
CONTRIBUTED RESEARCH ARTICLE 254

Associative Classification in R: arc,
arulesCBA, and rCBA
by Michael Hahsler, Ian Johnson, Tomáš Kliegr and Jaroslav Kuchař

Abstract Several methods for creating classifiers based on rules discovered via association rule
mining have been proposed in the literature. These classifiers are called associative classifiers and
the best-known algorithm is Classification Based on Associations (CBA). Interestingly, only very few
implementations are available and, until recently, no implementation was available for R. Now, three
packages provide CBA. This paper introduces associative classification, the CBA algorithm, and how
it can be used in R. A comparison of the three packages is provided to give the potential user an idea
about the advantages of each of the implementations. We also show how the packages are related to
the existing infrastructure for association rule mining already available in R.

Introduction

Association rule learning (Agrawal et al., 1993) was initially designed for data exploration to discover
interesting patterns in very large and sparse datasets. Several years after its inception, association rule
learning was also adapted to create rule-based classification models. The first algorithm called CBA
(Classification Based on Associations) was introduced by Liu et al. (1998). While there were multiple
follow-up algorithms providing some improvements in classification performance (e.g., CPAR (Yin
and Han, 2003) and FARC-HD-OVO (Elkano et al., 2015)), these performance gains are offset by a
deterioration of comprehensibility of the produced set of rules. For some practical applications, CBA
still provides a very good balance between accuracy, speed, and model comprehensibility. Unlike
many more recent approaches, CBA classifiers are easy to interpret and apply: the resulting ruleset
is relatively small, rules are crisp (i.e., not fuzzy rules), and rules are sorted according to predictive
strength. CBA uses a simple first-match strategy for classification, where the first matching rule
determines the predicted class.

With the exception of fuzzy approaches such as FARC-HD, associative classification approaches
require a dataset in the form of transactions, i.e., all attributes need to be binary indicators and thus
numeric attributes in the input data need to be discretized. This puts additional demands on the user
and may deteriorate model fit on datasets with numerical attributes. Another disadvantage relating to
CBA and most other associative classification approaches is that these algorithms require the user to
specify a minimum support and a minimum confidence threshold for association rule mining. The
performance (accuracy and speed) is typically very sensitive to a proper selection of these threshold
values. Setting these thresholds too high can result in the classifier underfitting the dataset or even an
empty rule list. Too low values can lead to a combinatorial explosion with an excessive number of
rules generated, leading to speed and memory issues. Another limitation that applies specifically to
CBA is that even when the user specifies reasonable thresholds, CBA typically produces more rules
than other related approaches (Alcala-Fdez et al., 2011). These limitations may be the reason why
CBA implementations have not been available in many computational environments for machine
learning and statistics. However, in the last several years, three packages with CBA implementations
appeared on CRAN (listed by date of the first release): rCBA (Kuchar, 2018), arc (Kliegr, 2018) and
arulesCBA (Johnson and Hahsler, 2019). Each of these packages offers some enhancements over the
original CBA algorithm to address some shortcomings of association rule-based classification.

The goal of this paper is to introduce prospective users to the concepts used in associative classifi-
cation and the CBA algorithm in particular. We provide detailed information on the three available R
packages and the enhancements they provide, followed by hands-on examples.

The paper is organized as follows. We first introduce association rule mining, followed by a
discussion of the CBA algorithm. We present existing CBA implementations and focus on the features
and the use of the three new R implementations. We conclude with a short comparison of the features
and a run-time comparison on a typical dataset.

Background: Association rule mining

Associative classifiers like CBA are based on association rules. Mining association rules was first
introduced by Agrawal et al. (1993) and, following the notation used by Agrawal et al. (1993), Hahsler
et al. (2005) and Tan et al. (2006), can formally be defined as:

Let D = {t1, t2, . . . , tm} be a set of transactions called the database, and let I = {i1, i2, . . . , in} be

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arulesCBA

CONTRIBUTED RESEARCH ARTICLE 255

transaction ID items
1 milk, bread
2 bread, butter
3 beer
4 milk, bread, butter
5 bread, butter

Figure 1: An example supermarket database with five transactions.

the set of all items considered in the database. Each transaction in D has a unique transaction ID and
contains a subset of the items in I. To illustrate the concepts, we use a small example from the super-
market domain introduced by Hahsler et al. (2005). The set of items is I = {milk, bread, butter, beer}
and a small database containing five transactions with these items is shown in Figure 1. An example
rule for the supermarket could be {milk, bread} ⇒ {butter}meaning that if milk and bread is bought,
customers also may buy butter.

A rule is defined as an expression X ⇒ Y where X, Y ⊆ I and X ∩ Y = ∅. The sets of items (for
short itemsets) X and Y are called antecedent (left-hand-side or LHS) and consequent (right-hand-side or
RHS) of the rule. Often rules are restricted to only a single item in the consequent. Association rules
are rules which meet user-specified minimum support and minimum confidence thresholds. The
support, supp(X), of an itemset X is a measure of importance defined as the proportion of transactions
in the dataset which contain the itemset. The confidence of a rule is defined as conf(X ⇒ Y) =
supp(X ∪Y)/supp(X), measuring how likely it is to see Y in a transaction containing X.

