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lspartition: Partitioning-Based Least
Squares Regression
by Matias D. Cattaneo, Max H. Farrell and Yingjie Feng

Abstract Nonparametric partitioning-based least squares regression is an important tool in empirical
work. Common examples include regressions based on splines, wavelets, and piecewise polynomials.
This article discusses the main methodological and numerical features of the R software package
lspartition, which implements results for partitioning-based least squares (series) regression estimation
and inference from Cattaneo and Farrell (2013) and Cattaneo, Farrell, and Feng (2020). These results
cover the multivariate regression function as well as its derivatives. First, the package provides
data-driven methods to choose the number of partition knots optimally, according to integrated mean
squared error, yielding optimal point estimation. Second, robust bias correction is implemented to
combine this point estimator with valid inference. Third, the package provides estimates and inference
for the unknown function both pointwise and uniformly in the conditioning variables. In particular,
valid confidence bands are provided. Finally, an extension to two-sample analysis is developed, which
can be used in treatment-control comparisons and related problems.

Introduction

Nonparametric partitioning-based least squares regression estimation is an important method for
estimating conditional expectation functions in statistics, economics, and other disciplines. These
methods first partition the support of covariates and then construct a set of local basis functions on
top of the partition to approximate the unknown regression function or its derivatives. Empirically
popular basis functions include splines, compactly supported wavelets, and piecewise polynomials.
For textbook reviews on classical and modern nonparametric regression methodology see, among
others, Fan and Gijbels (2018), Györfi, Kohler, Krzyżak, and Walk (2002), Ruppert, Wand, and Carroll
(2003), and Harezlak, Ruppert, and Wand (2018). For a review on partitioning-based approximations
in nonparametrics and machine learning see Zhang and Singer (2010) and references therein.

This article gives a detailed discussion of the software package lspartition, available for R, which
implements partitioning-based least squares regression estimation and inference. This package offers
several features which improve on existing tools, leveraging the recent results of Cattaneo and
Farrell (2013) and Cattaneo, Farrell, and Feng (2020), and delivering data-driven methods to easily
implement partitioning-based estimation and inference, including optimal tuning parameter choices
and uniform inference results such as confidence bands. We cover splines, compactly supported
wavelets, and piecewise polynomials, in a unified way, encompassing prior methods and routines
previously unavailable without manual coding by researchers. Piecewise polynomials generally
differ from splines and wavelets in that they do not enforce global smoothness over the partition, but
in the special cases of zero-degree bases on a tensor-product partition, the three basis choices (i.e.,
zero-degree spline, Haar wavelet, and piecewise constant) are equivalent.

The first contribution offered by lspartition is a data-driven choice of the number of partitioning
knots that is optimal in an integrated mean squared error (IMSE) sense. A major hurdle to practical
implementation of any nonparametric estimator is tuning parameter choice, and by offering several
feasible IMSE-optimal methods for splines, compactly supported wavelets, and piecewise polynomials,
lspartition provides practitioners with tools to overcome this important implementation issue.

However, point estimation optimal tuning parameter choices yield invalid inference in general,
and the IMSE-optimal choice is no exception. The second contribution of lspartition is the inclusion
of robust bias correction methods, which allow for inference based on optimal point estimators. lspar-
tition implements the three methods studied by Cattaneo, Farrell, and Feng (2020), which are based
on novel bias expansions therein. Both the bias and variance quantities are kept in pre-asymptotic
form, yielding better bias correction and standard errors robust to conditional heteroskedasticity of
unknown form. Collectively, this style of robust bias correction has been proven to yield improved
inference in other nonparametric contexts (Calonico, Cattaneo, and Farrell, 2018, 2020).

The third main contribution is valid inference, both pointwise and uniformly in the support of the
conditioning variables. When robust bias correction is employed, this inference is valid for the IMSE-
optimal point estimator, allowing the researcher to combine an optimal partition for point estimation
and a “faithful” measure of uncertainty (i.e., one that uses the same nonparametric estimation choices,
here captured by the partition). In particular, lspartition delivers valid confidence bands that cover the
entire regression function and its derivatives. These data-driven confidence bands are constructed by
approximating the distribution of t-statistic processes, using either a plug-in approach or a bootstrap
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approach. Importantly, the construction of confidence bands does not employ (asymptotic) extreme
value theory, but instead uses the strong approximation results of Cattaneo, Farrell, and Feng (2020),
which perform substantially better in samples of moderate size.

Last but not least, the package also offers a convenient function to implement estimation and
inference for linear combinations of regression estimators of different groups with all the features
mentioned above. This function can be used to analyze conditional treatment effects in random control
trials in particular, or for two-sample comparisons more generally. For example, a common question
in applications is whether two groups have the same “trend” in a regression function, and this is often
answered in a restricted way by testing a single interaction term in a (parametric) linear model. In
contrast, lspartition delivers a valid measure of this difference nonparametrically and uniformly over
the support of the conditioning variables, greatly increasing its flexibility in applications.

All of these contributions are fully implemented for splines, wavelets, and piecewise polynomials
through the following four functions included in the package lspartition:

• lsprobust(). This function implements estimation and inference for partitioning-based least
squares regression. It takes the partitioning scheme as given, and constructs point and variance
estimators, bias correction, conventional and robust bias-corrected confidence intervals, and
simulation-based conventional and robust bias-corrected uniform inference measures (e.g.,
confidence bands). Three approximation bases are provided: B-splines, Cohen-Daubechies-
Vial wavelets, and piecewise polynomials. When the partitioning scheme is not specified,
the companion function lspkselect() is used to select a tensor-product partition in a fully
data-driven fashion.

• lspkselect(). This function implements data-driven procedures to select the number of knots
for partitioning-based least squares regression. It allows for evenly-spaced and quantile-spaced
knot placements, and computes the corresponding IMSE-optimal choices. Two selectors are
provided: rule of thumb (ROT) and direct plug-in (DPI) rule.

• lsplincom(). This function implements estimation and robust inference procedures for linear
combinations of regression estimators of multiple groups based on lsprobust(). Given a user-
specified linear combination, it offers all the estimation and inference methods available in the
functions lsprobust() and lspkselect().

