1, 2, . . . ,N) or (1/n, 2/n, . . . , 1), rescaling
in time should be performed using the equality (aHXt)t≥0

d
= (Xat)t≥0 with a > 0 provided that H

is known or obtained via preliminary estimation.

Simulation method for the linear fractional stable motion

In this section, we start with a discussion on the simulation method of the lfsm proposed by Stoev
and Taqqu (2004) which is implemented in R by us. In particular, simulation of sample paths is done
via Riemann-sum approximations of its symmetric α-stable stochastic integral representation while
Riemann-sums are computed efficiently by using the Fast Fourier Transform algorithm. In R, we
introduce path function that creates sample paths of the lfsm. The idea underlying this sample path
generator is that it should be always possible not only to obtain lfsm path, but also the underlying
Lévy motion, generated during the procedure, and since the core function of lfsm is deterministic it
should allow for lfsm path generation based on a given Lévy motion, and, in theory, otherwise (not
always). For this reason generators of both processes were separated into independent parts (see
Figure 1).

lfsm

Lévy motion

Only initial
parameters

Figure 1: Scheme of generating Lévy motion and lfsm by path. Black arrows: when the algorithm
initially is given the parameters, it generates Lévy motion, and then lfsm. Green arrows: when Lévy
motion is needed without lfsm in order to save processing time, the algorithm bypasses computing
of the later. Blue arrows: given a Lévy motion and some parameters, the generator computes the
corresponding lfsm.

The function path can be used by

path(N,m,M,alpha,H,sigma,freq='L',disable_X=FALSE,
levy_increments=NULL,seed=NULL)

Parameters N,m,M regard to the index of the process, or time, if applicable. m and M are the only
means to control precision of the integral computation. N is a number of points of the lfsm to
generate. m is a discretization parameter that corresponds to the number of points where Lévy
motion is sampled between two nearby indexes (e.g. N and N − 1). M is the truncation parameter,
i.e. number of points after which the integrated function is set to zero; freq stands for the frequency
of the motion which can take two values: ‘H’ for high-frequency and ‘L’ for the low-frequency setting.
This is the switch between the two data types. disable_X is needed to disable computation of X,
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the default value is ‘FALSE’, when it is ‘TRUE’, only a Lévy motion is returned, which in turn reduces
the computation time. seed is a parameter that performs seeding of the lfsm generator. Technically,
in the path the seed is set just before Lévy increments are generated. The path function returns a
list containing the lfsm, the underlying Lévy motion, the point number of the motions from 0 to
N (point_num) and the corresponding coordinate which depends on the frequency, the parameters
(σ,α,H) that were used to generate the lfsm, and the predefined frequency.

Generation of symmetric α-stable (sαs) random variables is powered by function rstable from
package stabledist with S0 parametrization based on the Zolotarev’s representation for an α-stable
distribution with some modifications. S0 is used in order to make sigma a scale parameter of the
motion and to get exempt from computing the normalization constant CH,α presented in Stoev and
Taqqu (2004) and is given by

CH,α :=

(∫
R

∣∣∣(1− s)H−1/α
+ − (−s)H−1/α

+

∣∣∣α ds)1/α

.

The discrete convolution based algorithm and particularities of indexing

As it was mentioned in the beginning of Section 2.2.2, one of the features of path is the ability to
operate on a pair lfsm - Lévy motion and to switch between them. We recall that direct computation
of the sum approximating the integral in the definition of lfsm (1) would involve number of operations
proportional to NMm, which makes the method slow. Instead, the original algorithm by Stoev and
Taqqu (2004) suggests computing increments of lfsm with the help of

W (n) :=
mM∑
j=1

aH,m(j)Zα(n− j), (2)

where W (mk) is a discretized and truncated version of the increments of the lfsm, and in the limit
has the same distribution as them

{W (mk), k = 1, . . . ,N} d−−−−−−−−−−→
m→∞;M→∞

{X(k)−X(k− 1), k = 1, . . . ,N};

Zα(k) are i.i.d. sαs random variables that have indexes −mM , . . . ,mN − 1 and scaling parameter
equal to 1, and

aH,m(j) := C−1
H,α(m,M)

(
(j/m)H−1/α − (j/m− 1)H−1/α

+

)
m−1/α, j ∈N

with

CH,α(m,M) := m−1

mM∑
j=1

∣∣∣(j/m)H−1/α − (j/m− 1)H−1/α
+

∣∣∣α
1/α

.

-2 -1 0 1 2 3 4 5 index
7 9 1 3 8 2 6 8 Z

4 9 2 a
99 39 61 86 58 90 W(n)

Figure 2: Example of direct computation of sum of the form (2) for 2 vectors. a corresponds to
the kernel and Z- to the Lévy motion.

Let us consider an example which will recur and evolve throughout this section. Consider
computing sum (2) where m = 1, M = 3, and N = 6 (see Figure 2). The two rightmost cells for
W (n) are left empty because there is no sense in computing them without truncation of a.

A method based on the discrete convolution theorem is used to obtainW (mk). The theorem relies
on Discrete Fourier Transform (DFT), which needs to perform a number of operations proportional
to (mN +mM) log(mN +mM) instead of NMm. In order to understand how this method works,
we review several definitions and theorems.

Definition 2.2.1 For any sequence xn, n ∈ N, Discrete-Time Fourier Transform (DTFT) is
defined as

X = DTFT{xn}(ω) =
∞∑

n=−∞
xn exp(−inω).
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The reverse transform, IDTFT, is defined as

xn = IDTFT{X} = 1
2π

∫ 2π

0
X(ω)eiωndω.

Definition 2.2.2 Discrete convolution of two infinite sequences {An}n∈N and {Bn}n∈N is

(A ∗B)[n] :=
∞∑

m=−∞
A[m]B[n−m].