An association rule X ⇒ Y needs to satisfy

supp(X ∪Y) ≥ σ and conf(X ⇒ Y) ≥ δ,

where σ and δ are the minimum support and minimum confidence thresholds, respectively. For
example, the rule {milk, bread} ⇒ {butter} has a support of 1/5 = 0.2 and a confidence of 0.2/0.4 =
0.5 in the database in Figure 1, which means that for 50% of the transactions containing milk and
bread, the rule is correct. Confidence can be interpreted as an estimate of the probability P(Y | X), the
probability of finding the RHS of the rule in transactions under the condition that these transactions
also contain the LHS (see, e.g., Hipp et al., 2000).

Another popular measure for the importance of a rule is lift (Brin et al., 1997). The lift of a rule is
defined as lift(X ⇒ Y) = supp(X ∪Y)/(supp(X) supp(Y)), and can be interpreted as the deviation
of the support of the whole rule from the support expected under independence given the supports of
the LHS and the RHS. Lift values greater than one indicate positive associations between the rule’s
LHS and RHS.

Because associative classification is based on association rules, transaction data is required as the
input. Here each object (or instance) needs to be converted into a transaction containing only binary
items. Discrete variables can be converted into items using a set of 0-1 dummy variables, one for
each possible value. Continuous variables need to be first discretized and then converted. Typically,
discretization for associative classifiers is performed using a class-based (also called supervised)
discretization strategy, which identifies ranges for several intervals using information from the class
variable (Yin and Han, 2003). The most popular method for class-based discretization is Minimum
Description Length Principle (MDLP) discretization (Fayyad and Irani, 1993), which uses a greedy
procedure to find cut points based on the entropy of the induced partition of the data with respect
to the class variable. MDLP was also used in the initial paper on CBA (Liu et al., 1998). One of the
advantages of MDLP is that there are no external parameters to be set; the optimal number of cut
points is determined automatically using a stopping rule.

The CBA algorithm

Liu et al. (1998) proposed the first approach to associative classification called CBA. In CBA, a special
type of association rules called Class Association Rules (CARs) are used for classification. A CAR is
an association rule that conforms to the additional constraint that the consequent (RHS) of the rule
is a single item that is associated with a class label for the classification problem. CBA proposed the
following steps to perform associative classification (Vanhoof and Depaire, 2010):

1. Mine a set of class association rules (CARs),

2. prune and sort the rules,

3. classify new objects using the RHS of the first matching rule.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 256

Within the original paper, the first step is handled by a modification of the popular APRIORI
algorithm (Agrawal and Srikant, 1994) for mining CARs. The modification includes an optional
pruning step based on the rule’s pessimistic error rate with the goal to reduce the size of the set of
considered CARs. According to results reported in Liu et al. (1998), the absence of pessimistic pruning
does not affect classifier accuracy and a regular implementation of APRIORI can be used. The output
of association rule learning algorithms is determined by two parameters, the minimum confidence and
the support thresholds. In light of classification, confidence gives the proportion of objects correctly
classified by the rule in the training set. Therefore it can be seen as an optimistic estimate of the
accuracy of the rule.

The main obstacles for straightforward use of the discovered CARs as a classifier are the excessive
number of rules discovered even on small datasets, the fact that contradicting rules are generated, and
the absence of a default rule. To address these issues, CBA employs rule sorting and a data coverage
pruning procedure to reduce the number of rules. Two variants were proposed in the original paper
(Liu et al., 1998): the direct M1 version, and the M2 version which reduces data access. Accessing data
fewer times is especially useful if the data is too large to be stored in main memory. The amount of
available main memory has increased substantially since the original paper was published making the
improvements of M2 less relevant. For pruning, the rules are first ranked in the order of their strength:

1. Rule A is ranked higher if confidence of rule A is greater than that of rule B.

2. For rules tied for 1, rule A is ranked higher if support of rule A is greater than that of rule B.

3. For rules tied for 1 and 2, rule A is ranked higher if rule A is produced before rule B in the
mining process. Since APRIORI applies breath-first search, rule A is ranked higher if rule A has
fewer conditions (i.e., a smaller antecedent set) than rule B.

Rules are processed in ranking order. After each rule is processed, the matching (covered) transac-
tions are removed. If a rule does not correctly cover at least one instance, it is deleted (pruned). In
CBA, data coverage pruning is combined with default rule pruning. A default rule is a rule added to the
end of the rule set with the majority class in the uncovered transactions in the RHS and an empty LHS.
This rule ensures that a query instance is always classified even if it is not matched by any other rule
in the classifier. The algorithm prunes all rules below the current rule if a default rule inserted at that
place reduces the total number of errors on the training set.