• lsprobust.plot(). This function builds on ggplot2 (Wickham and Chang, 2016), and is used
as a wrapper for plotting results. It plots regression function curves, robust bias-corrected
confidence intervals and uniform confidence bands, among other possibilities.

The paper continues as follows. The next section describes the basic setup including a brief intro-
duction to partitioning-based least squares regression and the empirical example to be used throughout
to illustrate features of lspartition. The third section discusses data-driven IMSE-optimal selection of
the number of knots and gives implementation details. Estimation and inference implementation is
covered in the fourth section, including bias correction methods. The last section provides concluding
remarks. We defer to Cattaneo, Farrell, and Feng (2020, CFF hereafter) for complete theoretical and
technical details. Statements below are sometimes specific versions of a general case therein.

Setup

We assume that {(yi, x′i)
′ : 1 ≤ i ≤ n} is an observed random sample of a scalar outcome yi and

a d-vector of covariates xi ∈ X ⊂ Rd. The object of interest is the regression function µ(x) =

E[yi|xi = x] or its derivative, the latter denoted by ∂qµ(x) = ∂[q]µ(x)/∂xq1
1 · · · ∂xqd

d , for a d-tuple
q = (q1, . . . , qd)

′ ∈ Zd
+ with [q] = ∑d

j=1 qj.

Estimation and inference is based on least squares regression of yi on set of basis functions
of xi which are themselves built on top of a partition of the support X . A partition, denoted by
∆ = {δl ⊂ X : 1 ≤ l ≤ κ}, is a collection of κ disjoint open sets such that the closure of their union
is X . For a partition, a set of basis functions, each of order m and denoted by p(x), is constructed so
that each individual function (i.e., each element of the vector p(x)) is nonzero on a fixed number of
contiguous δl . lspartition allows for three such bases: piecewise polynomials, B-splines, and Cohen-
Daubechies-Vial wavelets (Cohen, Daubechies, and Vial, 1993). For the first two bases, the order m of
the basis can be any positive integer, and any derivative of µ up to total order (m− 1) can be estimated
employing such a basis. For wavelets, the current version allows for m ≤ 4 (i.e., up to cubic wavelets),
and q = (0, . . . , 0). The package takes m = 2 (linear basis) as default. To fix ideas, consider d = 1
with piecewise constants. Each δl is an interval and p(x) collects all the indicator functions 1{x ∈ δl},
1 ≤ l ≤ κ.
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Once the basis p(x) is constructed, the final estimator of ∂qµ(x), for [q] < m, is

∂̂qµ(x) = ∂qp(x)′ β̂, where β̂ = arg min
b∈RK

n

∑
i=1

(
yi − p(xi)

′b
)2 . (1)

When q = 0, we write µ̂(·) = ∂̂0µ(·) for simplicity.

The approximation power of such estimators increases with the granularity of the partition ∆ and
the order m. We take the latter as fixed in practice. The most popular structure of ∆ in applications is a
tensor-product form, which partitions each covariate marginally into intervals and then sets ∆ to be the
set of all tensor (Cartesian) products of these intervals (CFF consider more general cases). For this type
of partition, the user must choose the number and placement of the partitioning knots in each dimension.
lspartition allows for three knot placement types: user-specified, evenly-spaced, and quantile-spaced.
In the first case, the user has complete freedom to choose both the number and positions of knots for
each dimension. In the latter two cases, the knot placement scheme is pre-specified, and hence only
the number of subintervals for each dimension needs to be chosen.

We denote the number of knots in the d dimensions of the regressor xi by κ = (κ1, . . . , κd) ∈ Zd
+,

which can be either specified by users or selected by data-driven procedures (see Section 2.3 below).
Moreover, for wavelet bases, motivated by the standard multi-resolution analysis, we provide an
option J for the regression command lsprobust(), which indicates the resolution level of a wavelet
basis. This gives κ` = 2J` , ` = 1, . . . d, for a resolution J` (see Chui, 1992, for a review). In any case, the
tuning parameter to be chosen is κ = κ1 × · · · × κd. In the next section we choose κ to minimize the
IMSE of the estimator (1).

Package and data

We will showcase the main aspects of lspartition using a running empirical example. The package is
available in R and can be installed as follows:

> install.packages("lspartition", dependencies = TRUE)
> library(lspartition)

The data we use come from Capital Bikeshare, and is available at http://archive.ics.uci.edu/
ml/datasets/Bike+Sharing+Dataset/. For the first 19 days of each month of 2011 and 2012 we observe
the outcome count, the total number of rentals and the covariates atemp, the “feels-like” temperature
in Celsius, and workingday, a binary indicator for working days (versus weekends and holidays). The
data is summarized as follows.

> data <- read.csv("bikesharing.csv", header = TRUE)
> summary(data)

count atemp workingday
Min. : 1.0 Min. :-14.997 Min. :0.0000
1st Qu.: 42.0 1st Qu.: 5.998 1st Qu.:0.0000
Median :145.0 Median : 15.997 Median :1.0000
Mean :191.6 Mean : 15.225 Mean :0.6809
3rd Qu.:284.0 3rd Qu.: 24.999 3rd Qu.:1.0000
Max. :977.0 Max. : 44.001 Max. :1.0000

We will investigate nonparametrically the relationship between temperature and number of rentals
and compare the two groups defined by the type of days:

> y <- data$count
> x <- data$atemp
> g <- data$workingday

The sample code that follows will use this designation of y, x, and g.

Partitioning scheme selection

We will now briefly describe the IMSE expansion and its use in tuning parameter selection. To
differentiate the original point estimator of (1) and the post-bias-correction estimators, we will add a
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subscript “0” to the original estimator: ∂̂qµ0(x). The three bias corrections discussed below will add
corresponding subscripts of 1, 2, and 3. We first discuss the bias and variance of ∂̂qµ0(x), and then use
these for minimizing the IMSE. Throughout, ≈ denotes that the approximation holds for large sample
in probability, � indicates an asymptotic rate, and En[·] denotes the sample average over 1 ≤ i ≤ n.
To simplify notation, we may write the estimator as

∂̂qµ0(x) := γ̂′q,0En[p(xi)yi], where γ̂q,0(x)
′ := ∂qp(x)′En[p(xi)p(xi)

′]−1.