There is a convolution theorem for discrete sequences which says that the discrete convolution of
two sequences is equal to the Inverse Discrete Fourier Transform (IDFT) of the multiplication of the
direct transforms of the sequences:

Theorem 2.2.3 For any discrete sequences xn and yn, n ∈N, it holds that

(x ∗ y)[n] = IDTFT[DTFT{xn}(·)×DTFT{yn}(·)].

Definition 2.2.4 Let xn, n ∈ N be a sequence. Then {xN}[n], n ∈ N is called N-periodic
summation of the sequence:

{xN}[n] :=
∑
k∈N

x[n+ kN ].

It is straightforward that the periodic summation in the definition above has period N . In our
case, the latter theorem is applicable even though we will be interested in a finite sequence of length
Ñ . The sequence is padded with zeros to form an infinite one, and a periodic summation of a the
length Ñ is just a periodic extension of it.

… 0 0 4 9 2 0 0 0 … … 4 9 2 4 9 2 4 9 2 …

Figure 3: Example of periodic summation of a zero-padded finite sequence where the period equals
to the sequence length (N = Ñ).

DTFT is not directly useful for simulation purpose, that is why we need a special case of Theorem
2.2.3, Circular Convolution Theorem which reduces DTFT to DFT.

Definition 2.2.5 The DFT of a finite sequence xn of length N is defined as

Xk = DFTk(xn) :=
N−1∑
n=0

xn exp(−2πikn/N).

The IDFT is

xn :=
1
N

N−1∑
k=0

Xk exp(2πikn/N).

Theorem 2.2.6
(xN ∗ y)[n] = IDFT{DFT(xN )DFT(yN )}

Returning to the task of computing the sum in (2), we consider two vectors: a of length mM and
Z of length m(M +N). Here, we again index vectors starting with zero, not one. If we extend Z
periodically, pad a with zeros to make an infinite sequence, and compute (a ∗Zm(N+M))[n], values
with indexes [mM ; m(N +M)− 1] would coincide with the result of a convolution of a and Z. The
first mM values would be meaningless. This gives an idea how to use Circular Convolution Theorem
for computation of (2): instead of a ∗Z we compute one period of (a ∗Zm(N+M))[n] through the left
part of 2.2.6 and leave only meaningful values. Figure 4 illustrates the use of Circular Convolution
Theorem with periodic extensions of Z and padded a to compute (2). In this case results with
indexes -1 and -2 are meaningless and should be discarded.

Although the setup of the example as is on Figure 4 is fastest, it is impossible to use it directly,
because in some situations truncation parameter M is larger than N , the number of points of lfsm
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-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 index
7 9 1 3 8 2 6 8 Z

4 9 2 a
7 9 1 3 8 2 6 8 7 9 1 3 8 2 6 8 7 9 1 3 8 2 6 8 Z_N
0 0 4 9 2 0 0 0 0 0 4 9 2 0 0 0 0 0 4 9 2 0 0 0 a_N

Figure 4: Example of transformation of vectors a and Z into sequences before computing their
convolution.

sample path that is needed to be simulated. In this case path function performs an index shift using
the following property:

(a ∗ xc)[n] :=
+∞∑

k=−∞

a[k]·x[n− k− c]

=

+∞∑
k=−∞

a[k]·x[ñ− k] = (a ∗ x)[ñ− c]

(3)

This property is illustrated by Figure 5, wherein sequence x[n] is shifted by 2 to the right, so c = 2.
Accordingly, the resulting convolution also gets shifted 2 notches to the right (compare Figures 5
and 2). In general, according to (3), when x[n] is shifted to assign index zero to the first value, the
resulting convolution sequence also starts from the first meaningful value. Thus, path always keeps
the first Nm as the result of convolution operation and discards the rest.

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 index
7 9 1 3 8 2 6 8 7 9 1 3 8 2 6 8 7 9 1 3 8 2 6 8 Z_N
0 0 0 0 0 0 0 0 4 9 2 0 0 0 0 0 0 0 0 0 0 0 0 0 a_n

86 58 90 112 115 99 39 61 86 58 90 112 115 (a*Z_N)

Figure 5: Example of index shift in path function.

Examples

In the next example, we show how one can use the above function to generate a sample path and to
provide its visualization. Compare the procedure with the similar one from Section 2.4.1.

# Path generation
List<-path(N=2^10-600,m=256,M=600,alpha=1.8,H=0.8,

sigma=1,freq='L',disable_X=FALSE,seed=3)
str(List)

List of 7
$ point_num : int [1:425] 0 1 2 3 4 5 6 7 8 9 ...
$ coordinates : int [1:425] 0 1 2 3 4 5 6 7 8 9 ...
$ lfsm : num [1:425] 0 -1.3969 0.0159 1.6487 1.87 ...
$ levy_motion : num [1:425] 0 -21.8 28.3 42.1 38.1 ...
$ levy_increments: num [1:262144] -0.292 -0.708 -1.49 0.517 0.803 ...
$ pars : Named num [1:3] 1.8 0.8 1

..- attr(*, "names")= chr [1:3] "alpha" "H" "sigma"
$ frequency : chr "L"

# Normalized paths
Norm_lfsm<-List[['lfsm']]/max(abs(List[['lfsm']]))
Norm_oLm<-List[['levy_motion']]/max(abs(List[['levy_motion']]))

# Visualization of the paths
plot(Norm_lfsm, col=2, type="l", ylab="coordinate")
lines(Norm_oLm, col=3)
leg.txt <- c("lfsm", "oLm")
legend("topright", legend = leg.txt, col =c(2,3), pch=1)