Other algorithms. Since CBA was introduced, several competing associative classification ap-
proaches have been proposed to improve accuracy, training time, and ruleset size. Two popular
extensions of CBA are CMAR (Li et al., 2001) and CPAR (Yin and Han, 2003). A multiclass-focused
approach called Multiclass Associative Classification (MAC) (Abdelhamid et al., 2012) has been pro-
posed for expanding CBA with the goal of more accurately addressing classification problems with
many different class labels. An approach related to associative classification is used by rule-induction
classifiers which generate a large rulesets and then use greedy pruning strategies to reduce the size
while maintaining classification accuracy. Common examples of this technique are RIPPER (Cohen,
1995) and SLIPPER (Cohen and Singer, 1999).

Recently, instead of relying on heuristics, several optimization approaches have been proposed for
selecting the rules used by the classifier. Scalable Bayesian Rule Lists Model (Yang et al., 2017) tries to
identify a small subset of mined CARs by optimizing the posterior of a Bayesian hierarchical model
over rule lists. The method is implemented in the R package sbrl (Yang et al., 2019). Azmi et al. (2019)
propose to learn optimal rule weights for associative classifiers that use the sum of the class weight of
all matching rules instead of the first rule for classification. The authors use logistic regression with
L1 regularization to learn rule weights while enforcing a small rule set. This approach is available in
arulesCBA as function RCAR().

While several alternative approaches have been introduced, CBA still acts as a strong contender
in associative classification and is typically used as the benchmark against which new methods are
assessed (Alcala-Fdez et al., 2011). A comparison between CBA and selected successors is performed
in Kliegr (2017).

Implementations

There are only a few implementations of CBA available. Table 1 shows them ordered by the first
release date and summarizes the used licenses and programming languages.

In the following, we discuss the three currently available implementations of CBA in R. We will
first present each package individually and then compare the packages by providing code for the same
classification problem implemented with each of the packages. We will use as the example dataset the
well-known iris dataset (Fisher, 1936) and split it into 80% for training and 20% for testing.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=sbrl
https://CRAN.R-project.org/package=arulesCBA

CONTRIBUTED RESEARCH ARTICLE 257

Table 1: Review of existing CBA implementations

Software 1st
release

License Language Notes

DM-II 2001 commercial unknown Original implementation by Liu et al. (1998). See
http://www.comp.nus.edu.sg/~dm2/

LUCS-KDD 2004 not stated Java Endorsed by Bing Liu, the main CBA author. See
http://cgi.csc.liv.ac.uk/~frans/KDD/Software/
CBA/cba.html

KEEL 2010 GPL-3 Java At the writing of this paper not available via RKEEL.
See http://sci2s.ugr.es/keel/

rCBA 2015 Apache 2.0 R See https://CRAN.R-project.org/package=rCBA
arc 2016 AGPL-3 R with Java See https://CRAN.R-project.org/package=arc
arulesCBA 2016 GPL-3 R with C From the authors of the arules R package. See https:

//CRAN.R-project.org/package=arulesCBA

data("iris")
iris <- iris[sample(seq(nrow(iris))),]
iris_train <- iris[1:(nrow(iris)*.8),]
iris_test <- iris[-(1:(nrow(iris)*.8)),]

The data contains 150 flowers described by four quantitative variables representing different
measurements and a categorical variable indicating one of three different species.

head(iris_train)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
18 5.1 3.5 1.4 0.3 setosa
93 5.8 2.6 4.0 1.2 versicolor
91 5.5 2.6 4.4 1.2 versicolor
92 6.1 3.0 4.6 1.4 versicolor
126 7.2 3.2 6.0 1.8 virginica
149 6.2 3.4 5.4 2.3 virginica

The classification problem we use for the examples is to predict a flower’s species using the four
measurements.

All three packages integrate with the infrastructure for association rule mining in R implemented in
package arules (Hahsler et al., 2005) and the ecosystem of related packages (Hahsler et al., 2011). While
the presented packages can perform discretization, the conversion of a dataset with continuous variable
to a set of transactions with binary items, and mining class association rules (CARs) internally and
transparent to the user, we will give here a short example of how the packages arules and arulesCBA
can be used to perform these tasks. First, we discretize the data using supervised discretization based
on the minimum description length principle (MDLP) offered by packages like discretization (Kim,
2012). Here we use the discretizeDF.supervised function provided in arulesCBA.

library("arules")
library("arulesCBA")

iris_train_disc <- discretizeDF.supervised(Species ~ ., data = iris_train,
method = "mdlp")

head(iris_train_disc)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
18 [-Inf,5.55) [3.35, Inf] [-Inf,2.6) [-Inf,0.75) setosa
93 [5.55, Inf] [-Inf,2.95) [2.6,4.75) [0.75,1.75) versicolor
91 [-Inf,5.55) [-Inf,2.95) [2.6,4.75) [0.75,1.75) versicolor
92 [5.55, Inf] [2.95,3.35) [2.6,4.75) [0.75,1.75) versicolor
126 [5.55, Inf] [2.95,3.35) [5.05, Inf] [1.75, Inf] virginica
149 [5.55, Inf] [3.35, Inf] [5.05, Inf] [1.75, Inf] virginica