Again, note the subscript “0”; the bias-corrected estimators are of the same form (see below).

Bias and variance

The bias expansion for the ∂̂qµ0(x) is:

E[∂̂qµ0(x)|X]− ∂qµ(x) = γ̂q,0(x)
′En[p(xi)µ(xi)]− ∂qµ(x) (2)

≈ Bm,q(x)− γ̂q,0(x)
′En[p(xi)Bm,0(xi)]. (3)

Bm,q(·) is the leading approximation error in the L∞-norm and the second term is the accompanying
error from the linear projection of Bm,0(·) onto the space spanned by the basis functions. The form of
each of these is complex, and depends on the basis, but what is crucial for the present purposes is that
the form is known and the only unknown elements are derivatives of order m, ∂uµ(x), [u] = m. CFF
derive exact expressions for splines, wavelets, and piecewise polynomials. Both bias terms will, in
general, contribute to the same order, and both will matter in finite samples. However, the second term
in (3) will be higher order if the bases are carefully constructed so that Bm,0(·) is orthogonal to p(·) in
L2 with respect to the Lebesgue measure. lspartition allows users to choose whether the projection of
the leading error is used in partitioning scheme selection, as well as estimation and inference.

The conditional variance is straightforward from least squares algebra and takes the familiar
sandwich form. With σ2(xi) = V [yi|xi], we have

V[∂̂qµ0(x)|X] =
1
n

γ̂q,0(x)
′Σ̄0γ̂q,0(x), where Σ̄0 = En

[
p(xi)p(xi)

′σ2(xi)
]

. (4)

Only σ2(xi) is unknown here, and will be replaced by a residual-based estimator. In particular
lspartition allows for the standard Heteroskedasticity-Consistent (HC) class of estimators via the
options hc0, hc1, hc2, hc3. See Long and Ervin (2000) for a review in the context of least squares
regression.

Integrated mean squared error

In general, for a weighting function w(x), CFF derive the following (conditional) IMSE expansion:

IMSE[∂̂qµ(·)|X] ≈ 1
n

Vκ,q +Bκ,q,

where the n-varying quantities Vκ,q and Bκ,q correspond to fixed-n approximations to the variance and
squared bias, respectively, and are asymptotically of order Vκ,q � κ1+2[q]/d and Bκ,q � κ−2(m−[q])/d.

Under regularity conditions on the partition and basis used, CFF derive explicit leading constants
in this expansion. lspartition implements IMSE-minimization for the common simple case where ∆
is a tensor product of marginally formed intervals where the same number of intervals are used for
each dimension. Specifically, ∆` = {x` = t`,0 < t`,1 < · · · < t`,κ̄−1 < t`,κ̄ = x̄`} partitions X` into κ̄

subintervals, and the complete partition ∆ = ⊗d
`=1∆`, where ⊗ denotes tensor (Cartesian) product.

Thus, the IMSE-optimal number of cells of a tensor-product partition is κIMSE = κ̄d
IMSE � n

d
2m+d .

To select κ̄IMSE, or equivalently κIMSE, assume that the partitioning knots {0 = t`,0 < t`,1 < · · · <
t`,κ̄−1 < t`,κ̄ = 1} are generated as quantiles of some marginal distributions G`(·), ` = 1, . . . , d, that is,
for l = 0, 1, . . . , κ̄ and ` = 1, . . . , d,

t`,l = G−1
`

(
l
κ̄

)
,

where G−1
` (v) = inf{x ∈ R : G`(x) ≥ v}. Then, the IMSE-optimal choice for q = 0 is

κ̄IMSE,0 =

⌈(
2mBG,0

dV0

) 1
2m+d

n
1

2m+d

⌉
,
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where dxe is a ceiling operator that outputs the smallest integer that is no less than x and BG,0 is a
(squared) bias term that may depend on the marginals G` and, as before, is entirely known up to mth

order derivatives: ∂uµ(x), [u] = m.

Implementation details

Two popular choices of partitioning schemes are evenly-spaced partitions (ktype="uni"), which sets
G`(·) to be the uniform distribution over the support of the data, and quantile-spaced partitions
(ktype="qua"), which sets G`(·) to be the empirical distribution function of each covariate. The
package lspartition implements both partitioning schemes, and for each case offers two IMSE-optimal
tuning parameter selection procedures: rule of thumb (imse-rot) and direct plug-in (imse-dpi) choices.
We close this section with a brief description of the implementation details and an illustration using
real data.

Rule-of-Thumb Choice

The rule-of-thumb choice is based on the special case of q = 0. Let the weighting function w(x) be
the density of xi. The implementation steps are summarized in the following:

• Bias constant. The unknown quantities in the bias constants are: ∂uµ(·), u ∈ Λm, which is
estimated by a global polynomial regression of degree (m + 2); and the density of xi, which is
either assumed to be uniform or estimated by a trimmed-from-below Gaussian reference model
(controlled by the option rotnorm).

• Variance constant. The unknown quantities in the variance constants are: the conditional
variance σ2(x) = E[y2

i |xi = x] − (E[yi|xi = x])2, which is estimated by global polynomial
regressions of degree (m + 2); and the density of xi, which is either assumed to be uniform or
estimated by a trimmed-from-below Gaussian reference model.

• Rule-of-thumb ˆ̄κrot. Using the above results, a simple rule-of-thumb choice of κ̄ is

ˆ̄κrot =

⌈(
2mB̂G,0

dV̂0

) 1
2m+d

n
1

2m+d

⌉
,

where B̂G,0 and V̂0 are the estimates of bias and variance constants respectively. While this
choice of κ̄ is obtained under strong parametric assumptions, it still exhibits the correct conver-
gence rate ( ˆ̄κrot � n

1
2m+d ).