The result of the chart rendering is shown on Figure 6. The following example shows how to
switch path function in order to alter between simulation of lfsm from scratch and computing based
on an existing sample path of the Lévy motion.
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Figure 6: Plot of sample path and Lévy motion with seed=2

m<-256; M<-600; N<-2^12-M
alpha<-1.8; H<-0.8; sigma<-1.8
seed<-2

# Creating Levy motion
levyIncrems<-path(N=N, m=m, M=M, alpha, H, sigma, freq='L',

disable_X=T, levy_increments=NULL, seed=seed)

# Creating lfsm based on the levy motion
lfsm_full<-path(m=m, M=M, alpha=alpha,

H=H, sigma=sigma, freq='L',
disable_X=F,
levy_increments=levyIncrems$levy_increments,
seed=seed)

sum(levyIncrems$levy_increments==
lfsm_full$levy_increments)==length(lfsm_full$levy_increments)

[1] TRUE

In the example the Lévy motion is generated without computing the lfsm, which was done
by setting disable_X=TRUE, and saved to variable levyIncrems. After that, path was given the
obtained Lévy increments and, basing on them, generated an lfsm path. As one can observe, the
Lévy increments from the both objects produced by path are identical. The same holds when we
obtain an lfsm path from the above procedure and one-step simulation of lfsm with seeding. These
two facts are used in automated tests provided for rlfsm package.

MCestimLFSM and numerical properties of statistical estimators

In order to study numerical properties of the estimation procedures developed in Mazur et al. (2020),
we created a technique, that could be used in solving this problem for any pair stochastic process
and an estimator. The approach was implemented in MCestimLFSM function (Figure 9). The main
motivation here is that for some estimators we have limit theorems, but we do not have theory which
describes estimator behavior when the length of a path is relatively small, and thus, for instance, we
cannot use closed-form expressions to obtain confidential intervals. In the following examples we
show how to use functions MCestimLFSM, PLot_vb, and Plot_dens for studying empirical variance,
bias and a density function of an estimator. In the first example, we study GenLowEstim estimator,
and its bias and variance dependencies on the length of the sample paths. In particular, one would
be able to determine starting from which path length the estimator loses significant bias influence.
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library(rlfsm)
library(gridExtra)
registerDoParallel()

m<-25; M<-55
p<-.4; p_prime<-.2
t1<-1; t2<-2
k<-2

NmonteC<-5e2
alpha<-1.8; H<-0.8; sigma<-0.3

S<-seq(from = 100, to = 2e3, by =50)
tilda_ests<-MCestimLFSM(s=S, fr='L', Nmc=NmonteC, m=m, M=M,

alpha=alpha,H=H,sigma=sigma,
GenLowEstim,t1=t1,t2=t2,p=p)

# Structure of tilda_ests
names(tilda_ests)
[1] "data" "data_nor" "means" "sds" "biases" "Inference" "params" "freq"

# Structure of BSdM is as follows

head(round(tilda_ests$means,2))
alpha H sigma s

1 1.76 0.67 0.25 100
2 1.81 0.70 0.27 150
3 1.81 0.71 0.27 200
4 1.82 0.73 0.28 250
5 1.83 0.74 0.28 300
6 1.83 0.75 0.29 350

head(round(tilda_ests$biases,2))
alpha H sigma s

1 -0.04 -0.13 -0.05 100
2 0.01 -0.10 -0.03 150
3 0.01 -0.09 -0.03 200
4 0.02 -0.07 -0.02 250
5 0.03 -0.06 -0.02 300
6 0.03 -0.05 -0.01 350

head(round(tilda_ests$sds,2))
alpha H sigma s

1 0.19 0.23 0.09 100
2 0.14 0.20 0.08 150
3 0.13 0.19 0.08 200
4 0.13 0.19 0.07 250
5 0.10 0.17 0.06 300
6 0.11 0.17 0.06 350

Plot_vb(tilda_ests)
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Figure 7: Variance and bias dependence on path length of tilde- estimators, described in Section
2.3.2.

Figure 7 shows that when (σ,α,H) = (0.3, 1.8, 0.8), estimator GenLowEstim could be considered
unbiased starting approximately from 1000 points.

The second example compares empirical standardized densities of estimates, obtained by
GenLowEstim with the limiting standard normal ones, Figure 8.

S<-c(1e2,1e3,1e4)
tilda_ests<-MCestimLFSM(s=S, fr='L', Nmc=NmonteC ,m=m, M=M,

alpha=alpha, H=H, sigma=sigma,
GenLowEstim,t1=t1,t2=t2,p=p)

l_plot<-Plot_dens(par_vec=c('sigma','alpha','H'), MC_data=tilda_ests,
Nnorm=1e7)

ggg<-grid.arrange(l_plot[[1]],l_plot[[2]],l_plot[[3]],nrow=1,ncol=3)

In short, in these examples for different path lengths s, NmonteC lfsm paths are simulated.
To each path we apply tilde-statistic (see Section 2.3.2), therefore obtaining NmonteC estimates
(σ̃low, α̃low, H̃low) for every s, which in turn, are used to calculate biases, standard deviations, and
density functions (also, for each s separately).

MCestimLFSM architecture and optimization

It is important to notice that generation of lfsm is numerically heavy routine and also a large number
of estimates is needed to compare their empirical distributions with the limiting ones. The latter
task gave MCestimLFSM its name. Thus, in order to make computations feasible in terms of time
and memory use, the architecture of MCestimLFSM must be well-optimized. Apparently, a multi-core
setup is crucial for dealing with the task.

