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Resampling-Based Analysis of
Multivariate Data and Repeated
Measures Designs with the R Package
MANOVA.RM

by Sarah Friedrich, Frank Konietschke and Markus Pauly

Abstract Nonparametric statistical inference methods for a modern and robust analysis of longitudinal
and multivariate data in factorial experiments are essential for research. While existing approaches
that rely on specific distributional assumptions of the data (multivariate normality and/or equal
covariance matrices) are implemented in statistical software packages, there is a need for user-friendly
software that can be used for the analysis of data that do not fulfill the aforementioned assumptions
and provide accurate p value and confidence interval estimates. Therefore, newly developed nonpara-
metric statistical methods based on bootstrap- and permutation-approaches, which neither assume
multivariate normality nor specific covariance matrices, have been implemented in the freely available
R package MANOVA.RM. The package is equipped with a graphical user interface for plausible
applications in academia and other educational purpose. Several motivating examples illustrate the
application of the methods.

Introduction

Nowadays, a large amount of measurements are taken per experimental unit or subject in many
experimental studies—requiring inferential methods from multivariate analysis in a unified way. Here
we distinguish between two cases:

1. If the same quantity is measured under different treatment conditions or at different time points,
a repeated measures (RM) design is present. Therein, observations are measured on the same
scale and are combinable. This is also the case if the measuring instrument produces multiple
responses, e.g., microarrays in bioinformatics.

2. If different quantities are measured on the same unit or subject, a multivariate analysis of
variance (MANOVA) design is apparent. In such a situation, data is measured on different
scales and not combinable (e.g., height and weight).

These two different definitions do not only lead to different questions of interest but also require
different inference procedures as outlined below. In particular, the main difference between the two
approaches is that in repeated measures designs comparisons between the response variables are
meaningful. This means that also hypotheses regarding sub-plot or within subject factors (e.g., time)
are of interest. On the other hand, MANOVA settings are usually designed to detect effects of the
observed factors (and interactions thereof) on the multivariate outcome vectors, thus allowing —in
contrast to multiple univariate ANOVA analyses—to evaluate the combined changes of the outcome
variables with respect to the factor levels.

Despite their differences, MANOVA- and RM-type techniques share the same advantages over
classical univariate endpoint-wise—ANOVA-type—analyses:

¢ They provide joint inference and take the dependency across the endpoints into account, thus
leading to possibly larger power to detect underlying effects.

¢ They allow for testing of additional factorial structures and

¢ can easily be equipped with a closed testing procedure for subsequently detecting local effects
in specific components, i.e. to perform post-hoc analyses.

Focusing on metric data and mean-based procedures, MANOVA and RM models are typically
inferred by means of “classical” procedures such as Wilks” Lambda, Lawley-Hotelling, Roy’s largest
root (Davis, 2002; Johnson and Wichern, 2007; Anderson, 2001) or (generalized) linear mixed models
with generalized estimating equations. For the classical one-way layout, these methods are imple-
mented in R within the manova function in the stats package, where one can choose between the
options ‘Pillai’, ‘Wilks’, ‘Hotelling-Lawley” and ‘Roy’. Nonparametric rank-based methods for null
hypotheses formulated in distribution functions are implemented within the packages npmv for one-
and two-way MANOVA (Burchett et al., 2017) and nparLD for several repeated measures designs
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(Noguchi et al., 2012). In case of fixed block effects, the GFD package (Friedrich et al., 2017b), which
implements a permutation Wald-type test in the univariate setting, can also be used.

(Generalized) linear mixed models are implemented in the 1m and the glm function (package stats)
for univariate data as well as in the SCGLR package for Generalized Linear Model estimation in the
context of multivariate data (Cornu et al., 2018). The Anova and Manova function in the car package
(Fox and Weisberg, 2011) calculate type-II and type-III analysis-of-variance tables for objects produced
by, e.g., Im, glm or manova in the univariate and multivariate context, respectively. In the MANOVA
context, repeated measures designs can be included as well.

Furthermore, the packages flip (Finos et al., 2018) and ffmanova (Jyvind Langsrud and Mevik,
2019) contain interesting permutation and rotation tests, which, however, require certain invariances
resulting in model restrictions (see, e.g., the discussion in Huang et al., 2006; Chung and Romano,
2013) .

Most of these procedures, however, rely on specific distributional assumptions (such as multivari-
ate normality) and/or specific covariance or correlation structures (e.g., homogeneity between groups
or, for RM, compound symmetry; possibly implying equal correlation between measurements) which
may often not be justifiable in real data. In particular, with decreasing sample sizes and increasing
dimensions, such presumptions are almost impossible to verify in practice and may lead to inflated
type-l-errors, cf. Vallejo et al. (2001); Lix and Keselman (2004); Vallejo Seco et al. (2007); Livacic-Rojas
et al. (2010). To this end, several alternative procedures have been developed that tackle the above
problems and have been compared in extensive simulation studies, see amongst others Brunner (2001);
Lix and Lloyd (2007); Gupta et al. (2008); Zhang (2011); Harrar and Bathke (2012); Konietschke et al.
(2015); Xiao and Zhang (2016); Bathke et al. (2018); McFarquhar et al. (2016); Friedrich et al. (2017a);
Livacic-Rojas et al. (2017); Friedrich and Pauly (2018) and the references cited therein. Here, we focus
on nonparametric statistical methods that are valid in the multivariate Behrens-Fisher situation—equal
covariance matrices across the groups are not assumed—and provide accurate inferential results in
terms of p value estimates and confidence intervals for the parameters of interest. In particular, we
implemented bootstrap- and permutation-based approaches to approximate the distribution of the test
statistics in a robust way. Simulation studies comparing these approaches to the traditional methods
mentioned above can, e. g. be found in the main papers and the supplements of Friedrich et al. (2017a)
and Bathke et al. (2018).

More precisely, we focus on nonparametric methods for testing main and interaction effects of
fixed factors in repeated measures designs and multivariate data. In particular, general Wald-type test
statistics (for MANOVA and RM), ANOVA-type statistics (for RM) and modified ANOVA-type tests
(for MANOVA) are implemented in MANOVA.RM (Friedrich et al., 2019) because

¢ they can be used to test hypotheses in various factorial designs in a flexible way,

¢ their sampling distribution can be approximated by resampling techniques, even allowing their
application for small sample sizes,

* and they are appropriate methods in the Behrens-Fisher situation.

To make the methods freely accessible we have provided the R package MANOVA.RM for routine
statistical analyses. It is available from the R Archive at

https://CRAN.R-project.org/package=MANOVA.RM

The main functions RM (for RM designs) and MANOVA (for MANOVA designs) are developed in style
of the well known ANOVA functions 1m or aov. Its user-friendly application not only provides the p
values and test statistics of interest but also a descriptive overview together with component-wise
two-sided confidence intervals. Moreover, the MANOVA function even allows for an easy calculation
and confidence ellipsoid plots for specified multivariate contrasts as described in Friedrich and Pauly
(2018).