The command lspkselect() implements the rule-of-thumb selection (kselect="imse-rot"). For
example, we focus on a subsample of bike rentals during working days (g==1), and then the selected
number of knots are reported in the following:

> summary(lspkselect(y, x, kselect = "imse-rot", subset = (g ==
+ 1)))
Call: lspkselect

Sample size (n) = 7412
Basis function (method) = B-spline
Order of basis point estimation (m) = 2
Order of derivative (deriv) = (0)
Order of basis bias correction (m.bc) = 3
Knot placement (ktype) = Uniform
Knot method (kselect) = imse-rot

=======================
IMSE-ROT

k k.bc
=======================

5 9
=======================

In this example, for the point estimator based on an evenly-spaced partition, the rule-of-thumb
estimate of the IMSE-optimal number of knots is k = 5, and for the derivative estimators used in bias
correction for later inference, the rule-of-thumb choice is k.bc = 9.
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Direct Plug-in Choice

Assuming the weighting w(x) is equal to the density of xi, the package lspartition implements a
direct-plug-in (DPI) procedure summarized by the following steps.

• Preliminary choice of κ̄. Implement the rule-of-thumb procedure to obtain ˆ̄κrot.

• Preliminary regression. Given the user-specified basis, knot placement scheme, and rule-of-
thumb choice ˆ̄κrot, implement a partitioning-based regression of order (m + 1) to estimate all
necessary order-m derivatives; denote these by ∂̂uµpre(·), [u] = m.

• Bias constant. Construct an estimate B̂m,q(·) of the leading error Bm,q(·) by replacing ∂uµ(·)
by ∂̂uµpre(·). B̂m,0(·) can be obtained similarly. Then, use the pre-asymptotic version of the
conditional bias to estimate the bias constant:

B̂κ,q =
1
n

n

∑
i=1

(
B̂m,q(xi)− γ̂q,0(xi)

′En[p(xi)Bm,0(xi)]
)2

.

As mentioned before, for the three bases considered in the package lspartition, the second
term in the conditional bias is of smaller order under some additional conditions. We employ
this property to simplify the estimate of bias constant for wavelets. For splines and piecewise
polynomials, however, users may specify whether the projection of the leading error is taken
into account in the selection procedure (see option proj).

• Variance constant. Implement a partitioning-based series regression of order m with κ̄ = ˆ̄κrot,
and then use the pre-asymptotic version of the conditional variance to estimate the variance
constant. Specifically, let ε̂i be the regression residuals and Σ̂0 = En[p(xi)p(xi)

′wi ε̂
2
i ] be an

estimate of Σ0 = E[p(xi)p(xi)
′σ2(xi)], where different weights wi are used to construct different

HC variance estimators. Then set

V̂κ,q =
1
n

n

∑
i=1

γ̂q,0(xi)
′Σ̂0γ̂q,0(xi).

• Direct plug-in κ̄. Collecting all these results, a direct plug-in choice of κ̄ is

ˆ̄κdpi =

⌈(
2(m− [q]) ˆ̄κ2(m−[q])

rot B̂κ,q

(d + 2[q]) ˆ̄κ−(d+2[q])
rot V̂κ,q

) 1
2m+d

n
1

2m+d

⌉
.

The following shows the results of the direct plug-in procedure based on the real data:

> summary(lspkselect(y, x, kselect = "imse-dpi", subset = (g ==
+ 1)))
Call: lspkselect

Sample size (n) = 7412
Basis function (method) = B-spline
Order of basis point estimation (m) = 2
Order of derivative (deriv) = (0)
Order of basis bias correction (m.bc) = 3
Knot placement (ktype) = Uniform
Knot method (kselect) = imse-dpi

=======================
IMSE-DPI

k k.bc
=======================

8 10
=======================

The direct plug-in procedure gives more partitioning knots than the rule-of-thumb, leading to a
finer partition. For point estimation, ˆ̄κdpi = 8 knots are suggested, while for bias correction purpose, it
selects ˆ̄κdpi = 10 knots to estimate derivatives in the leading bias. Quantile-spaced knot placement is
obtained by adding ktype = "qua".
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Estimation and inference

This section reviews and illustrates the estimation and inference procedures implemented. A crucial
ingredient is the bias correction that allows for valid inference after tuning parameter selection.

Point estimation and bias correction

The estimator ∂̂qµ0(x) is IMSE-optimal from a point estimation perspective when implemented
using the choice κIMSE to form ∆, but conventional inference methods based on this resulting point
estimator will be invalid. More precisely, the ratio of bias to standard error in the t-statistic is non-
negligible, requiring either ad-hoc undersmoothing or some form of bias correction. In addition to
the (uncorrected) point estimate in (1), the package lspartition implements the three bias correction
options derived by CFF for valid (pointwise and uniform) inference. All these strategies resort to a
higher-order basis, p̃(x), of order m̃ > m. The partition ∆̃ where p̃(x) is built on may be different from
∆ but need not be. These approaches allow researchers to combine an optimal point estimate ∂̂qµ0(x)
based on the IMSE-optimal κIMSE with inference based on the same tuning parameter and partitioning
scheme choices.

Our bias correction strategies are based on (2) and (3), where the only unknowns are µ(·), ∂qµ(·),
and ∂uµ(·) for [u] = m. These are summarized as follows; see CFF for details.

• Approach 1: Higher-order-basis bias correction. Use p̃(x) to construct a higher-order least
squares estimator ∂̂qµ1(x) which takes exactly the same form as ∂̂qµ0(x) but has less bias. If we
substitute yi and ∂̂qµ1(x) for µ(xi) and ∂qµ(x) in (2) respectively and subtract this estimated
bias from ∂̂qµ0(x), the resulting “bias-corrected” estimator is equivalent to ∂̂qµ1(x). This option
is called by bc="bc1".

• Approach 2: Least squares bias correction. Construct ∂̂qµ1(x) and substitute it for ∂qµ(x) in
(2), but replace µ(xi) by µ̂1(xi) rather than yi. The least squares bias-corrected estimator ∂̂qµ2(x)
is obtained by subtracting this estimated bias from ∂̂qµ0(x). The supplement to CFF discusses
in detail how this approach relates to higher-order-basis bias correction and when they are
equivalent. This option is called by bc="bc2".