Now we can convert the discretized data into transactions which automatically converts factors
into binary items with labels composed of variable name and factor labels.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

http://www.comp.nus.edu.sg/~dm2/
http://cgi.csc.liv.ac.uk/~frans/KDD/Software/CBA/cba.html
http://cgi.csc.liv.ac.uk/~frans/KDD/Software/CBA/cba.html
https://CRAN.R-project.org/package=RKEEL
http://sci2s.ugr.es/keel/
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=discretization
https://CRAN.R-project.org/package=arulesCBA

CONTRIBUTED RESEARCH ARTICLE 258

trans_train <- as(iris_train_disc, "transactions")
inspect(head(trans_train, n = 3))

items transactionID
[1] {Sepal.Length=[-Inf,5.55),

Sepal.Width=[3.35, Inf],
Petal.Length=[-Inf,2.6),
Petal.Width=[-Inf,0.75),
Species=setosa} 18

[2] {Sepal.Length=[5.55, Inf],
Sepal.Width=[-Inf,2.95),
Petal.Length=[2.6,4.75),
Petal.Width=[0.75,1.75),
Species=versicolor} 93

[3] {Sepal.Length=[-Inf,5.55),
Sepal.Width=[-Inf,2.95),
Petal.Length=[2.6,4.75),
Petal.Width=[0.75,1.75),
Species=versicolor} 91

Note that the class variable is translated into several items, all starting with Species=. From these
transactions, CARs can be mined by restricting the items which can appear in the right-hand-side
of the rules. This can be done with the APRIORI implementation available in arules by specifying
appearance restrictions.

rules <- apriori(trans_train, parameter = list(support = 0.01, confidence = 0.8),
appearance = list(rhs = grep("Species=", itemLabels(trans_train), value = TRUE),
default = "lhs"))

arulesCBA contains a convenience function called mineCARs to make setting the appropriate
appearance easier using the standard formula interface.

rules <- mineCARs(Species ~ ., data = trans_train, support = 0.01, confidence = 0.8)
rules

set of 78 rules

inspect(head(rules, n = 3))

lhs rhs support confidence lift count
[1] {Sepal.Width=[3.35, Inf]} => {Species=setosa} 0.19 0.85 2.6 23
[2] {Petal.Length=[5.05, Inf]} => {Species=virginica} 0.27 1.00 3.0 32
[3] {Petal.Length=[2.6,4.75)} => {Species=versicolor} 0.29 0.97 2.9 35

Test data can be discretized consistently with the training data using discretizeDF, which applies
the discretization used in the second argument to the data in the first argument. Followed by a
conversion to transactions.

iris_test_disc <- discretizeDF(iris_test, iris_train_disc)
trans_test <- as(iris_test_disc, "transactions")

While these steps are performed in most cases by the discussed packages internally, it is still
helpful to understand the process. One of the advantages of associative classifiers is that the rule base
can be inspected and, therefore, it is important to understand the transformations used to create items.
Next, we will discuss the packages in alphabetical order.

Package arc

The R package arc (Kliegr, 2018) provides a pure R implementation of the rule pruning step of CBA.
The association rule learning step is handled by the implementation of APRIORI in package arules. arc
implements the M1 version of the CBA pruning step (Liu et al., 1998) and offers, in addition, automatic
discretization and threshold tuning. A CBA model can be learned for the iris dataset as follows.

library("arc")
classifier <- arc::cba(iris_train, "Species")

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=arc

CONTRIBUTED RESEARCH ARTICLE 259

The function cba() will create an instance of the S4 class CBARuleModel for the iris dataset using
Species as the class variable. Note that discretization is performed and that the support and confidence
thresholds are automatically found.

The resulting object holds a list of rules, a list of cut points (if discretization was automatically
performed), the name of the class attribute, and a list of attribute types. The slot rules of the
CBARuleModel object contains the rule base, which can be inspected by:

inspect(classifier@rules)

lhs rhs support confidence lift count
[1] {Petal.Length=[-Inf;2.45],

Petal.Width=[-Inf;0.75]} => {Species=setosa} 0.333 1.00 3.0 40
[2] {Sepal.Length=(5.75; Inf],

Petal.Length=(4.95; Inf],
Petal.Width=(1.75; Inf]} => {Species=virginica} 0.258 1.00 3.2 31

[3] {Sepal.Length=(5.75; Inf],
Sepal.Width=[-Inf;3.15],
Petal.Width=(1.75; Inf]} => {Species=virginica} 0.200 1.00 3.2 24

[4] {Sepal.Length=(5.75; Inf],
Petal.Length=(2.45;4.95],
Petal.Width=(0.75;1.75]} => {Species=versicolor} 0.200 1.00 2.8 24

[5] {Sepal.Length=(5.45;5.75],
Sepal.Width=[-Inf;3.15],
Petal.Length=(2.45;4.95],
Petal.Width=(0.75;1.75]} => {Species=versicolor} 0.092 1.00 2.8 11

[6] {Sepal.Length=(5.75; Inf],
Sepal.Width=(3.15; Inf],
Petal.Length=(2.45;4.95]} => {Species=versicolor} 0.042 1.00 2.8 5

[7] {Petal.Length=(2.45;4.95],
Petal.Width=(0.75;1.75]} => {Species=versicolor} 0.333 0.98 2.7 40

[8] {} => {Species=virginica} 0.308 0.31 1.0 0

Predictions for new data can be obtained using predict(). The new data is discretized automati-
cally to match the rules.

predict(classifier, head(iris_test))

[1] virginica setosa versicolor virginica setosa versicolor
Levels: setosa versicolor virginica

Next, we discuss the new features of automatic discretization and threshold tuning.