Specifically, for testing multivariate main- and interaction effects in one-, two- and higher-way
MANOVA models, the MANOVA function provides
¢ the Wald-type statistic (WTS) proposed by Konietschke et al. (2015) using a parametric bootstrap,
a wild bootstrap or its asymptotic x>-distribution for p value computations, and
¢ the modified ANOVA-type statistic (MATS) proposed by Friedrich and Pauly (2018) using a
parametric or wild bootstrap procedure for p value computations.

In addition to multivariate group-wise effects, the RM function also allows to test hypotheses formulated
across within subject factors. The implemented test statistics are

* the ANOVA-type statistic (ATS) using an F-approximation as considered in Brunner (2001) as
well as a parametric and a wild bootstrap approach and
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* the Wald-type statistic (WTS) using the asymptotic x?-distribution (Brunner, 2001), the permu-
tation technique proposed in Friedrich et al. (2017a) as well as a parametric (Bathke et al., 2018)
and a wild bootstrap approach for p value estimation.

The paper is organized as follows: In Section 2.2 the multivariate statistical model as well as the
implemented inference procedures are described. The application of the R package MANOVA.RM is
exemplified on several Repeated Measures and MANOVA Examples in Section 2.3. Finally, the paper
closes with a discussion in Section 2.4.

Throughout the paper we use the subsequent notation from multivariate linear models: For a € IN
we denote by P, = I, — % J . the a-dimensional centering matrix, by I, the a-dimensional identity
matrix and by J, the a X a matrix of 1's, i.e., J, = 1,1, where 1, = (1,...,1)’ is the a-dimensional
column vector of 1’s.

Statistical model and inference methods

For both the RM and the MANOVA design equipped with an arbitrary number of fixed factors, we
consider the general linear model given by d-variate random vectors

Xp = Xy = wi+eir 1)

Here, k = 1,...,n; denotes the experimental unit or subject in group i = 1,...,a4. Note, that
a higher-way factorial structure on the groups/between subject or within subject factors can be
achieved by sub-indexing the indices i (group/between subject factors) or j (within subject fac-
tors) into iy,...,ip or ji,...,jg. In this model p; = (i1, ..., pig) € R? is the mean vector in group
i =1,...,a and for each fixed i it is assumed that the error terms €j,k = 1, ..., n;, are independent
and identically distributed d-variate random vectors with mean E(e;;) = 0 and existing variances
0< crizj = var(Xj) < oo, j =1,...,d. For the WTS-type procedures we additionally assume posi-

tive definite covariance matrices cov(e;1) = V; > 0and existing finite fourth moments E(||e;1 ||*) < .

Within this framework, hypotheses for RM or MANOVA can be formulated by means of an
adequate contrast hypothesis matrix H by

HoiH}lZO,

where p = (py,...,1,) .

Let Xo = (Y’l,, ... ,X;_)’ denote the vector of pooled group means X;. = nl, Yo Xii=1,...,a
and f‘.N =N- diag{f/l/nl,. .. ,‘A/g/nu} the estimated covariance of v/NX,. Here, N = ¥, n; and
vV, = ﬁ Yl (Xix — X;.)(Xj — X;.)'. In this set-up Konietschke et al. (2015) propose a statistic of
Wald-type (WTS)

Ty = Tn(X) = NX,T(TENT) T TX,, )

for testing Hy, where T = H'(HH')"H, X = {X11,...,Xan, }, and A" denotes the Moore-Penrose

inverse of the matrix A. Since its asymptotic ngnk(ﬂ null distribution provides a poor finite sample

approximation, they propose the following asymptotic model-based bootstrap approach: Given the
data X let X7 ~ N(0, 177»),1' =1,...,ak=1,...,n; be independent random vectors that are used
for recalculating the test statistic as T3, = Ty(X*), where X* = {X7;,..., X}, }. Denoting by c* the
corresponding (1 — «)-quantile of the (conditional) distribution of T, the test rejects Hy if Ty > c*.
The validity of this procedure (also named parametric bootstrap WTS) is proven in Konietschke et al.
015).

This procedure is not only applicable for MANOVA but also for RM designs (Bathke et al., 2018).
However, Friedrich et al. (2017a) proposed a more favourable technique for Repeated Measurements.
It is based on an at first blush chaotic resampling method: Wild permutation of all pooled components
without taking group membership or possible dependencies into account. Denoting the resulting
permuted data set as X their permutation test for RM models rejects Hy if Ty > ¢”. Here ¢’ denotes
the (1 — a)-quantile of the (conditional) distribution of the permutation version of the test statistic
TS = Tn(X'"). As shown in extensive simulations in Friedrich et al. (2017a) and the corresponding
supporting information this ‘wild” permutation WTS method controls the type-I error rate very
well. Note that this procedure is only applicable for RM due to the commensurate nature of their
components. In MANOVA set-ups the permutation would stir different scalings making comparisons
meaningless.

In addition to these WTS procedures two other statistics are considered as well. For RM the
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well-established ANOVA-type statistic (ATS)
Qn = NX,TX. 3)

by Brunner (2001) is implemented together with the enhanced F-approximation of the statistic pro-
posed in Brunner et al. (1997, 2002) and implemented in the SAS PROC Mixed procedure. Although
known to be rather conservative it has the advantage (over the WTS) of being applicable in case of
eventually singular covariance matrices V; or V; since it waives the Moore-Penrose inverse involved
in Equation 2.

Similar to the permuted WTS the ATS given in Equation 3 is only applicable for RM since it
is not invariant under scale transformations (e.g., change of units) of the univariate components.
To nevertheless provide a robust method for MANOVA settings which is also applicable in case of
singular V; or V;, Friedrich and Pauly (2018) have recently proposed the novel MATS (modified ATS)

My = Mn(X) = NX,T(TDNT) " TX..

component s in group i, deduces an invariance under component-wise scale transformations of the
MATS for null hypotheses as described in Section 2.2.1, i.e., of the form T = M ® I, see Friedrich and
Pauly (2018) for details. To obtain an accurate finite sample performance, it is also equipped with an
asymptotic model based bootstrap approach. That is, MATS rejects Hy if My > ¢*, where ¢* is the (1 —
«)-quantile of the (conditional) distribution of the bootstrapped statistic My, = My (X*). In addition,
we implemented a wild bootstrap approach, which is based on multiplying the centered data vectors
(Xix — X;.) with random weights Wy fulfilling E(W;) = 0, var(Wj) = 1and sup, ; E(W};) < co. In the
package, we implemented Rademacher distributed weights, i.e., random signs. Extensive simulations
in Friedrich and Pauly (2018) not only confirm its applicability in case of singular covariance matrices
but also disclose a very robust behaviour that even seems to be advantageous over the parametrically
bootstrapped WTS of Konietschke et al. (2015). However, both procedures, as well as the "usual’
asymptotic WTS are displayed within the MANOVA functions. All of the aforementioned procedures
are applicable in various factorial designs in a unified way, i.e., when more than one factor may impact
the response. The specific models and the hypotheses being tested will be discussed in the next section.