• Approach 3: Plug-in bias correction. Referring to (3), use p̃(x) to construct ∂̂uµ1(x) for all
needed u. Substitute ∂̂uµ1(x) and ∂̂uµ1(xi) for ∂uµ(x) and ∂uµ(xi) in Bm,q(x) and Bm,0(xi),
respectively. Subtracting this estimated bias from ∂̂qµ0(x) leads to a plug-in bias-corrected
estimator ∂̂qµ3(x). This option is called by bc="bc3".

The optimal (uncorrected) point estimator (j = 0) and the three bias-corrected estimators (j = 1, 2, 3)
can be written in a unified form for a given j = 0, 1, 2, 3 as

∂̂qµj(x) = γ̂q,j(x)
′En[Πj(xi)yi].

These estimators only differ in γ̂q,j(·) and Πj(·), which depend in different ways on p(x) and p̃(x).
See CFF for exact formulas.

Pointwise inference

Pointwise inference relies on a Gaussian approximation for the t-statistics, which holds for any
j = 0, 1, 2, 3:

T̂j(x) =
∂̂qµj(x)− ∂qµ(x)√

Ω̂j(x)/n
 N(0, 1).

where Ω̂j(x)/n = γ̂q,j(x)
′Σ̂jγ̂q,j(x)/n is an estimator of the conditional variance of ∂̂qµj(·), and 

denotes convergence in distribution. Σ̂j(x) = En[Πj(xi)Πj(xi)
′wi ε̂

2
i,j] is a consistent estimator of

Σj = E[Πj(xi)Πj(xi)σ
2(xi)], where ε̂i,j = yi − µ̂j(xi) and the wi’s are additional weights leading to

various HC variance estimators. Then nominal 100(1− α)-percent symmetric confidence intervals are

Ij(x) =
[

∂̂qµj(x)−Φ1−α/2

√
Ω̂j(x)/n, ∂̂qµj(x)−Φα/2

√
Ω̂j(x)/n

]
, (5)

where Φu is the uth quantile of the standard normal distribution.
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For conventional confidence intervals (j = 0), (asymptotically) correct coverage relies on under-
smoothing (κ � κIMSE) that renders the bias negligible relative to the standard error in large samples.
Though straightforward in theory, it is difficult to implement in a principled way. In comparison,
given the IMSE-optimal tuning parameter, all three bias-corrected estimators (j = 1, 2, 3) have only
higher-order bias, and thus the corresponding confidence intervals based on these estimators will
have asymptotically correct coverage. Importantly, the Studentization quantity Ω̂j(x)/n also captures
the additional variability introduced by bias correction.

We now illustrate the pointwise inference features of lsprobust() using the bike rental data. The
previous result of knot selection based on the DPI procedure will be employed. Specifically, we set
nknot=8 for point estimation. For higher-order-basis bias correction (bc="bc1"), the same number of
knots is used to correct bias by default, while for plug-in bias correction (bc="bc3"), we use 10 knots
(bnknot=10) to estimate the higher-order derivatives in the leading bias. One may leave these options
unspecified and then the command lsprobust() will automatically implement knot selection using
the command lspkselect().

> est_workday_bc1 <- lsprobust(y, x, neval = 20, bc = "bc1", nknot = 8,
+ subset = (g == 1))
> est_workday_bc3 <- lsprobust(y, x, neval = 20, bc = "bc3", nknot = 8,
+ bnknot = 10, subset = (g == 1))
> summary(est_workday_bc1)
Call: lprobust

Sample size (n) = 7412
Num. covariates (d) = 1
Basis function (method) = B-spline
Order of basis point estimation (m) = 2
Order of derivative (deriv) = (0)
Order of basis bias correction (m.bc) = 3
Smoothness point estimation (smooth) = 0
Smoothness bias correction (bsmooth) = 1
Knot placement (ktype) = Uniform
Knots method (kselect) = User-specified
Uniform inference method (uni.method) = NA
Num. knots point estimation (nknot) = (8)
Num. knots bias correction (bnknot) = (8)

=================================================================
Eval Point Std. Robust B.C.
X1 n Est. Error [ 95% C.I. ]

=================================================================
1 -2.998 7412 90.667 5.316 [77.610 , 96.347]
2 -0.002 7412 110.509 3.909 [100.736 , 119.604]
3 1.998 7412 123.937 3.580 [115.071 , 133.583]
4 3.998 7412 137.364 5.183 [129.929 , 144.504]
5 5.998 7412 148.437 3.627 [139.724 , 158.148]
-----------------------------------------------------------------
6 7.001 7412 153.989 3.571 [144.494 , 164.327]
7 11.001 7412 173.306 5.690 [164.945 , 181.894]
8 11.997 7412 174.599 4.600 [167.492 , 186.141]
9 13.997 7412 177.194 3.771 [171.250 , 190.769]
10 15.997 7412 179.789 5.300 [173.561 , 189.839]
-----------------------------------------------------------------
11 17.000 7412 182.743 5.708 [172.595 , 189.229]
12 18.003 7412 189.044 4.662 [172.267 , 191.494]
13 19.000 7412 195.303 4.070 [174.665 , 196.009]
14 22.003 7412 214.165 5.899 [201.197 , 220.363]
15 24.003 7412 231.911 5.770 [228.211 , 248.431]
-----------------------------------------------------------------
16 24.999 7412 243.335 4.760 [239.920 , 262.104]
17 26.002 7412 254.833 4.486 [251.063 , 273.840]
18 28.002 7412 277.755 6.284 [270.701 , 291.816]
19 30.002 7412 298.199 7.278 [280.463 , 309.527]
20 32.002 7412 313.696 6.596 [289.109 , 324.772]
-----------------------------------------------------------------
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=================================================================

The above table summarizes the results for pointwise estimation and inference, including point
estimates, conventional standard errors, and robust confidence intervals based on higher-order-basis
bias correction for 20 quantile-spaced evaluation points. We can use the companion plotting command
lsprobust.plot() to visualize the results:

> lsprobust.plot(est_workday_bc1, xlabel = "Temperature", ylabel = "Number of Rentals",
+ legendGroups = "Working Days") + theme(text = element_text(size = 17),
+ legend.position = c(0.15, 0.9))
> ggsave("output/pointwise1.pdf", width = 6.8, height = 5.5)
> lsprobust.plot(est_workday_bc3, xlabel = "Temperature", ylabel = "Number of Rentals") +
+ theme(text = element_text(size = 17), legend.position = "none")
> ggsave("output/pointwise2.pdf", width = 6.8, height = 5.5)
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(a) Higher-order-basis bias correction
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(b) Plug-in bias correction

Figure 1: Estimated relationship between the number of rentals (y-axis) and temperature (x-axis)
during working days. The solid curves are the point estimates, and the shaded regions are robust
confidence intervals. 1a shows the results based on higher-order-basis correction, and 1b shows the
results based on plug-in bias correction. We see that as the temperature increases, so does the number
of rentals, and that lspartition gives a valid visualization of this trend.

The result is displayed in Figure 1. As the temperature gets higher, the number of rentals increases
as expected. Both panels show the same point estimator, µ̂0. We plot both the robust confidence
intervals based on higher-order-basis bias correction (Figure 1a) and plug-in bias correction (Figure
1b). Since the higher-order-basis approach is equivalent to a quadratic spline fitting, the resulting
confidence interval has a smoother shape.

Uniform inference

To obtain uniform inference (over the support of x), CFF establish Gaussian approximations for the
whole t-statistic processes, and propose several sampling-based approximations which are easy to
implement in practice. To be concrete, for each j = 0, 1, 2, 3, there exists a Gaussian process Zj(·) such
that T̂j(·) ≈d Zj(·). This Guassian process is given by

Zj(·) =
γq,j(·)′Σ1/2

j√
Ωj(·)

NKj ,

where Kj = dim(Πj(·)) ∝ κ, γq,j(·) and Ωj(·) are population counterparts of γ̂q,j(·) and Ω̂j(·), and
NKj is a Kj-dimensional standard normal random vector. The notation≈d means that the two processes
are asymptotically equal in distribution in the following sense: in a sufficiently rich probability space,
we have identical copies of T̂j(·) and Zj(·) whose difference converges in probability to zero uniformly.

The Gaussian stochastic process Zj(·) is not feasible in practice because it involves unknown
population quantities. Thus, the package lspartition offers two options for implementation: plug-in or
bootstrap.
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• Plug-in. Replace all unknowns in Zj(·) by some consistent estimators:

Ẑj(·) =
γ̂q,j(·)′Σ̂

1/2
j√

Ω̂j(·)
NKj .

CFF show that Ẑj(·) delivers a valid distributional approximation to T̂j(·). In practice one may
obtain many simulated realizations of Ẑj(·) by sampling from the Kj-dimensional standard
normal distribution conditional on the data. This option is called by uni.method="pl".

• Bootstrap. Construct a bootstrapped version of the approximation process (conditional on the
data):

ẑ∗j (·) =
γ̂q,j(·)′En[Πj(xi)ε̂

∗
i,j]√

Ω̂∗j (·)/n
,

where Ω̂∗j (·) = γ̂q,j(·)′En[Πj(xi)Πj(xi)
′(ε̂∗i,j)

2]γ̂q,j(·), ε̂∗i,j = ωi ε̂i,j and {ωi}n
i=1 is an i.i.d se-

quence of bounded random variables with zero mean and unit variance. CFF show that this
bootstrapped process also approximates Zj(·) conditional on the data. Thus one can implement
bootstrapping by sampling from the distribution of ωi given the data. In the package lspartition,
the ωi’s are taken to be Rademacher variables, and this option is called by uni.method="wb".

Importantly, these strong approximations apply to the whole t-statistic processes, and thus can
be used to implement general inference procedures based on transformations of T̂j(·). The main
regression command lsprobust() will output the the following quantities for uniform analyses upon
setting uni.out=TRUE:

• t.num.pl,t.num.wb1,t.num.wb2. The numerators of approximation processes except the “sim-
ulated components”, which are evaluated at a set of pre-specified grid points K. Suppose that
K contains L grid points. Then for the plug-in method, the numerator, stored in t.num.pl,

is the L× Kj matrix
{

γ̂q,j(x)
′Σ̂

1/2
j /
√

n : x ∈ K
}

. For wild bootstrap, the numerator is sepa-

rated to t.num.wb1 and t.num.wb2, which are
{

γ̂q,j(x)
′/n : x ∈ K

}
and (Πj(x1), . . . , Π(xn))′

respectively.

• t.denom. The denominator of approximation processes, i.e.,
{√

Ω̂j(x)/n : x ∈ K
}

, stored in a
vector of length L.

• res. Residuals from the specified bias-corrected regression (needed for bootstrap-based approx-
imation).

For example, the following command requests the necessary quantities for uniform inference
based on the plug-in method:

> est_workday_bc1 <- lsprobust(y, x, bc = "bc1", nknot = 4, uni.method = "pl",
+ uni.ngrid = 100, uni.out = T, subset = (g == 1))
> round(est_workday_bc1$uni.output$t.num.pl[1:5, ], 3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 30.549 -4.923 2.311 -1.470 0.779 -0.451 0.121
[2,] 27.104 -3.553 1.746 -1.162 0.620 -0.354 0.090
[3,] 23.856 -2.285 1.236 -0.880 0.474 -0.266 0.062
[4,] 20.803 -1.117 0.780 -0.624 0.341 -0.185 0.037
[5,] 17.946 -0.052 0.379 -0.395 0.221 -0.113 0.014

We list the first 5 rows of the numerator matrix. Each row corresponds to a grid point. Since
we use a linear spline for point estimation and set nknot=4, the higher-order-basis bias correction is
equivalent to quadratic spline fitting. Thus the numerator matrix has 7 columns corresponding to the
quadratic spline basis.