Automatic discretization. Since association rule classification is a supervised task, the discretization
can take advantage of using the class label. In the arc package, automatic discretization with MDLP
is enabled by default. All numeric explanatory attributes with three or more distinct values are by
default subject to discretization. The package relies on the discretization package (Kim, 2012). The arc
package provides several convenience functions that allow to perform discretization of all attributes at
once, addressing some of the shortcomings of the mdlp function from the discretization package, such
as the inability to handle missing values, or skip non-numeric attributes. Only attributes containing at
least a preset number of distinct values are discretized. The package is also capable of discretizing the
target attribute if necessary. For this purpose, unsupervised discretization (clustering) is used.

Automatic threshold tuning. Association rule learning is notorious for how difficult it is to set
the minimum support and minimum confidence thresholds. The necessity to set these thresholds
also applies to CBA. The arc package contains an optional procedure for automatic setting of these
thresholds detailed in (Kliegr and Kuchar, 2019) . The package contains a wrapper for the apriori
function from the arules package that iterative changes mining parameters (maximum antecedent
length, minimum support threshold and minimum confidence threshold) until a desired number of
rules is obtained, all options are exhausted or a preset time limit is reached. The desired number of
rules can be specified by the target_rule_count parameter.

The arc package also supports manual specification of thresholds:

classifier <- arc::cba(iris_train, "Species",
rulelearning_options = list(minsupp = 0.05, minconf = 0.9,

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=discretization
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=discretization
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=arc

CONTRIBUTED RESEARCH ARTICLE 260

minlen = 1, maxlen = 5, maxtime = 1000, target_rule_count = 50000,
trim=TRUE, find_conf_supp_thresholds = FALSE))

classifier@rules

set of 3 rules

Unlike other implementations of CBA, which also implement the M2 version of CBA described
by Liu et al. (1998), the arc package relies solely on the M1 version. However, the implementation
does not follow the originally proposed way relying on iteratively processing of rules in the sort
order. Instead, the pruning steps in M1 are implemented using a more efficient multiplication of
sparse matrices exposed by the arules package, which relies on the optimized C code from the Matrix
package (Bates and Maechler, 2017).

Package arulesCBA

The arulesCBA package (Johnson and Hahsler, 2019) is an extension of the arules package and strives
to integrate seamlessly with its association rule mining infrastructure. The packages allows the user to
set a time limit for rule mining, exposed by the arules package. The core operations of arulesCBA are
implemented in a mixture of R and C to speed up processing. arulesCBA implements both versions
of the pruning step, M1 and the optimized M2 version. The code for the pruning algorithm is heavily
optimized by using rule-indexed sparse matrix representation, sparse matrix operations via package
Matrix (Bates and Maechler, 2017) and prefix trees.

The arulesCBA interface. In arulesCBA, classifiers are created using the CBA() function. An ad-
vantage of this package for R users is that it consistently uses the well-known formula interface for
building classifier models and for supervised discretization. Users can provide a number of options
to the function to tune discretization, rule mining, and model building. The following is the list of
available parameters to the CBA function.

• formula: A symbolic description of the model to be fitted using a standard formula object of
the from:

class ∼ explanatory variables

The class is the variable name (part of the item label before =). Explanatory variables are
separated using + and the special dot symbol . for all variables is also allowed.

• data: A data.frame containing the training data. If necessary, discretization is automatically
applied. Alternatively, also a transaction set can be supplied.

• support,confidence: Minimum support and confidence thresholds for mining CARs with
APRIORI.

• parameter,control: Parameter and control lists passed on to the apriori() function from the
arules package.

• disc.method: Discretization method for factorizing numeric input (default: "mdlp"). One of
(’mdlp’, ’caim’, ’chi2’, ’caac’, ’ameva’, ’chimerge’, ’extendedchi2’, ’modchi2’).

A classifier for the iris dataset can be learned as follows.

library("arulesCBA")
classifier <- arulesCBA::CBA(Species ~ ., data = iris_train,

supp = 0.05, confidence = 0.9)

classifier

CBA Classifier Object
Class: Species (labels: setosa, versicolor, virginica)
Default Class: Species=setosa
Number of rules: 2
Classification method: first
Description: CBA algorithm by Liu, et al. 1998 with support=0.05 and

confidence=0.9

CBA() returns an object of class CBA which contains all needed information for classification. A
print method shows the settings used for the classifier. Prediction follows the usual approach in R.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arules

CONTRIBUTED RESEARCH ARTICLE 261

predict(classifier, head(iris_test))

[1] virginica setosa versicolor virginica setosa setosa
Levels: setosa versicolor virginica

The rule base is stored as a rules object from arules and can be extracted for inspection using the
rules() function.

inspect(rules(classifier))

lhs rhs support confidence lift count
[1] {Petal.Width=(1.75, Inf]} => {Species=virginica} 0.29 1.00 3.1 35
[2] {Sepal.Length=(5.55, Inf],

Petal.Width=(0.8,1.75]} => {Species=versicolor} 0.26 0.91 2.7 31

Note that only two rules are shown, while arc above produced three rules. The reason is that
arulesCBA stores the default class Species=setosa separate from the rule base while arc includes it.