Special designs and hypotheses

In order to provide a general overview of different statistical designs and layouts that can be analyzed
with MANOVA.RM we exemplify few designs that occur frequently in practical applications and
discuss the model, hypotheses and limitations. All of the methods implemented in MANOVA.RM are
even applicable in higher-way layouts than being presented here; and the list should not be seen as the
limited application of the package. The models are derived by sub-indexing the index i in Equation 1
in the following ways:

* One-Way (A): Writing y#; = v + &; we have X = v + &; + €, with }7_; &; = 0 and obtain the
null hypothesis of 'no group’ or “factor A’ effect as

Ho(A) :{(Pa@Igp =0} = {p=---=m,}
= {‘xl:"':“u:O}-
In case of a = 2 this includes the famous multivariate Behrens-Fisher problem as, e.g., analyzed in

Yao (1965); Nel and Van der Merwe (1986); Christensen and Rencher (1997); Krishnamoorthy
and Yu (2004) or Yanagihara and Yuan (2005).

* Crossed Two-Way (A x B): Splitting the index into two and writing p;; = v +&; + B; + v;;
we obtain the model Xk =v+u +/3]- + vij + €ijes 1<i<a,1<j<bh1<k< njj with
Yiai =Y, B; = ¥ivij = ¥;vij = 0. The corresponding null hypotheses of no main effects in A
or B and no interaction effect between A and B can be written as:

Ho(A) : {(Pa@b ' Jy@ ) p =0} = {ag=---=a,=0},
Hy(B): {(a ' J,®@P,@I;)p=0} = {By=---=p, =0},
Hy(AB) : {(P, @ P, ® 1) p = 0} {rmi=-=vs =0}

Note that the interpretation of main effects is complicated by the presence of significant interac-
tion effects and further analyses are necessary to determine the direction of the effects.

* Hierarchically nested Two-Way (B(A)): A fixed subcategory B within factor A can be intro-
duced via the model Xijk = v+ai+ﬁj(i) + €jjk, 1 < i<a1<j<b,1 <k< n;j with
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Lie; = Y Bj(;y = 0. Here, the hypotheses of no main effect A or no sub-category main effect B
can be written as

Ho(A) : {(PaJy@I5) p=0} = {a;=---=u, =0},
Ho(B(A)) : {(Py®@Iy)p=0} = {Bj;=0v1<i<al<j<b}

with P, = @?:1 Py, Jp = @;?:1 bj_llgj and p := (p}y, ...,y’lbl,y’m, . ”/szf . ‘u;ba)’.

We only implemented balanced designs, i.e., b; = b for alli = 1,...,a. Hierarchically nested
three-way designs or arbitrary crossed higher-way layouts can be introduced similarly and are
implemented as well.

* Repeated Measures and Split Plot Designs are covered by setting d = ¢, where even hypothe-
ses about within subject factors can be formulated. We exemplify this for profile analyses in the
special case of a one-sample RM design witha =1

Ho(Time) : {Prp =0} = {pn1=---=pu},
as well as for a two-sample RM design with a = 2:
Hp(Parallel) : {Tppu =0} = {p; —p, =71 forsome y € R}

Hy(Flat) : {Tr p = 0} {mis + 1y = o + i, forall s}
Hp(Identical) : {T;p =0} = {p;=wu,}

withTp =P (It It), Tp=(1;1 —IL; 1) Trand Ty = (I; —1I;).

parallel flat identical

Note, that we could also employ more complex factorial structures on the repeated measure-
ments (i.e., more within subject factors) by splitting up the index ;.

Examples

To demonstrate the use of the RM and the MANOVA function, we provide several examples for both
repeated measures designs and multivariate data in the following. Furthermore, the MANOVA.RM
package is equipped with an optional GUI (graphical user interface), based on RGtk2 (Lawrence and
Temple Lang, 2010), which will be explained in detail in Section 2.3.3 below.

Both functions are structured similarly: The main input parameters are the formula specifying
the outcome on the left hand side and the factor variables of interest on the right, the data and
the resampling approach. The latter varies according to the design: the user can choose between a
parametric and a wild bootstrap and in the RM design, additionally a permutation approach for the
WTS is implemented.

Repeated Measures Designs

The function RM is built as follows:

R> RM(formula, data, subject, no.subf = 1, iter = 10000, alpha = 0.05,
+ resampling = "Perm”, CPU, seed, CI.method = "t-quantile"”, dec = 3)

Data need to be provided in long format, i.e., one row per measurement. Here, subject specifies
the column name of the subjects variable in the data frame, while no. subf denotes the number of
within subject factors considered. Note that in a setting with more than one between subjects factor,
the subject ids in the different groups need to be different. Otherwise the program will erroneously
assume that these measurements belong to the same subject. The number of cores used for parallel
computing as well as a random seed can optionally be specified using CPU and seed, respectively. For
calculating the confidence intervals, the user can choose between t-quantiles (the default) and the
quantiles based on the resampled WTS. The results are rounded to dec digits.

The function RM returns an object of class "RM" from which the user may obtain plots and summaries
of the results using plot(), print() and summary(), respectively. Here, print() returns a short
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summary of the results, i.e., the values of the test statistics along with degrees of freedom and
corresponding p values whereas summary () also displays some descriptive statistics such as the means,
sample sizes and confidence intervals for the different factor level combinations. Plotting is based on
plotrix (Lemon, 2006). For two- and higher-way layouts, the factors for plotting can be additionally
specified in the plot call, see the examples below.

Example 1: One between subject and two within subject factors

For illustration purposes, we consider the data set o2cons, which is included in MANOVA.RM. This
data set contains measurements of the oxygen consumption of leukocytes in the presence and absence
of inactivated staphylococci at three consecutive time points. Due to the study design, both time and
staphylococci are within subject factors while the treatment (Verum vs. Placebo) is a between subject
factor (see Friedrich et al., 2017a, for more details).

R> data("o2cons")

R> modell <- RM(02 ~ Group * Staphylococci * Time, data = o2cons,
+ subject = "Subject”, no.subf = 2, iter = 1000,

+ resampling = "Perm”, seed = 1234)

R> summary(model1)

Call:
02 ~ Group * Staphylococci * Time
A repeated measures analysis with 2 within-subject and 1 between-subject factors.