As a special application, these results can be used to construct uniform confidence bands, which
builds on the suprema of |T̂j(·)|. The function lsprobust() computes the critical value to construct
confidence bands. Specifically, it generates many simulated realizations of Ẑj(·) or ẑ∗j (·) using the

methods described above, and then obtains an estimated 100(1− α)-quantile of supx∈X |Ẑj(x)| or
supx∈X |ẑ∗j (x)| given the data, denoted by qj(1− α). Then, (1− α) confidence band for ∂qµ(x) is given
by

∂̂qµj(x)± qj(1− α)
√

Ω̂j(x)/n.

For example, the following command requests a critical value for constructing confidence bands:
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> est_workday_bc1 <- lsprobust(y, x, neval = 20, bc = "bc1", uni.method = "pl",
+ nknot = 8, subset = (g == 1), band = T)
> est_workday_bc1$sup.cval

95%
2.993436

Once the critical value is available, the command lsprobust.plot() is able to visualize confidence
bands:

> lsprobust.plot(est_workday_bc1, CS = "all", xlabel = "Temperature",
+ ylabel = "Number of Rentals", legendGroups = "Working Days") +
+ theme(text = element_text(size = 17), legend.position = c(0.15,
+
+ 0.9))
> ggsave("output/uniform1.pdf", width = 6.8, height = 5.5)
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Figure 2: Estimated relationship between the number of rentals (y-axis) and temperature (x-axis)
during working days. The solid curve shows the point estimates, the error bars show the robust
confidence intervals, and the shaded region shows the robust confidence band based on the plug-in
method with higher-order-basis bias correction. We see that the uniform coverage of the confidence
band makes it wider than a single pointwise interval and that lspartition allows both to be cleanly
displayed.

The result is displayed in Figure 2. Since we set CS="all", the command simultaneously plots
pointwise confidence intervals (error bars) and a uniform confidence band (shaded region).

It is also possible to specify other bias correction approaches or uniform methods:

> est_workday_bc3 <- lsprobust(y, x, neval = 20, bc = "bc3", nknot = 8,
+ bnknot = 10, uni.method = "wb", subset = (g == 1), band = T)
> est_workday_bc3$sup.cval

95%
3.009244
> lsprobust.plot(est_workday_bc3, CS = "all", xlabel = "Temperature",
+ ylabel = "Number of Rentals", legendGroups = "Working Days") +
+ theme(text = element_text(size = 17), legend.position = c(0.15,
+
+ 0.9))
> ggsave("output/uniform2.pdf", width = 6.8, height = 5.5)

The result is displayed in Figure 3. In this example, the critical values based on different methods
are quite close, but in general their difference could be more pronounced in finite samples. See CFF for
some simulation evidence.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 183

100

150

200

250

300

350

0 10 20 30
Temperature

N
um

be
r 

of
 R

en
ta

ls

Working Days

Figure 3: Estimated relationship between the number of rentals (y-axis) and temperature (x-axis)
during working days. The solid curve shows the point estimates, the error bars show the robust
confidence intervals, and the shaded region shows the robust confidence band based on the bootstrap
method with plug-in bias correction. Comparing to Figure 2, we see that using the bootstrap to
measure uncertainty produces similar results, as expected from the theory.

Linear combinations

The package lspartition also includes a function lsplincom(), which implements estimation and
inference for a linear combination of regression functions of different subgroups. To be concrete,
consider a random trial with G groups. Let µ(x; g) be the conditional expectation function (CEF) for
group g, g = 1, . . . , G. The parameter of interest is θ(x) = ∑G

g=1 rg∂qµ(x; g), i.e., a linear combination of
CEFs (or derivatives thereof) for different groups. To fix ideas, consider the most common application,
the difference between two groups (or the conditional average treatment effect). Here, G = 2, q = 0,
and (r1, r2) = (−1, 1). Then θ(x) = E[yi|xi = x, g = 1]−E[yi|xi = x, g = 0].

To implement estimation and inference for θ(x), lsplincom() first calls lsprobust() to obtain a
point estimate ∂̂qµ0(x; g) and all other objects for each group. The tuning parameter for each group
can be selected by the data-driven procedures above. Then the point estimate of θ(x) is

θ̂0(x) =
G

∑
g=1

rg ∂̂qµ0(x).

The standard error of θ̂j(x) can be obtained simply by taking the appropriate linear combination

of standard errors for each ∂̂qµj(x; g) and their estimated covariances. Robust confidence intervals can
be similarly constructed as in (5).

lsplincom() also allows users to construct confidence bands for θ(·). Specifically, it requests
lsprobust() to output the numerators (t.num.pl for “plug-in”, or t.num.wb1 and t.num.wb2 for
“bootstrap”) and denominators (t.denom) of the feasible approximation processes Ẑj(·) or ẑ∗(·). Let
Uj(·; g) and vj(·; g) denote the numerator and denominator from group g based on bias correction
approach j, g = 1, . . . , G and j = 1, 2, 3. The approximation process for the t-statistic process based on
θ̂j(x) is

Ẑj,θ(·) =
∑G

g=1 rgUj(·; g)Ng,Kj,g√
∑G

g=1 r2
gvj,g(·)2

,

where {Ng,Kj,g}G
g=1 is a collection of independent standard normal vectors, and Kj,g indicates the

dimension of Ng,Kj,g . As discussed before, the dimensionality of these normal vectors depends on
the particular bias correction approach and may vary across groups since the selected number of
knots may be different across groups. The bootstrap approximation process ẑ∗j,θ(·) can be constructed
similarly.

Given these processes, inference is implemented by sampling from G standard normal vectors
(“plug-in" method) or G groups of Rademacher vectors given the data. Then critical values used
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to construct 100(1− α) confidence bands for θ(·) are estimated similarly by 100(1− α) empirical
quantiles of supx∈X |Ẑj,θ(x)| or supx∈X |ẑ∗j,θ(x)|.

As an illustration, we compare the number of rentals during working days and other time periods
(weekends and holidays) based on linear splines and plug-in bias correction. To begin with, we first
estimate the conditional mean function for each group using the command lsprobust().