Advanced use of arulesCBA. arulesCBA is implemented with flexibility and future extensions in
mind. For example, to have optimal control over the discretization process, the user can discretize
the data manually before learning the classifier. The discretization functions in arules and arulesCBA
retain enough information so that predict() can later automatically discretize the new data.

Another extension implemented in CBA_ruleset() allows the user to create an associative classifier
by providing a custom rule base in the form of a rules object. For example, we can easily create a
classifier from a set of CARs using, for example, majority voting instead of CBA’s first-match strategy
for classification.

rules <- mineCARs(Species ~ ., trans_train,
parameter = list(support = 0.01, confidence = 0.8))

classifier <- arulesCBA::CBA_ruleset(Species ~ ., rules, method = "majority")
classifier

CBA Classifier Object
Class: Species (labels: setosa, versicolor, virginica)
Default Class: Species=versicolor
Number of rules: 78
Classification method: majority
Description: Custom rule set

This gives the user the flexibility to experiment with different pruning methods and classification
strategies.

Package rCBA

The rCBA package (Kuchar, 2018) was the first available implementation of the CBA algorithm on
CRAN. The main algorithms are implemented in Java and it is the only R implementation that supports
the use of multiple CPU cores during pruning. The package provides wrapper functions for pruning,
prediction, and the FPGrowth association rule mining algorithm (Han et al., 2004). rCBA includes
both, the M1 and the M2 version of the CBA algorithm. It also includes data coverage pruning and
automatic threshold tuning.

Model building with automatic tuning of parameters and APRIORI is done as follows.

library("rCBA")
classifier <- rCBA::build(iris_train)

inspect(classifier$model)

1 {Petal.Width=0.2} => {Species=setosa} 0.183 1.00 2.9
2 {Petal.Width=1.3} => {Species=versicolor} 0.108 1.00 3.0
3 {Petal.Length=1.4} => {Species=setosa} 0.100 1.00 2.9
4 {Petal.Length=1.5} => {Species=setosa} 0.092 1.00 2.9
5 {Petal.Width=1.8} => {Species=virginica} 0.083 1.00 3.1
6 {Petal.Width=2.3} => {Species=virginica} 0.058 1.00 3.1

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=rCBA

CONTRIBUTED RESEARCH ARTICLE 262

7 {Petal.Width=0.4} => {Species=setosa} 0.058 1.00 2.9
8 {Petal.Width=1.4} => {Species=versicolor} 0.058 1.00 3.0
9 {Sepal.Width=3.5} => {Species=setosa} 0.050 1.00 2.9
10 {Petal.Width=0.3} => {Species=setosa} 0.050 1.00 2.9
11 {Petal.Width=2.1} => {Species=virginica} 0.050 1.00 3.1
12 {Petal.Length=4} => {Species=versicolor} 0.042 1.00 3.0
13 {Petal.Length=4.7} => {Species=versicolor} 0.033 1.00 3.0
14 {Sepal.Length=7.7} => {Species=virginica} 0.033 1.00 3.1
15 {Petal.Width=1.2} => {Species=versicolor} 0.033 1.00 3.0
16 {Petal.Width=0.1} => {Species=setosa} 0.033 1.00 2.9
17 {Petal.Width=1.9} => {Species=virginica} 0.033 1.00 3.1
18 {Petal.Width=1} => {Species=versicolor} 0.033 1.00 3.0
19 {Sepal.Length=5.1} => {Species=setosa} 0.058 0.88 2.6
20 {Petal.Length=4.5} => {Species=versicolor} 0.050 0.86 2.6
21 {Petal.Length=5.1} => {Species=virginica} 0.042 0.83 2.6
22 {Petal.Width=1.5} => {Species=versicolor} 0.058 0.78 2.3
23 {Sepal.Length=5.5} => {Species=versicolor} 0.033 0.67 2.0
24 {} => {Species=virginica} 0.325 0.33 1.0

rCBA::classification(head(iris_test), classifier$model)

[1] versicolor versicolor versicolor versicolor setosa versicolor
Levels: setosa versicolor

Pruning methods. rCBA implements both version of the proposed pruning algorithms (Liu et al.,
1998): the direct M1 version, and the optimized M2 version. It also offers the option to only use data
coverage pruning, called data coverage for business rule (dcbr) (Kliegr et al., 2014).