Having fixed a path length, the whole procedure behind MCestimLFSM could be split in two parts.
First, we need to obtain samples for each estimator. Second, we obtain statistics of these samples
(see Figure 9). Once finished, MCestimLFSM proceeds to the next length value until reaches the end
of the vector of lengths.

In the first part, we generate NMonte Carlo lfsm paths of the length s[i] via path_fast function.
To each of the paths we apply all the estimators to obtain H, α, and σ estimates. During this stage,
we use a foreach-based parallel loop, where each node simulates a path, computes and returns
the statistics removing the path from memory. path_fast is an unavailable for users version of
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Figure 8: Empirical distributions of tilde- estimates, described in Section 2.3.2.

path with significantly reduced functionality for the sake of saving execution time. The further
desired enlargement of the node task by adding generation of the whole set of paths instead of just
one, making the loop over s[i] parallel, leads to extreme memory consumption as well as unequal
distribution of load among nodes. The number of numeric values in the set of paths equals to
NMonte Carlo × s[i]. Simulations, performed in Mazur et al. (2020) showed that normal distribution
is attained by estimators at s = 103. Given the fact that we need at least 105 Monte Carlo trials for
a neat histogram of a distribution, one can obtain the amount of memory required to store a matrix
of size NMonte Carlo × s[i], which makes 763Mb, while some estimators require 80Gb per node. That
is the reason why in the current version of MCestimLFSM the loop over s is sequential, and the one
over NmonteC is parallel.

During the second part, averages and standard deviations of the samples are computed, and
subsequently used to compute the standardized empirical distributions. So that, the three character-
istics naturally come together within the same numerical procedure. So far there is no empirical
evidence that parallel execution in this section makes MCestimLFSM more efficient.

Such architecture is of great use when the number of nodes available for computations exceeds
the number of path length, and the length s[i] differs significantly from s[j] when i 6= j.

On some of the other basic functions

In this part, we will describe aspects of some of the other R functions implemented in the package.

Higher-order increments

These increments are the main building block for all statistics we use (see Section 2.3). They are
defined as k-th iterated increments of step r of a sample path. In particular, ∆n,1

i,1 X := X i
n
−X i−1

n
,

and ∆n,1
i,2 X := X i

n
− 2X i−1

n
+X i−2

n
. In rlfsm, we built two functions for computation of objects of

this class- increment() and increments(). The former accepts a vector of points at which a user
wants to evaluate higher-order increments, and computes them using formula

∆n,r
i,kX :=

k∑
j=0

(−1)j
(
k

j

)
X(i−rj)/n. (4)

Before evaluation of (4), the function checks the condition i < kr. Evaluation of the increments
on a sample path of length N takes (k + 1)(N − kr) operations- k + 1 sums for N − kr points.
increments() computes increments iteratively on the whole set of path points. The first iteration
gives N − r increments, the second- N − 2r and so on. Thus, the total number of performed
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Figure 9: Scheme of extracting estimator statistics by function MCestimLFSM for a chosen path
length.

operations is
k∑
j=1

(N − jr) = kN − r(k+ 1)k/2.

It is clear that increments() is faster on sample paths with large number of points, but slower
when the increment order is high. As we will show later, orders greater than ∼ 10 are not usable
for statistical inference. That is the reason why in all statistics we use either increments() or its
hidden “relatives”.

A visualization method for sample paths

We introduce a pair of functions which makes a panel plot of sample paths produced by processes with
different parameters. Path_array takes a set of α-H values, generates a path for each combination,
and stacks the paths together in a data frame. In the produced data frame all the paths are tagged
with α and H values. Plot_list_paths() takes the data frame as an argument and plots the
sample paths on different panels based on their (α,H) values. This functionality is powered by
facet_wrap() from ggplot2 (Wickham, 2016). For discontinuous paths Plot_list_paths() draws
an overlapping semitransparent line joining neighbouring points in order to highlight jumps.

l=list(H=c(0.2,0.5,0.8), alpha=c(0.5,1,1.5), freq="H")
arr<-Path_array(N=300, m=30, M=100, l=l, sigma=0.3)
head(arr)
n X alpha H freq

1 1 0.0000000 0.5 0.2 H
2 2 0.2329891 0.5 0.2 H
3 3 1.1218238 0.5 0.2 H
4 4 -6.1284620 0.5 0.2 H
5 5 -2.2450357 0.5 0.2 H
6 6 3.4979978 0.5 0.2 H

str(arr)
'data.frame': 2709 obs. of 5 variables:
$ n : num 1 2 3 4 5 6 7 8 9 10 ...
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$ X : num 0 0.233 1.122 -6.128 -2.245 ...
$ alpha: Factor w/ 3 levels "0.5","1","1.5": 1 1 1 1 1 1 1 1 1 1 ...
$ H : Factor w/ 3 levels "0.2","0.5","0.8": 1 1 1 1 1 1 1 1 1 1 ...
$ freq : Factor w/ 1 level "H": 1 1 1 1 1 1 1 1 1 1 ...

Plot_list_paths(arr)
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Figure 10: Graph rendered by Plot_list_paths

Parameter estimation of the linear fractional stable motion

In this section, we describe estimators for the parameters H, α, and σ that are obtained in the
recent paper by Mazur et al. (2020), and their implementation in R.

Parameter estimation in the continuous case

First, we consider the case H − 1/α > 0 which leads us to the important property that the lfsm
(Xt)t∈R is locally Hölder continuous of any order up to H − 1/α. Moreover, this condition implies
the following restrictions

α ∈ (1, 2) and H ∈ (1/2, 1) (5)
that allow us to use the law of large numbers in Theorem 1.1 of (Basse-O’Connor et al., 2017) when
p < 1, and the central limit theorem in Theorem 1.2 of (Basse-O’Connor et al., 2017) when p < 1/2,
k ≥ 2 and H < k− 1/α.