> est_workday <- lsprobust(y, x, neval = 20, bc = "bc3", nknot = 8,
+ subset = (g == 1))
> est_nworkday <- lsprobust(y, x, neval = 20, bc = "bc3", nknot = 8,
+ subset = (g == 0))
> lsprobust.plot(est_workday, est_nworkday, legendGroups = c("Working Days",
+ "Nonworking Days"), xlabel = "Temperature", ylabel = "Number of Rentals",
+ lty = c(1, 2)) + theme(text = element_text(size = 17), legend.position = c(0.2,
+ 0.85))
> ggsave("output/diff1.pdf", width = 6.8, height = 5.5)

The pointwise results for each group are displayed in Figure 4. The shaded regions represent
confidence intervals. Clearly, when the temperature is low, two regions are well separated, implying
that people may rent bikes more during working days than weekends or holidays when the weather
is cold.
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Figure 4: Estimated relationships between the number of rentals (y-axis) and temperature (x-axis)
during working and nonworking days. The solid and dashed curves show the point estimates, and
the shaded regions show the robust confidence intervals for the two groups. We observe that the two
groups appear statistically different at some points, but not all, and testing across the entire range
requires uniform, not pointwise, results.

Next, we employ the command lsplincom() to formally test this result. We specify R=(-1,1),
denoting that −1 is the coefficient of the conditional mean function for the group workingday==0 and
1 is the coefficient of the conditional mean function for the group workingday==1.

> diff <- lsplincom(y, x, data$workingday, R = c(-1, 1), band = T,
+ cb.method = "pl")
> summary(diff)
Call: lprobust

Sample size (n) = 10886
Num. covariates (d) = 1
Num. groups (G) = 2
Basis function (method) = B-spline
Order of basis point estimation (m) = 2
Order of derivative (deriv) = (0)
Order of basis bias correction (m.bc) = 3
Smoothness point estimation (smooth) = 0
Smoothness bias correction (bsmooth) = 1
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Knot placement (ktype) = Uniform
Knots method (kselect) = imse-dpi
Confidence band method (cb.method) = Plug-in

=========================================================
Eval Point Std. Robust B.C.
X1 Est. Error [ 95% C.I. ]

=========================================================
1 -2.998 32.170 6.077 [24.120 , 47.837]
2 -0.002 49.661 5.552 [37.497 , 61.394]
3 1.998 39.749 4.553 [30.882 , 51.186]
4 3.998 29.838 6.463 [17.013 , 42.425]
5 5.998 17.571 7.049 [3.137 , 30.514]
---------------------------------------------------------
6 7.001 16.300 6.121 [4.717 , 29.559]
7 9.997 12.569 7.733 [-4.275 , 26.973]
8 11.997 3.039 8.339 [-12.379 , 19.761]
9 13.000 1.653 7.540 [-9.502 , 21.073]
10 15.000 3.060 6.664 [-13.960 , 14.078]
---------------------------------------------------------
11 17.000 6.118 8.836 [-6.110 , 27.954]
12 18.003 11.823 9.513 [-2.996 , 33.270]
13 19.000 12.311 9.746 [-23.007 , 15.243]
14 22.003 -17.533 8.520 [-20.891 , 15.791]
15 24.003 -32.221 10.024 [-49.905 , -11.277]
---------------------------------------------------------
16 24.999 -36.962 11.016 [-67.843 , -25.825]
17 26.002 -31.760 9.171 [-37.713 , -1.062]
18 28.002 -21.347 8.789 [-46.161 , -9.332]
19 30.002 -13.412 11.053 [-34.039 , 8.122]
20 32.002 -15.438 11.606 [-44.170 , 1.813]
---------------------------------------------------------
=========================================================

The pointwise results are summarized in the above table. Clearly, when the temperature is low, the
point estimate of the rental difference is significantly positive since the robust confidence intervals do
not cover 0. In contrast, when the temperature is above 7, it is no longer significant. This implies that
the difference in the number of rentals between working days and other periods is less pronounced
when the weather is warm. Again, we can use the command lsprobust.plot() to plot point estimates,
confidence intervals and uniform band simultaneously:

> lsprobust.plot(diff, CS = "all", xlabel = "Temperature", ylabel = "Number of Rentals",
+ legendGroups = "Difference between Working and Other Days") +
+ theme(text = element_text(size = 17), legend.position = c(0.36,
+
+ 0.2))
> ggsave("output/diff2.pdf", width = 6.8, height = 5.5)

In addition, some basic options for the command lsprobust() may be passed on to the command
lsplincom(). For example, the following code generates a smoother fit of the rental difference by
setting m=3:

> diff <- lsplincom(y, x, data$workingday, R = c(-1, 1), band = T,
+ cb.method = "pl", m = 3)
> lsprobust.plot(diff, CS = "all", xlabel = "Temperature", ylabel = "Number of Rentals") +
+ theme(text = element_text(size = 17), legend.position = "none")
> ggsave("output/diff3.pdf", width = 6.8, height = 5.5)

The results are shown in Figure 5. The confidence band for the difference is constructed based on
the plug-in distributional approximation computed previously. It leads to an even stronger conclusion:
the entire difference as a function of temperature is significantly positive uniformly over a range of low
temperatures since the confidence band is above zero when the temperature is low.
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(a) Linear basis (m = 2)
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(b) Quadratic basis (m = 3)

Figure 5: Estimated difference in the number of rentals between working and nonworking days. The
y-axis plots the difference in the number of rentals, and the x-axis plots the temperature. The solid
curves show the point estimates, error bars show the robust confidence intervals, and the shaded
regions show the robust confidence bands. Results in 5a are based on a linear basis, and those in 5b are
based on a quadratic basis. The uniformly valid confidence bands used here provide an assessment of
the difference between the groups overall, compared to the pointwise results in Figure 4.

Summary

We gave an introduction to the software package lspartition, which offers estimation and robust
inference procedures (both pointwise and uniform) for partitioning-based least squares regression.
In particular, splines, wavelets, and piecewise polynomials are implemented. The main underlying
methodologies were illustrated empirically using real data. Finally, installation details, scripts repli-
cating the numerical results reported herein, links to software repositories, and other companion
information, can be found in the package’s website:

https://nppackages.github.io/lspartition/.
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