Descriptive:

Group Staphylococci Time n Means Lower 95 % CI Upper 95 % CI
1 P Q 6 12 1.322 1.150 1.493
5 P Q0 12 12 2.430 2.196 2.664
9 P Q@ 18 12 3.425 3.123 3.727
3 P 1 6 12 1.618 1.479 1.758
7 P 1 12 12 2.434 2.164 2.704
11 P 1 18 12 3.527 3.273 3.781
2 \% %} 6 12 1.394 1.201 1.588
6 v @ 1212 2.570 2.355 2.785
10 v Q0 18 12 3.677 3.374 3.979
4 \% 1 6 12 1.656 1.471 1.840
8 \% 1 12 12 2.799 2.500 3.098
12 v 1 18 12 4.029 3.802 4.257
Wald-Type Statistic (WTS):

Test statistic df p-value
Group "11.167" "1" "@.001"
Staphylococci "20.401" "1" "<0.001"
Group: Staphylococci "2.554" B I I
Time "4113.057" "2" "<0.001"
Group:Time "24.105" "2" "<0.001"
Staphylococci:Time "4.334" "2" "9.115"
Group:Staphylococci:Time "4.303" "2" "0.116"
ANOVA-Type Statistic (ATS):
Test statistic df1 df2 p-value

Group "11.167" " "316.278" "0.001"
Staphylococci "20.401" "1 "Inf" "<0.001"
Group: Staphylococci "2.554" " "Inf" "9.11"
Time "960.208" "1.524" "Inf" "<0.001"
Group:Time "5.393" "1.524" "Inf" "0.009"
Staphylococci:Time "2.366" "1.983" "Inf" "0.094"
Group:Staphylococci:Time "2.147" "1.983" "Inf" "Q.117"

p-values resampling:

Perm (WTS)
Group "0.005"
Staphylococci "0.001"
Group: Staphylococci "0.145"
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Time "<Q.001"
Group:Time "<0.001"
Staphylococci:Time "0.144"

Group:Staphylococci:Time "0.139"

The output consists of four parts: model1$Descriptive gives an overview of the descriptive
statistics: The number of observations, mean and confidence intervals are displayed for each factor
level combination. Second, model1$WTS contains the results for the Wald-type test: The test statistic,
degree of freedom and p values based on the asymptotic x2-distribution are displayed. Note that
the )(z—approximation is highly anti-conservative for small sample sizes, cf. Konietschke et al. (2015);
Friedrich et al. (2017a). The corresponding results based on the ATS are contained within model11$ATS.
This test statistic tends to rather conservative decisions in case of small sample sizes and is even
asymptotically only an approximation, thus not providing an asymptotic level a test, see Brunner
(2001); Friedrich et al. (2017a). Finally, model1$resampling contains the p values based on the chosen
resampling approach. For the ATS, the permutation approach is not feasible since it would result in an
incorrect covariance structure, and is therefore not implemented. Due to the above mentioned issues
for small sample sizes, the respective resampling procedure is recommended for such situations.

In this example, we find significant effects of all factors as well as a significant interaction between
group and time.

Example 2: Two within subject and two between subject factors

We consider the data set EEG from the MANOVA.RM package: At the Department of Neurology,
University Clinic of Salzburg, 160 patients were diagnosed with either Alzheimer’s Disease (AD),
mild cognitive impairment (MCI), or subjective cognitive complaints without clinically significant
deficits (SCC), based on neuropsychological diagnostics (Bathke et al., 2018). This data set contains
z-scores for brain rate and Hjorth complexity, each measured at frontal, temporal and central electrode
positions and averaged across hemispheres. In addition to standardization, complexity values were
multiplied by —1 in order to make them more easily comparable to brain rate values: For brain rate
we know that the values decrease with age and pathology, while Hjorth complexity values are known
to increase with age and pathology. The three between subject factors considered were sex (men vs.
women), diagnosis (AD vs. MCI vs. SCC), and age (< 70 vs. > 70 years). Additionally, the within
subject factors region (frontal, temporal, central) and feature (brain rate, complexity) structure the
response vector.

Note that due to the small number of subjects in some groups (e.g., only 2 male patients aged < 70
were diagnosed with AD) we restrict our analyses to two between subject factors at a time. However,
more complex factorial designs can also be analyzed with MANOVA.RM as outlined above.

R> data("EEG")

R> EEG_model <- RM(resp ~ sex * diagnosis * feature * region, data = EEG,
+ subject = "id", no.subf = 2, resampling = "WildBS",

+ iter = 1000, alpha = 0.01, CPU = 4, seed = 123)

R> summary (EEG_model)

Call:
resp ~ sex * diagnosis * feature * region
A repeated measures analysis with 2 within-subject and 2 between-subject factors.

Descriptive:

sex diagnosis feature region n Means Lower 99 % CI Upper 99 % CI
1 M AD brainrate central 12 -1.010 -4.881 2.861
13 M AD brainrate frontal 12 -1.007 -4.991 2.977
25 M AD brainrate temporal 12 -0.987 -4.493 2.519
7 M AD complexity central 12 -1.488 -10.053 7.077
19 M AD complexity frontal 12 -1.086 -6.906 4.735
31 M AD complexity temporal 12 -1.320 -7.203 4.562
3 M MCI brainrate central 27 -0.447 -1.591 0.696
15 M MCI brainrate frontal 27 -0.464 -1.646 0.719
27 M MCI brainrate temporal 27 -0.506 -1.584 0.572
9 M MCI complexity central 27 -0.257 -1.139 0.625
21 M MCI complexity frontal 27 -0.459 -1.997 1.079
33 M MCI complexity temporal 27 -0.490 -1.796 0.816
5 M SCC brainrate central 20 0.459 -0.414 1.332
17 M SCC brainrate frontal 20 0.243 -0.670 1.156
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29 M SCC brainrate temporal 20 0.409 -1.210
11 M SCC complexity central 20 0.349 -0.070
23 M SCC complexity frontal 20 0.095 -1.037
35 M SCC complexity temporal 20 0.314 -0.598
2 W AD brainrate central 24 -0.294 -1.978
14 W AD brainrate frontal 24 -0.159 -1.813
26 W AD brainrate temporal 24 -0.285 -1.776
8 W AD complexity central 24 -0.128 -1.372
20 W AD complexity frontal 24 0.026 -1.212
32 W AD complexity temporal 24 -0.194 -1.670
4 W MCI brainrate central 30 -0.106 -1.076
16 W MCI brainrate frontal 30 -0.074 -1.032
28 W MCI brainrate temporal 30 -0.069 -1.064
10 W MCI complexity central 30 0.094 -0.464
22 W MCI complexity frontal 30 @.131 -0.768
34 W MCI complexity temporal 30 0.121 -0.652
6 W SCC brainrate central 47 0.537 -0.049
18 W SCC brainrate frontal 47 0.548 -0.062
30 W SCC brainrate temporal 47 @.559 -0.015
12 W SCC complexity central 47 0.384 0.110
24 W SCC complexity frontal 47 0.403 -0.038
36 W SCC complexity temporal 47 @.506 0.132
Wald-Type Statistic (WTS):
Test statistic df p-value