Now, we consider consistent estimators for the self-similarity parameter H in high- and low-
frequency setting, defined by

Ĥhigh(p, k)n :=
1
p

log2

∑n
i=2k

∣∣∣∆n,2
i,k X

∣∣∣p∑n
i=2k

∣∣∣∆n,1
i,k X

∣∣∣p
 ,

Ĥlow(p, k)n :=
1
p

log2

∑n
i=2k

∣∣∆2
i,kX

∣∣p∑n
i=2k

∣∣∣∆1
i,kX

∣∣∣p
 .
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Both estimators for H are based upon a ratio statistic that compares power variations at two
different frequencies.

Let us define the following two statistics

Vhigh(f ; k, r)n :=
1
n

n∑
i=rk

f
(
nH∆n,r

i,kX
)

Vlow(f ; k, r)n :=
1
n

n∑
i=rk

f
(
nH∆ri,kX

)
, (6)

where f : R→ R is a measurable function. Estimators for the stability index α of the driving stable
motion in high and low frequency setting are based on the empirical characteristic functions given
by

ϕhigh(t;H, k)n := Vhigh(ψt; k)n and ϕlow(t; k)n := Vlow(ψt; k)n (7)
with ψt(x) := cos(tx), for two different values t1 and t2 such that t2 > t1 > 0. Let us note that
the empirical characteristic function ϕhigh(t;H, k)n depends on the parameter H while ϕlow(t; k)n
does not. Thus, we should infer the self-similarity parameter H by Ĥhigh(p, k)n and then we should
use the plug-in estimator ϕhigh(t; Ĥhigh(p, k)n, k)n to infer the stability index α in high-frequency
setting. Estimators for the parameter α are given by

α̂high :=
log | logϕhigh(t2; Ĥhigh(p, k)n, k)n| − log | logϕhigh(t1; Ĥhigh(p, k)n, k)n|

log t2 − log t1
,

α̂low :=
log | logϕlow(t2; k)n| − log | logϕlow(t1; k)n|

log t2 − log t1
.

Estimators for the scale parameter σ in high- and low-frequency are also based on the empirical
characteristic functions which are defined for one value of t > 0. Further, we define a function
hk,r : R→ R as follows:

hk,r(x) =

k∑
j=0

(−1)j
(
k

j

)
(x− rj)H−1/α

+ , x ∈ R, (8)

where k, r ∈ N , and let ‖hk,r‖αα :=
∫
R
|hk,r(s)|αds. Let us note that the function hk,r depends

on two parameters α and H which need to be pre-estimated. Estimators for the parameter σ are
expressed as

σ̂high :=
(
− logϕhigh(t1; Ĥhigh(p, k)n, k)

)1/α̂high

/t1‖hk,1‖α̂high
,

σ̂low := (− logϕlow(t1; k))1/α̂low /t1‖hk,1‖α̂low
.

Parameter estimation in the general case

Here, we consider general case when an explicit lower bound for α is unknown. First, we consider
estimators which are obtained in low frequency setting. Consistent estimator for parameter H for
any p ∈ (1, 1/2) is obtained by

Ĥlow(−p, k)n :=
1
p

log2

∑n
i=2k

∣∣∆2
i,kX

∣∣−p∑n
i=2k

∣∣∣∆1
i,kX

∣∣∣−p
 .

Next, we consider two-step procedure to choose the order of increments k, since we should be in the
domain of attraction of Theorem 1.2 of (Basse-O’Connor et al., 2017) that requires k > H + 1/α.
That’s why we consider the preliminary estimator of α with k = 1 that is consistent given by

α̂0
low(t1, t2)n =

log | logϕlow(t2; 1)n| − log | logϕlow(t1; 1)n|
log t2 − log t1

.

Since we do not know if α̂0
low(t1, t2)n is in the domain of attraction, we define the estimator of the

parameter k as
k̂low(t1, t2)n := 2 + bα̂0

low(t1, t2)−1
n c.
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In the second step we use estimator k̂low := k̂low(t1, t2)n for the estimation of parameters H, α and
σ. In particular, we get the following consistent estimators

Ĥlow(−p, k̂low)n =
1
p

log2


∑n
i=2k̂low

∣∣∣∆2
i,k̂low

X

∣∣∣−p∑n
i=2k̂low

∣∣∣∆1
i,k̂low

X

∣∣∣−p
 ,

α̃low(k̂low; t1, t2)n =
log | logϕlow(t2; k̂low)n| − log | logϕlow(t1; k̂low)n|

log t2 − log t1
,

σ̃low(k̂low; t1, t2)n =
(
− logϕlow(t1; k̂low)

)1/α̃low /t1‖hk̂low,1‖α̃low .

Next, we consider two-stage estimation procedure in the general case in high-frequency setting
which is the same as in the low-frequency setting. For p ∈ (0, 1/2) we compute Ĥhigh(−p)n =

Ĥhigh(−p, 1)n and, therefore, we can define the preliminary estimator of α by

α̂0
high(p, p

′)n = φ−1

(
Vhigh(f−p′ , Ĥhigh(−p)n)pn
Vhigh(f−p, Ĥhigh(−p)n)p

′
n

)
with

φ(α̂0
high(p, p

′)n) :=

(
2/α̂0

high(p, p
′)n
)p−p′

ap
′

−pΓ(p′/α̂0
high(p, p

′)n)
p

ap−p′Γ(p/α̂0
high(p, p′)n)p

′

where p, p′ ∈ (0, 1/2) such that p 6= p′, and Vhigh(f−p, Ĥhigh(−p)n)n is given in formula (6) with
k = 1, f−p(x) = |x|−p and preliminary estimator Ĥhigh(−p)n for the parameter H. It is remarkable
that φ(·) is always invertible for all p 6= p′ (see Dang and Istas (2017)). Consequentially, we can
define the estimator of k in high-frequency setting by

k̂high := k̂high(p, p′)n = 2 + bα̂0
high(p, p

′)−1
n c.