Selection of algorithms for rule learning. The CBA algorithm can generally rely on any rule learn-
ing algorithm (Liu et al., 1998). By default, it uses the APRIORI implementation in arules, but it can
also use rCBA’s own implementation of the FP-Growth algorithm (Han et al., 2004) for the association
learning step.

rulebase <- rCBA::fpgrowth(iris_train, support = 0.05, confidence = 0.9,
consequent = "Species")

rulebase <- rCBA::pruning(iris_train, rulebase, method = "m2cba")

rCBA::classification(head(iris_test), rulebase)

[1] versicolor versicolor versicolor versicolor setosa versicolor
Levels: setosa versicolor

Automatic threshold tuning. Since pure random or grid search do not use any background knowl-
edge of the algorithm, these approaches are unsuitable for optimizing the parameters of association
rule learning. The implementation for the parameter optimization in rCBA is based on the simulated
annealing (SA) algorithm, which addresses these problems. The objective criterion, which is optimized
against, is the accuracy of the model. A detailed description of the approach can be found in Kliegr
and Kuchar (2019).

Comparison of R implementations

In order to help the user to decide which package addresses best the particular use case, Table 2 presents
a comparison of the features and limitations of the packages. Since all three packages implement
the same algorithm, we did not compare classification accuracy between the implementations, but
performed a small run-time comparison instead.

We compare the different implementations on some standard classification problems. The used
datasets are available in the packages mlbench, datasets, arules, and the Lymphography dataset
(Lymph) (Mickalski et al., 1986) was obtained from the UCI repository1. The most important dataset
characteristics are summarized in Table 3. The number of transactions ranges from 101 to 48842 and
the number of items (after discretization) from 15 to 147. We used for the comparison a minimum

1https://archive.ics.uci.edu/ml/datasets.html

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=mlbench
https://CRAN.R-project.org/package=datasets
https://CRAN.R-project.org/package=arules
https://archive.ics.uci.edu/ml/datasets.html

CONTRIBUTED RESEARCH ARTICLE 263

Table 2: Comparison of features in CBA implementations in R

Feature arc arulesCBA rCBA

CBA pruning M1 M1/M2 M1/M2
Language R R + C R + Java
Built-in discretization MDLP MDLP and others No
Automatic threshold tuning Unsupervised No Supervised
Recommended problem size Small number of

rules and instances
Many rules, many
instances

Medium number of
rules and instances

Table 3: Dataset characteristics. The dataset size ranges from 101 to more than 45,000 transactions and
the datasets produce a wide variety in terms of the number of CARs and rule base size.

Dataset Transactions Items Support Confidence CARs Rule base Accuracy

Zoo 101 26 0.01 0.50 3607 8 0.97
Lymph 147 63 0.10 0.50 16087 40 0.90
Iris 150 15 0.01 0.50 119 8 0.96
Ionosphere 351 147 0.40 0.50 16321 10 0.89
BreastCancer 699 91 0.01 0.50 5541 64 0.99
Pima 768 19 0.01 0.50 3536 76 0.80
Vehicle 846 77 0.08 0.50 13987 143 0.60
Adult 48842 115 0.10 0.50 932 6 0.77

confidence threshold of 0.5, a maximal rule length of 10 and set the minimum support so a reasonable
number of classification association rules (CARs) was produced. CBA pruned the CARs to between 6
and 143 rules and achieves an accuracy (in sample testing) of typically around 90%. Only difficult
datasets like Pima, Vehicle and Adult have worse results.

To compare run time, we conducted experiments on a standard laptop with an Intel Core i5-8250U
CPU @ 1.60GHz with 4 cores and 8GB of RAM running R version 3.6.1 on Ubuntu 19.10. The package
versions used for the comparison are: arc: 1.2, rCBA: 0.4.3, arulesCBA: 1.1.5. We disabled automatic
threshold tuning. To remove the effect of random system load, we executed each algorithm ten times
on each dataset and report the average execution time. The results are summarized in Table 4. arc
produces the longest run times due to its pure R implementation. For Adult, the largest dataset arc
ran out of memory. rCBA executes faster than arc. Both M2 and parallel execution using multi-core
support in Java only improve the run time for the largest dataset. However, there the improvement is
quite significant, reducing the run time to a third. arulesCBA’s M1 implementation is on average the
fastest while the M2 implementation’s performance deteriorates on larger datasets.

Since many datasets of interest are typically larger then the standard datasets, we perform addi-
tional experiments to assess run time sensitivity for the number of input rules and the dataset size. For
the experiments, we use the Lymph dataset. For assessing sensitivity to ruleset size, we oversample the
dataset to 500 transactions and mine CARs with a minimum support of 0.05, a minimum confidence
of 0.5 and a maximal rule length of 10. This results in more than 100000 rules. We then evaluate run
time for building classifiers from the first 100, 1000, 10000, and 100000 mined rules. The results are
shown in Figure 2(a). We see that M2 is generally slower than the corresponding M1 implementations.
This might be due to the fact that the tested implementations hold all data in main memory, while
M2 was designed for situations where the data does not reside in main memory. However, parallel
execution helps rCBA’s M2 implementation. arulesCBA’s M1 implementation is the fastest.