sex "9.973" "1" "9.002"
diagnosis "42.383" "2" "<0.001"
sex:diagnosis "3.777" "2" "@.151"
feature "0.086" "1" "9.769"
sex:feature "2.167" "1 "0.141"
diagnosis:feature "5.317" "2" "@.07"
sex:diagnosis:feature "1.735" "2" "Q.42"
region "0.07" "2" "Q.966"
sex:region "0.876" "2" "Q.645"
diagnosis:region "6.121" "4" "Q.19"
sex:diagnosis:region "1.532" "4" "Q.821"
feature:region "0.652" "2" "Q.722"
sex:feature:region "0.423" "2" "9.81"
diagnosis:feature:region "7.142" "4" "Q.129"
sex:diagnosis:feature:region "2.274" "4" "Q.686"
ANOVA-Type Statistic (ATS):

Test statistic df1 df2 p-value
sex "9.973" " "657.416" "0.002"
diagnosis "13.124" "1.343" "657.416" "<0.001"
sex:diagnosis "1.904" "1.343" "657.416" "0.164"
feature "0.086" " "Inf" "0.769"
sex:feature "2.167" " "Inf" "0.141"
diagnosis:feature "1.437" "1.562" "Inf" "0.238"
sex:diagnosis:feature "1.031" "1.562" "Inf" "Q.342"
region "0.018" "1.611" "Inf" "0.965"
sex:region "9.371" "1.611" "Inf" "0.644"
diagnosis:region "1.091" "2.046" "Inf" "9.337"
sex:diagnosis:region "0.376" "2.046" "Inf" "0.691"
feature:region "0.126" "1.421" "Inf" "0.81"
sex:feature:region "0.077" "1.421" "Inf" "0.864"
diagnosis:feature:region "0.829" "1.624" "Inf" "0.415"
sex:diagnosis:feature:region "0.611" "1.624" "Inf" "0.51"

p-values resampling:
WildBS (WTS)  WildBS (ATS)

sex "<0.001" "<0.001"
diagnosis "<0.001" "<0.001"
sex:diagnosis "0.119" "0.124"
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feature "0.798" "0.798"
sex:feature "0.152" "0.152"
diagnosis:feature "0.067" "0.249"
sex:diagnosis:feature "Q.445" "0.362"
region "0.967" "9.98"

sex:region "0.691" "Q.728"
diagnosis:region "9.182" "0.338"
sex:diagnosis:region "0.863" "0.814"
feature:region "0.814" "0.926"
sex:feature:region "0.881" "0.951"
diagnosis:feature:region "0.098" "0.519"
sex:diagnosis:feature:region "0.764" "0.683"

We find significant effects at level & = 0.01 of the between subject factors sex and diagnosis, while
none of the within subject factors or interactions become significant.

Plotting

The RM() function is equipped with a plotting option, displaying the calculated means along with
(1 — &) confidence intervals based on t-quantiles. The plot function takes an RM object as argument.
In addition, the factor of interest may be specified. If this argument is omitted in a two- or higher-
way layout, the user is asked to specify the factor for plotting. Furthermore, additional graphical
parameters can be used to customize the plots. The optional argument legendpos specifies the position
of the legend in higher-way layouts, whereas gap (default 0.1) is the distance introduced between error
bars in a higher-way layout. Additionally, the parameter CI.info can be set to TRUE in order to output
the means and confidence intervals for the desired interaction.

R> plot(EEG_model, factor = "sex", main = "Effect of sex on EEG values")
R> plot(EEG_model, factor = "sex:diagnosis"”, legendpos = "topleft”,
+ col = c(4, 2), ylim = c(-1.8, 0.8), CI.info = TRUE)

$mean

AD MCI SCC
M -1.1496245 -0.43724352 0.3114978
W -0.1723434 0.01624054 0.4897902

$lower

AD MCI SCC
M -1.6714757 -0.6251940 0.1732354
W -0.3874841 -0.1290226 0.3848516

$upper

AD MCI SCC
M -0.62777339 -0.2492930 0.4497601
W 0.04279732 0.1615037 0.5947288

R> plot(EEG_model, factor = "sex:diagnosis:feature”,
+ legendpos = "bottomright”, gap = 0.05)

The resulting plots are displayed in Figure 1 and Figure 2, respectively.

MANOVA Design

For the analysis of multivariate data, the functions MANOVA and MANOVA . wide are implemented. The
difference between the two functions is that the response must be stored in long and wide format
for using MANOVA or MANOVA . wide, respectively. The structure of both functions is very similar. They
both calculate the WTS for multivariate data in a design with crossed or nested factors. Additionally,
the modified ANOVA-type statistic (MATS) is calculated which has the additional advantage of
being applicable to designs involving singular covariance matrices and is invariant under scale
transformations of the data (Friedrich and Pauly, 2018). The resampling methods provided are a
parametric bootstrap approach and a wild bootstrap using Rademacher weights. Note that only
balanced nested designs (i.e., the same number of factor levels b for each level of the factor A) with
up to three factors are implemented. Designs involving both crossed and nested factors are not
implemented. Note that in nested designs, the levels of the nested factor usually have the same labels

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 389

Effect of sex on EEG values
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Figure 1: Plot for factor "sex" in the RM model of the EEG data example.

for all levels of the main factor, i.e., for each level i = 1,...,a of the main factor A the nested factor
levels are labeled as j = 1, .. ., b;. If the levels of the nested factor are named uniquely;, this has to be
specified by setting the parameter nested. levels.unique to TRUE.

R> MANOVA(formula, data, subject, iter = 10000, alpha = 0.05,

+ resampling = "paramBS”, CPU, seed,

+ nested.levels.unique = FALSE, dec = 3)

R> MANOVA.wide(formula, data, iter = 10000, alpha = 0.05,
+ resampling = "paramBS", CPU, seed,

+ nested.levels.unique = FALSE, dec = 3)

The only difference between MANOVA and MANOVA . wide in the function call except from the different
shape of the formula (see examples below) is the subject variable, which needs to be specified for
MANOVA only.

Data Example MANOVA: Two crossed factors

We again consider the data set EEG from the MANOVA.RM package, but now we ignore the within
subject factor structure. Therefore, we are now in a multivariate setting with 6 measurements per
patient and three crossed factors sex, age and diagnosis. Due to the small number of subjects in some
groups we restrict our analyses to two factors at a time. The analysis of this example is shown below.