Thus, consistent estimators of H, α and σ, in high-frequency setting are given by

Ĥhigh(−p, k̂high)n =
1
p

log2


∑n
i=2k̂high

∣∣∣∆n,2
i,k̂high

X

∣∣∣−p∑n
i=2k̂high

∣∣∣∆n,1
i,k̂high

X

∣∣∣−p
 ,

α̃high(k̂high; t1, t2)n = φ−1

(
Vhigh(f−p′ , Ĥhigh(−p, k̂high)n; k̂high)pn
Vhigh(f−p, Ĥhigh(−p, k̂high)n; k̂high)p

′
n

)
,

σ̃high(k̂high; p, p′)n =

(
α̃higha−pVhigh(f−p, Ĥhigh(−p)n)n

2Γ(p/α̃high)

)− 1
p

/‖hk̂high,1‖α̃high .

Implementation in R

We introduce function ContinEstim for performing statistical inference according to Section 2.3.1
when H − 1/α > 0.

ContinEstim(t1, t2, p, k, path, freq)

The function is basically comprised by simpler functions alpha_hat, H_hat and sigma_hat responsible
for retrieving the corresponding parameters. sigma_hat is called using tryCatch as the former may
return an error due to numerical integration in Norm_alpha.

General low-frequency estimation technique, described in Section 2.3.2 is implemented in
GenLowEstim.

GenLowEstim(t1, t2, p, path, freq = "L")

This estimator first sets a preliminary k to be equal to 1, and uses it to compute preliminary
parameters H0 and α0. Using these H0 and α0, a new k is obtained through 2+floor(alpha_0(̂-1)),
and then the new k is used for the same estimation procedure as in ContinEstim. This approach
induces an effect, which does not exist in the case when ContinEstim is applied. When α is smaller
than, or close to 2/N , where N is the observed lfsm path length, the computational errors are more
frequent. These extra errors occur when the preliminary estimation of k appears to exceed N/2,
making it impossible to compute ∆2

i,k̂low
X in statistic Ĥlow(−p, k̂low)N . In case of other sample
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path realizations k < H + 1/α, and it is still possible to obtain the estimates which happen to
converge to the true value (Ĥ, α̂, σ̂), because in this case one would be in the domain of attraction
of Theorem 2.2 of (Mazur et al., 2020). Though, the limiting distribution is not stable anymore, and
the rate of convergence depends on α and H. Real distributions of estimates in this case are left
unexplored.

High-frequency estimator from the same section was implemented in GenHighEstim.

GenHighEstim(p, p_prime, path, freq, low_bound = 0.01, up_bound = 4)

Estimate deterioration

Although the general high- and low-frequency estimators presented in Section 2.3.2 have important
advantages, namely closed form expressions for distribution functions and non-suboptimal convergence
rates, they also reveal two drawbacks in performance. Due to condition and error handling, the
time performances of the general estimators are much worse than those of the continuous ones.
On top of that, the plug-in estimators (because of their nature) have much less probability of
obtaining an estimate at all. The main idea is as follows: the more statistics are used in a plug-in
estimator, the higher the probability to stumble upon a numerical error during the estimation
procedure. We illustrate this effect by the following experiment, wherein the general high- and
low-frequency estimators are compared to the corresponding continuous ones. For each pair from
a set of parameters (H,α), NmonteC sample paths of the both frequencies were generated, and to
each of them the relevant procedures ContinEstim, GenLowEstim and GenHighEstim were applied
(see “Estimate deterioration experiment” in the supplementary materials). Then, the rates of
successful computation results were computed. The result of estimation was considered “successful”
if during the procedure all three parameters were obtained, no error occurred, and the estimates are
meaningful, namely (Ĥ, α̂) ∈ (0, 1)× (0, 2).

This experiment shows (Figures 11a and 11b) that in both high- and low-frequency cases
ContinEstim gives much better precision than the corresponding general estimator. The outcome
is rigorous in low-frequency technique since ContinEstim and GenLowEstim have the same set of
tuning parameters. On the other hand, the high-frequency estimators have non-coinciding parameter
sets, and thus, without fine tuning, the result is merely intuitive. One could observe that in general
estimation near the boundaries of the interval (Ĥ, α̂) ∈ (0, 1)× (0, 2) produces more errors, which is
partly due to the fact that near the boundaries it is easier to obtain an estimate outside the interval.
Such an estimate is removed by Errfilter function in the experiment.

Zones with different convergence regimes in the low-frequency case

In order to show how the general low-frequency estimation works in practice, we peform a numer-
ical experiment whose code could be found in section “Zones with different convergence” of the
accompanying .R file. We set a constant σ and choose two sets of parameters- one for α and one
for H. Then, for each combination of them a number Nmc = 500 of sample paths is created. All
path lengths are set to a constant N = 1000. To each path we apply several statistics. One of them
is k_new<-2+floor(alpha_0(̂-1)) where alpha_0 is obtained via alpha_hat with parameters k=1,
freq=‘L’ plugged-in. This provides us simulated distribution of k̂low (Figure 12). Also, we fix a set
k_ind = seq(1,8,by=1) and, given a path, for each of these k’s extract statistics ϕlow(t, k = kind)n
and α̂low(t1, t2; k = kind)n, see Figures 13 and 14.