R> data("EEG")

R> EEG_MANOVA <- MANOVA(resp ~ sex * diagnosis, data = EEG, subject = "id",
+ resampling = "paramBS"”, iter = 1000, alpha = 0.01,
+ CPU = 1, seed = 987)

R> summary (EEG_MANOVA)

Call:
resp ~ sex * diagnosis

Descriptive:
sex diagnosis n Mean 1 Mean 2 Mean 3 Mean 4 Mean 5 Mean 6

1 M AD 12 -0.987 -1.007 -1.010 -1.320 -1.086 -1.488
3 M MCI 27 -0.506 -0.464 -0.447 -0.490 -0.459 -0.257
5 M SCC 20 0.409 0.243 0.459 0.314 0.095 0.349
2 W AD 24 -0.285 -0.159 -0.294 -0.194 0.026 -0.128
4 W MCI 30 -0.069 -0.074 -0.106 ©0.121 0.131 0.09%4
6 W SCC 47 ©0.559 0.548 0.537 0.506 0.403 0.384
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Figure 2: Plot for the interaction between "sex" and "diagnosis" (upper panel) as well as additionally
taking "feature" into account (lower panel) in the RM model of the EEG data example.
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Wald-Type Statistic (WTS):
Test statistic df p-value

sex "12.604" "6" "@.05"
diagnosis "55.158" "12" "<0.001"
sex:diagnosis "9.79" "12" "0.634"

modified ANOVA-Type Statistic (MATS):
Test statistic

sex 45.263
diagnosis 194.165
sex:diagnosis 18.401

p-values resampling:
paramBS (WTS) paramBS (MATS)

sex "0.124" "0.003"
diagnosis "<0.001" "<0.001"
sex:diagnosis "0.748" "9.223"

The output consists of several parts: First, some descriptive statistics of the data set are displayed,
namely the sample size and mean for each factor level combination and each dimension (dimensions
occur in the same order as in the original data set). In this example, Mean 1 to Mean 3 correspond to
the brainrate (temporal, frontal, central) while Mean 4-6 correspond to complexity. Second, the results
based on the WTS are displayed. For each factor, the test statistic, degree of freedom and p value is
given. For the MATS, only the value of the test statistic is given, since here inference is only based on
resampling. The resampling-based p values are finally displayed for both test statistics.

To demonstrate the use of the MANOVA.wide () function, we consider the same data set in wide
format, which is also included in the package. In the formula argument, the user now needs to specify
the variables of interest bound together via cbind. A subject variable is no longer necessary, as every
row of the data set belongs to one patient in wide format data. The output is almost identically to the
one obtained from MANOVA with the difference that the mean values are now labeled according to the
variable names supplied in the formula argument.

R> data("EEGwide")
R> EEG_wide <- MANOVA.wide(cbind(brainrate_temporal, brainrate_frontal,

+ brainrate_central, complexity_temporal,

+ complexity_frontal, complexity_central) ~ sex * diagnosis,
+ data = EEGwide, resampling = "paramBS", iter = 1000,

+ alpha = 0.01, CPU = 1, seed = 987)

R> summary(EEG_wide)

Call:

cbind(brainrate_temporal, brainrate_frontal, brainrate_central,
complexity_temporal, complexity_frontal, complexity_central) ~
sex * diagnosis

Descriptive:

sex diagnosis n brainrate_temporal brainrate_frontal brainrate_central

1 M AD 12 -0.987 -1.007 -1.010
2 W AD 27 -0.506 -0.464 -0.447
3 M MCI 20 0.409 0.243 0.459
4 W MCI 24 -0.285 -0.159 -0.29%4
5 M SCC 30 -0.069 -0.074 -0.106
6 W SCC 47 0.559 0.548 0.537
complexity_temporal complexity_frontal complexity_central

1 -1.320 -1.086 -1.488

2 -0.490 -0.459 -0.257

3 0.314 0.095 0.349

4 -0.194 0.026 -0.128

5 0.121 0.131 0.094

6 0.506 0.403 0.384

Wald-Type Statistic (WTS):
Test statistic df  p-value
sex "12.604" "6" "0.05"
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diagnosis "55.158" "12" "<0.001"
sex:diagnosis "9.79" "12" "0.634"

modified ANOVA-Type Statistic (MATS):
Test statistic

sex 45.263
diagnosis 194.165
sex:diagnosis 18.401

p-values resampling:
paramBS (WTS) paramBS (MATS)

sex "0.122" "0.005"
diagnosis "<0.001" "<0.001"
sex:diagnosis "0.742" "9.21"

In this example, MATS detects a significant effect of sex, a finding that is not shared by the p value
based on the parametric bootstrap WTS.

Confidence Regions

The MANOVA functions are equipped with a function for calculating and plotting of confidence regions.
Details on the methods can be found in Friedrich and Pauly (2018). We would like to point out,
however, that the MATS-based confidence regions have to be interpreted differently from the more
usual WTS-based ones. For the latter, the WTS is compared to a fixed critical value (in the asymptotic
choice from a x2-distribution) and we thus obtain geometric ellipsoids as the WTS is more or less
a Mahalanobis distance in the inverse covariance matrix. The MATS statistic only involves the
variances of the covariance matrix and we thus obtain a different geometric shape of the corresponding
confidence region. However, here the correlation is implicitly involved in the critical value which now
(different to the WTS) depends on the covariance matrix. More precisely, a confidence region for the
vector of contrasts Hu based on the MATS is determined by the set of all Hu such that

N(HX. — Hu)' (HDNyH")"(HX. — Hu) < c¢}_,,

where c]_, denotes the quantile of the respective resampling distribution. A confidence ellipsoid is

now obtained based on the eigenvalues 7\5 and eigenvectors és of H ﬁNH T The classical WTS-based
confidence ellipsoids, in contrast, are based on eigenvectors and eigenvalues of HEyH | instead.
Confidence regions can be calculated using the conf. reg function. Note that confidence regions can
only be plotted in designs with 2 dimensions.

R> conf.reg(object, nullhypo)

Object must be an object of class "MANOVA", i.e., created using either MANOVA or MANOVA.wide,
whereas nullhypo specifies the desired null hypothesis, i.e., the contrast of interest in designs involving
more than one factor. As an example, we consider the data set water from the HSAUR package (Everitt
and Hothorn, 2017). The data set contains measurements of mortality and drinking water hardness
for 61 cities in England and Wales. Suppose we want to analyse whether these measurements differ
between northern and southern towns. Since the data set is in wide format, we need to use the
MANOVA.wide function.

R> library("HSAUR")

R> data("water")

R> test <- MANOVA.wide(cbind(mortality, hardness) ~ location, data = water,
+ iter = 1000, resampling = "paramBS", CPU = 1, seed = 123)
R> summary(test)

R> cr <- conf.reg(test)

R> cr
R> plot(cr, xlab = "Difference in mortality”,
+ ylab ="Difference in water hardness”)
Call:

cbind(mortality, hardness) ~ location
Descriptive:

location n mortality hardness
1 North 35 1633.600 30.400
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2 South 26 1376.808 69.769

Wald-Type Statistic (WTS):
Test statistic df p-value
location "51.584" "2" "<0.001"

modified ANOVA-Type Statistic (MATS):
Test statistic
location 69.882

p-values resampling:
paramBS (WTS) paramBS (MATS)
location "<0@.001" "<Q.001"

We find significant differences in mortality and water hardness between northern and southern
towns.

The confidence region is returned as an ellipsoid specified by its center as well as its axes, which
extend Scale units into the direction of the respective eigenvector. For two-dimensional outcomes as
in this example, the confidence ellipsoid can also be plotted using the ellipse package (Murdoch and
Chow, 2018), see Figure 3.

Center:

[,1]

[1,] 256.792
[2,7 -39.369

Scale:
[1] 10.852716 2.736354

Eigenvectors:
[,11[,21]
[1,1 -1 0
[2,] o -1

Confidence ellipsoid for factor location

Difference in water hardness
-40

T T T T
100 200 300 400

Difference in mortality

Figure 3: Plot of the confidence region for factor location in the water example from package HSAUR.

Nested design

To create a data example for a nested design, we use the curdies data set from the GFD package
and extend it by introducing an artificial second outcome variable. In this data set, the levels of the
nested factor (site) are named uniquely, i.e., levels 1-3 of factor site belong to "WINTER", whereas
levels 4-6 belong to "SUMMER". Therefore, nested. levels.unique must be set to TRUE. The code for
the analysis using both wide and long format is presented below.
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R>
R>
R>
R>

R>
R>

R>
R>
R>
R>
R>
R>

R>
R>
R>

library("GFD")

data("”curdies"”)

set.seed(123)

curdies$dug?2 <- curdies$dugesia + rnorm(36)

# first possibility: MANOVA.wide

fit1 <- MANOVA.wide(cbind(dugesia, dug2) ~ season + season:site,
data = curdies, iter = 1000,
nested.levels.unique = TRUE, seed = 123, CPU = 1)

# second possibility: MANOVA (long format)

dug <- c(curdies$dugesia, curdies$dug?)

season <- rep(curdies$season, 2)

site <- rep(curdies$site, 2)

curd <- data.frame(dug, season, site, subject = rep(1:36, 2))

fit2 <- MANOVA(dug ~ season + season:site, data = curd,
subject = "subject”, nested.levels.unique = TRUE,
seed = 123, iter = 1000, CPU = 1)

# comparison of results
summary (fit1)
summary (fit2)

Call:
cbind(dugesia, dug2) ~ season + season:site

Descriptive:

season site n dugesia dug2
1 SUMMER 46 0.419 -0.050
2 SUMMER 56 0.229 0.028
3 SUMMER 6 6 0.194 0.763
4 WINTER 16 2.049 2.497
5 WINTER 26 4.182 4.123
6 WINTER 36 0.678 0.724

Wald-Type Statistic (WTS):

Test statistic df p-value

season 6.999 2 0.030
season:site 16.621 8 0.034

modified ANOVA-Type Statistic (MATS):

Test statistic

season 12.296
season:site 15.064

p-values resampling:

paramBS (WTS) paramBS (MATS)

season 0.064 0.032
season:site 0.275 0.216
Call:

dug ~ season + season:site

Descriptive:

season site n Mean 1 Mean 2
1 SUMMER 46 0.419 -0.050

2 SUMMER 56 0.229 0.028

3 SUMMER 6 6 0.194 0.763

4 WINTER 16 2.049 2.497

5 WINTER 26 4.182 4.123

6 WINTER 36 0.678 0.724
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Wald-Type Statistic (WTS):

Test statistic df p-value
season 6.999 2 0.030
season:site 16.621 8 0.034

modified ANOVA-Type Statistic (MATS):
Test statistic

season 12.296

season:site 15.064

p-values resampling:

paramBS (WTS) paramBS (MATS)
season 0.064 0.032
season:site 0.275 0.216

Post-hoc comparisons

In addition to global testing, the package MANOVA.RM allows for post-hoc comparisons. In particu-
lar, the following comparisons are implemented:

1. calculation of simultaneous multivariate p values for contrasts of the mean vector,

2. calculation of simultaneous confidence intervals based on summary effects (i. e. averaged across
all dimensions) and

3. univariate comparisons for separate endpoints.

Calculation of simultaneous confidence intervals and p values for contrasts of the mean vector
is based on the sum statistic, see Friedrich and Pauly (2018) for details. Confidence intervals are
calculated based on summary effects, i.e., averaging over all dimensions, whereas the returned p-
values are multivariate. Note that the confidence intervals and p values returned are simultaneous, i. e.,
they maintain the given alpha-level. Such contrasts include, e. g., Tukey’s all-pairwise comparisons or
Dunnett’s many-to-one comparisons, see e. g. Hothorn et al. (2008a) for more examples. Confidence
intervals for contrasts of the mean vector can be calculated using the function simCI, which is build on
contrMat from the multcomp package (Hothorn et al., 2008b):

simCI(object, contrast, contmat, type, base)

Here, object is an object of class "MANOVA". The user can choose between pairwise or user-defined
contrasts. For user-defined constrast (contrast = "user-defined”), the contrast matrix of interest
must be specified in contmat. Pairwise comparisons (contrast = "pairwise") are calculated using
the contrMat function of multcomp and accordingly, type and base specify the type of the pairwise
comparison and the baseline group for Dunnett contrasts, see Hothorn et al. (2008b) for details on
these parameters. To exemplify its application we reconsider the EEG example from above:

R> # pairwise comparison using Tukey contrasts
R> simCI(EEG_MANOVA, contrast = "pairwise”, type = "Tukey")

- Contrast: Tukey
- Confidence level: 99 %

contrast p.value

1 MMCI -MAD 0.961
2 MSCC-MAD 0.548
3 WAD - MAD 0.899
4 WMCI -MAD 0.775
5 WSCC-MAD 0.417
6 MSCC-MMCI 0.368
7 WAD - MMCI 0.995
8 WMCI - MMCI 0.843
9 WSCC-MMCI 0.111
10 W AD - M SCC 0.845
11 WMCI - MSCC 0.938
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12 W SCC - M SCC 0.989
13 WMCI - WAD 1.000
14 W SCC - WAD 0.526
15 W SCC - WMCI  9.563

H#-—m—— - Confidence intervals for summary effects------------- #
Estimate Lower Upper
M MCI - M AD 4.275 -16.181707 24.731707
M SCC - M AD 8.767 -11.126510 28.660510
WAD - M AD 5.864 -14.947797 26.675797
W MCI - M AD 6.995 -12.978374 26.968374
W SCC - M AD 9.835 -9.799574 29.469574
M SCC - M MCI 4.492 -4.040216 13.024216
W AD - M MCI 1.589 -8.907565 12.085565
W MCI - M MCI 2.720 -5.996803 11.436803
W SCC - M MCI 5.560 -2.349709 13.469709
W AD - M SCC -2.903 -12.254617 6.448617
WMCI - MSCC -1.772 -9.069776 5.525776
W SCC - M SCC 1.068 -5.243764 7.379764
W MCI - W AD 1.131 -8.389330 10.651330
W SCC - W AD 3.971 -4.816350 12.758350
W SCC - W MCI 2.840 -3.719140 9.399140

The output is two-fold: First, the multivariate p values for the desired contrasts are returned.
The second part of the output provides simultaneous confidence intervals for summary effects by
averaging over all dimensions.