Three regimes of performance of GenLowEstim (read, the general low-frequency estimator
α̂low(k, t1, t2)n) are observed. To a large extend, only parameter α determines which regime
is in presence.

Due to small variance of α̂0
low(t1, t2)n (Figure 14), when α ∈ (1, 2) the estimation k̂low(t1 =

1, t2 = 2)n returns 2 except from the boundaries, where edge effects are observed. This results in
the fact that in cases when statistics k̂low(1, 2)n can be computed without stumbling on numerical
errors performances of GenLowEstim and low frequency ContinEstim are the same. At the same
time, statistic α̂low(k, t1, t2)n is not far from its limit value for k < 3, that’s why the parameter
estimation of the LFSM is technically possible by ContinEstim and GenLowEstim at such length of
the sample path.

When α is near 1 there is a transition between the regime with values of k̂low(1, 2)n concentrated
at point k = 2, and the regime where k̂low(1, 2)n is highly dispersed. This shift is characterized by
only two values of k̂low(1, 2)n: 2 and 3. Such behavior of the estimated order of increments is due
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1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 α 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 α

0.55 0.97 0.96 0.99 1.00 0.99 0.99 0.96 0.91 0.67 0.55 0.76 0.78 0.84 0.86 0.90 0.83 0.86 0.84 0.61

0.6 0.97 0.99 0.99 0.99 1.00 1.00 0.95 0.89 0.65 0.6 0.75 0.85 0.81 0.87 0.86 0.86 0.82 0.80 0.58

0.65 0.99 0.99 0.99 0.99 1.00 1.00 0.96 0.88 0.61 0.65 0.77 0.84 0.80 0.87 0.86 0.83 0.84 0.74 0.51

0.7 0.97 0.97 0.99 0.99 1.00 0.98 0.96 0.86 0.53 0.7 0.77 0.77 0.78 0.81 0.80 0.75 0.77 0.71 0.45

0.75 0.96 0.97 0.98 0.99 0.99 0.99 0.96 0.85 0.55 0.75 0.72 0.74 0.81 0.77 0.73 0.78 0.76 0.67 0.44

0.8 0.95 0.97 0.98 0.97 0.99 0.96 0.93 0.82 0.48 0.8 0.66 0.70 0.71 0.70 0.68 0.71 0.66 0.59 0.39

0.85 0.92 0.95 0.93 0.94 0.95 0.95 0.92 0.72 0.41 0.85 0.60 0.64 0.63 0.69 0.69 0.67 0.61 0.48 0.30

0.9 0.88 0.85 0.90 0.88 0.89 0.92 0.82 0.73 0.38 0.9 0.56 0.58 0.54 0.56 0.60 0.63 0.56 0.44 0.23

0.95 0.76 0.79 0.78 0.80 0.81 0.75 0.77 0.59 0.34 0.95 0.50 0.47 0.49 0.57 0.59 0.48 0.51 0.38 0.22

H
Continuous estimator, low frequency

H
General estimator, low frequency

(a) Comparison of success rates for ContinEstim and GenLowEstim. Low frequency case. Path length
N=200, number of sample paths NmonteC=300.
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0.60 0.91 0.96 0.97 0.94 0.93 0.87 0.77 0.69 0.45 0.60 0.52 0.49 0.35 0.29 0.18 0.19 0.10 0.11 0.10

0.65 0.92 0.96 0.95 0.95 0.89 0.87 0.81 0.64 0.47 0.65 0.49 0.40 0.31 0.25 0.18 0.13 0.11 0.09 0.08

0.70 0.95 0.96 0.97 0.95 0.92 0.85 0.75 0.64 0.41 0.70 0.53 0.37 0.33 0.23 0.14 0.12 0.08 0.07 0.06

0.75 0.92 0.96 0.93 0.92 0.87 0.82 0.75 0.56 0.36 0.75 0.42 0.35 0.29 0.19 0.13 0.12 0.11 0.03 0.05

0.80 0.94 0.93 0.92 0.93 0.88 0.81 0.74 0.57 0.44 0.80 0.36 0.27 0.20 0.18 0.08 0.10 0.05 0.03 0.03

0.85 0.91 0.90 0.93 0.88 0.81 0.81 0.72 0.54 0.29 0.85 0.29 0.23 0.21 0.13 0.07 0.06 0.05 0.02 0.02

0.90 0.87 0.85 0.87 0.81 0.76 0.69 0.62 0.51 0.28 0.90 0.27 0.19 0.12 0.14 0.06 0.03 0.03 0.02 0.02

0.95 0.82 0.75 0.75 0.68 0.64 0.59 0.46 0.38 0.18 0.95 0.23 0.12 0.09 0.07 0.05 0.04 0.01 0.01 0.01

H
Continuous estimator, high frequency

H
General estimator, high frequency

(b) Comparison of success rates for ContinEstim and GenHighEstim. High frequency case. Path length
N=200, number of sample paths NmonteC=300.

Figure 11: Comparison of success rates of estimators

to the fact that when α−1 ∈ N

P

(
k̂low = 2 + α−1

)
→ λ and P

(
k̂low = 1 + α−1

)
→ 1− λ

for some constant λ ∈ (0, 1), see Mazur et al. (2020), Section 4.1. Surprisingly, λ is close to 0.5
throughout the whole set of H’s (Figure 12). There are no k̂low(1, 2)n higher than 3 observed
because the preliminary estimation of α is still quite precise as one can see from the middle row on
Figure 14. After obtaining k̂low(1, 2)n equal to either 2 or 3, α̂low(k̂low(1, 2)n, t1, t2)n is computed
again quite precisely, but worse than in the continuous case.