As another example using a user-defined contrast matrix, we consider the following one-way

layout of the EEG data:

R> oneway <- MANOVA.wide(cbind(brainrate_temporal, brainrate_central)
+ ~ diagnosis, data = EEGwide, iter = 1000,

+ CPU = 1)

R> # a user-defined contrast matrix
R> H <- as.matrix(cbind(rep(1, 5), -1*Matrix::Diagonal(5)))
R> simCI(oneway, contrast = "user-defined”, contmat = H)

- Contrast: user-defined
- Confidence level: 95 %

Estimate Lower Upper
0.013 -1.003489 1.0294895
-0.243 -1.050099 0.5640992
-0.251 -1.058376 ©.5563761
-1.033 -1.812577 -0.2534227
-1.033 -1.791749 -0.2742508

g w N =

Note that interpretation of the results depends on the user-defined contrast matrix.
If the global null hypothesis, e. g.

Ho(A) :{(Pa®@Iy)p=0}t = {p=-=p,}

has been rejected, it is usually of interest to further investigate which univariate endpoints caused the
rejection. A straight-forward way to do this is to calculate the univariate p values and adjust them
for multiple testing, e. g., using Bonferroni correction. Consider the one-way layout above: Since the
global null hypothesis can be rejected, we now wish to analyze which of the two univariate endpoints
caused this rejection.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE

397

R> EEG1 <- MANOVA.wide(brainrate_temporal ~ diagnosis, data = EEGwide,

+ iter = 1000, seed = 987, CPU = 1)

R> EEG2 <- MANOVA.wide(brainrate_central ~ diagnosis, data = EEGwide,
+ iter = 1000, seed = 987, CPU = 1)

R> p.adjust(c(EEG1$resampling[, 2], EEG2$resampling[, 21),

+ method = "bonferroni”)

[1] 00

Thus, in this example both endpoints showed significant effects.
Note that it is often possible to conduct post-hoc comparisons according to the closure principle, thus
avoiding the need to correct for multiple comparisons. Implementation of these methods for both
MANOVA and RM designs is part of future research.

Graphical user interface

The GUI is started in R with the command GUI.RM(), GUI.MANOVA() and GUI.MANOVAwide() for re-
peated measures designs and multivariate data in long or wide format, respectively. Note that the GUI
depends on RGtk2 and will only work if RGtk2 is installed. The user can specify the data location
(either directly or via the "load data" button) and the formula as well as the number of iterations,
the significance level &, the number of within subject factors (for repeated measures designs) and
the name of the subject variable, see Figure 4. Furthermore, the user has the choice between the
three resampling approaches "Perm" (only for RM designs), "paramBS" and "WildBS" denoting the
permutation procedure, the parametric bootstrap and the wild bootstrap, respectively. Additionally,
one can specify whether or not headers are included in the data file, and which separator and character
symbols are used for decimals in the data file. The GUI for repeated measures also provides a plotting
option, which generates a new window for specifying the factors to be plotted (in higher-way layouts)
along with a few plotting parameters, see Figure 5.

R> library("MANOVA.RM")
R> GUI.RM()

'-i Tests for repeated measures designs _ o x|
Specify data |ocation and formula.

File name | ‘ Formula ‘ |

iterations | 10000 | alpha ‘ 0.05 ‘ sub-plet factors | 1 ‘ subject | | Resampling Method | Perm - |

Headers? (v Col Separator? |7| Dec. character? ‘7|

Plot Results? | |

‘ 0K ‘ | load data Close

Tests for multivariate data

Specify data location and formula...

File name | | Formula | |

iterations | 10000 | alpha | 0.05 ‘ subject | ‘ Resampling Method | paramBs - |

Headers? | Col. Separator? |7| Dec. character? ‘7|

| 0K | | load data Close

Figure 4: The GUI for tests in repeated measures designs (upper panel) and multivariate data (lower
panel): The user can specify the data location and the formula as well as the resampling approach.
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' Plot ol x| - Plot =T

T T T Flease choose the factor you wish o plot (for interaction type something like group1-group2).

Factor | diagnosis region| |
Title wd | 2

Title lwd | 2 position of legend | topright

OK Close oK Close

Figure 5: Graphical user interfaces for plotting: The left GUI is for the one-way layout (no choice of
factors possible), the right one is for a two-way layout with an example for plotting interactions.

Discussion and Outlook

We have explicitly described the usage of the R package MANOVA.RM for analyzing various non-
parametric multivariate MANOVA and RM designs making use of novel bootstrap- and permutation-
approaches. Moreover, the corresponding models and inference procedures that have been derived
and theoretically analyzed in previous papers are explained as well. In particular, three different
test statistics of Wald-, ANOVA- and modified ANOVA-type are implemented together with appro-
priate critical values derived from asymptotic considerations, approximations or novel resampling
approaches. Here, the latter is recommended in case of small to moderate sample sizes. All meth-
ods can be applied without assuming usual presumptions such as multivariate normality or specific
covariance structures. Moreover, all procedures are particularly constructed to tackle covariance
matrix heterogeneity across groups or even covariance singularity (in case of the MATS). In this way
MANOVA.RM provides a flexible tool box for inferring hypotheses about (i) main and interaction
effects in general factorial MANOVA and (ii) between and within subject effects in RM designs with
possibly complex factorial structures on both, between and within subject factors.

In addition, we have placed a graphical user interface (GUI) at the users disposal to allow for
a simple and intuitive use. It is planned to update the package on a regular basis; respecting the
development of new procedures for general RM and MANOVA designs. For example, our working
group is currently investigating the implementation of covariates in the above model in theoretical
research and the resulting procedure may be incorporated in the future. Other topics include the
possible implementation/improvement of subsequent multiple comparisons by the closure principle,
as in Burchett et al. (2017), for both MANOVA and RM designs.
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