At α < 1 α̂low(k, t1, t2)n has high variance regardless of what k is chosen, therefore different
values are obtained when computing k̂low(1, 2)n. These values plugged-in to α̂low(k, t1, t2)n produce
again very dispersed estimates of parameter α. This mechanism explains why α̃low has higher
variance in discontinuous case (H − 1/α < 0) than in continuous (see the numerical study in Section
5 in Mazur et al. (2020)).

The way α̃low behaves could be explained using pic.(13), where ϕn and Vlow(ψt, k)n are plotted.
Cases wherein α̂low performs poorly coinside with ones wherein ϕn and Vlow(ψt, k)n are significantly
distant from each other, so convergence Vlow(ψt, k)n

a.s.−−→ ϕn(t; k) isn’t observed at the given length
of sample paths, which ruins the whole idea of (σ,α) estimation. Of course, this effect doesn’t affect
H-estimation because it is based on ratio statistic, which has a different form.
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Figure 12: Histograms of preliminary estimations of k, k̂low(1, 2)n. α’s are on vertical labels, H’s-
on horizontal.
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Figure 13: Comparison of the real ϕn(t = 1; k) and the one estimated via Vlow(ψt=1, k)n on the
logarithmic scale. α’s are on vertical labels, H’s- on horizontal. The lower and upper box sides
correspond to the 25th and 75th percentiles.

S4 classes for Lèvy-driven motions

Here we describe a simple S4 system (a short introduction to S4 classes is given in Wickham
(2014), Chapter OO field guide) that could be used to simplify manipulations with the two types
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Figure 14: Convergence of α̂low(k, t1, t2)n to the real α (red line) for different k. α’s are on
vertical labels, H’s- on horizontal. The lower and upper box sides correspond to the 25th and 75th
percentiles.

of observations of the linear fractional stable motion. Additionally, we present a possible way to
extend the system so that it encompasses more general stochastic processes. The system aims to be
helpful in

• passing “attributes” (frequency, σ,α,H) from objects to functions automatically (without
additional developer’s efforts).

• hiding complicated details of interfaces from users.
• using generics to protract functions on different objects by means of inheritance. For instance,

plotting function written for lfsm could be used for other types of stochastic integral.

Classes for simulated lfsm

Here we describe the least general classes- “SimulatedLfsmLow” and “SimulatedLfsmHigh”, objects
of which are obtained by simulating low- and high-frequency linear fractional stable motions. Figure

  

motion

High/Low
Frequency
indicator

Indicator of
motion class 

(lfsm)

coordinates True
H, α, σ

Levy_motion

Figure 15: Structure of the classes of simulated lfsm. Frequency indicator and indicator of process
type are included in the class name, whilst motion, coordinates, parameters for which the path was
simulated and the Lévy motion are written in the slots.

15 shows their internal structure. Roughly speaking, these classes were designed to contain minimum
information that could fully describe a simulated LFSM path. Indicators of frequency and a process
type are included in the name of a class, which is supposed to make a method dispatch more
straightforward, without additional condition blocks. Moreover, all generic functions distinct high-
and low-frequency schemes of all types with the help of class names. The same holds for motion
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types. Parameters H,α,σ, as well as Lévy motion, coordinates and the lfsm itself are written in
corresponding slots.

Examples

In the following example we see how an instance of class “SimulatedLfsmLow” is created and then
plotting and inference is performed using generic functions plot and ContinInfer. First, we register
classes, methods and one generic from “S4 classes examples” in the supplementary materials.

N<-3000; m<-65; M<-300
sigma<-0.3; alpha<-1.8; H<-0.8
p<-.4; t1<-1; t2<-2; k<-2

# Make an object of S4 class SimulatedLfsmLow
List <- path(N,m,M,alpha,H,sigma,freq='L',disable_X=FALSE,seed=3)

# Make an object of parameters
prmts<-new("AlpaHSigma",alpha=List$pars[['alpha']],
H=List$pars[['H']],sigma=List$pars[['sigma']])
X_sim <- new("SimulatedLfsmLow", Process = List$lfsm,

coordinates = List$coordinates, pars = prmts,
levy_motion = List$levy_motion)

# structure of the instance
str(X_sim)

Formal class 'SimulatedLfsmLow' [package ".GlobalEnv"] with 4 slots
..@ pars :Formal class 'AlpaHSigma' [package ".GlobalEnv"] with 3 slots
.. .. ..@ alpha: num 1.8
.. .. ..@ H : num 1.8
.. .. ..@ sigma: num 1.8
..@ levy_motion: num [1:3497] 0 -15 -19.8 -21.2 -24.1 ...
..@ Process : num [1:3497] 0 -0.542 -0.912 -1.12 -1.276 ...
..@ coordinates: int [1:3497] 0 1 2 3 4 5 6 7 8 9 ...

# plot the motion
plot(X_sim)
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Figure 16: Output of plot method for simulated lfsm

ContinInfer(x=X_sim,t1=t1,t2=t2,k=k,p=p)

$alpha
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[1] 1.870217

$H
[1] 0.8314528

$sigma
[1] 0.3227219

In this example, the plot function takes almost no effort, compared to the similar one from
Section 2.2.2, which is due to the fact, that there has been a method defined for generic plot and
object “SimulatedLfsmLow”. The last function, ContinInfer, is a generic which has a registered
method for class “StochasicProcLow”, general stochastic processes in low-frequency setting. Since
“SimulatedLfsmLow” inherits from “StochasicProcLow”, the generic dispatched this method and
performed statistical inference. ContinInfer was designed to perform inference according to Theorem
3.1 from (Mazur et al., 2020) and is based on R function ContinInfer. One can see that plot (and,
less obviously, ContinInfer) used “Low” from the name of the class to perform computations.
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