To assess the sensitivity to dataset size, we fixed the ruleset size to 500 and increased the dataset
size by oversampling every round by a factor of 2. In Figure 2(b), we see a similar result to the
sensitivity to the number of rules. Parallel execution in rCBA helps both algorithms and arulesCBA’s
M1 implementation is the fastest. All packages are integrated with the arules infrastructure, where
arulesCBA has the most consistent integration. arc and rCBA offer automatic threshold tuning, which
will help users with applying associative classification for practical applications.

Conclusion

In this paper, we reviewed associative classifiers based on the CBA algorithm. While the algorithm
is cited in many papers about classifiers based on association rule mining, there are only very few
implementations available. This paper discussed three recent implementations in R packages. Due
to the differences in implementation language (R, C, and Java) and additional implemented features,

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=rCBA

CONTRIBUTED RESEARCH ARTICLE 264

Table 4: Comparison of the run time of the algorihtms for different datasets in milliseconds. arc ran
out of memory (see *) and arulesCBA’s M1 implementation is on average the fastest.

arc rCBA arulesCBA

Dataset M1 M1 parallel M2 M2 parallel M1 M2

Zoo 447.49 344.39 366.09 344.99 345.57 250.40 130.19
Lymph 3153.19 903.75 1070.12 1375.30 966.58 452.91 1539.03
Iris 117.98 282.57 332.43 273.37 283.54 147.33 102.74
Ionosphere 20350.29 13888.05 14180.38 14622.77 15185.99 4786.10 6766.72
BreastCancer 1895.51 488.06 620.62 1239.72 646.96 607.53 775.93
Pima 2508.53 837.69 854.77 847.39 837.06 707.97 982.45
Vehicle 50186.80 2741.48 2961.82 2935.02 3051.59 3966.96 12662.39
Adult N/A* 10549.87 3395.19 9725.68 3091.15 1192.03 11737.05

Average 11237.00* 3754.48 2972.68 3920.53 3051.05 1513.90 4337.06

each of the packages has its strengths. We hope that this review and the provided examples help
users to experiment with associative classifiers and that the packages will be used by the research
community to develop new methods.

Acknowledgments

Tomas Kliegr was supported by long term institutional support of research activities and grant
IGA 12/2019 by Faculty of Informatics and Statistics, University of Economics, Prague.

Ian Johnson was supported by the Goldwater Foundation and the President’s Scholars program at
Southern Methodist University, Dallas, TX, USA.

Bibliography

N. Abdelhamid, A. Ayesh, F. Thabtah, S. Ahmadi, and W. Hadi. Mac: A multiclass associative
classification algorithm. Journal of Information & Knowledge Management, 11(02):1250011, 2012. [p256]

R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In
Proceedings of the 20th International Conference on Very Large Data Bases, VLDB ’94, pages 487–499, San
Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc. ISBN 1-55860-153-8. [p256]

R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large
databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data,
pages 207–216. ACM Press, 1993. URL https://doi.org/10.1145/170035.170072. [p254]

J. Alcala-Fdez, R. Alcala, and F. Herrera. A fuzzy association rule-based classification model for
high-dimensional problems with genetic rule selection and lateral tuning. IEEE Transactions on
Fuzzy Systems, 19(5):857–872, 2011. URL https://doi.org/10.1109/TFUZZ.2011.2147794. [p254,
256]

M. Azmi, G. C. Runger, and A. Berrado. Interpretable regularized class association rules algorithm for
classification in a categorical data space. Information Sciences, 483:313–331, 2019. ISSN 0020-0255.
URL https://doi.org/0.1016/j.ins.2019.01.047. [p256]

D. Bates and M. Maechler. Matrix: Sparse and Dense Matrix Classes and Methods, 2017. URL https:
//CRAN.R-project.org/package=Matrix. R package version 1.2-8. [p260]

S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules
for market basket data. In SIGMOD 1997, Proceedings ACM SIGMOD International Conference on
Management of Data, pages 255–264, Tucson, Arizona, USA, 1997. [p255]

W. W. Cohen. Fast effective rule induction. In Machine Learning Proceedings 1995, Proceedings of the
Twelfth International Conference on Machine Learning, pages 115–123. Elsevier, 1995. URL https:
//doi.org/10.1016/B978-1-55860-377-6.50023-2. [p256]

W. W. Cohen and Y. Singer. A simple, fast, and effective rule learner. In Publication:AAAI ’99/IAAI
’99: Proceedings of the sixteenth national conference on Artificial intelligence and the eleventh Innovative
applications of artificial intelligence conference innovative applications of artificial intelligence, pages 335–
342. AAAI, 1999. [p256]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arulesCBA
https://doi.org/10.1145/170035.170072
https://doi.org/10.1109/TFUZZ.2011.2147794
https://doi.org/0.1016/j.ins.2019.01.047
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=Matrix
https://doi.org/10.1016/B978-1-55860-377-6.50023-2
https://doi.org/10.1016/B978-1-55860-377-6.50023-2

CONTRIBUTED RESEARCH ARTICLE 265

●●

●

●

0
10

20
30

40

Rule set size

T
im

e
[s

]

100 50k 100k

● arc
rCBA M1
rCBA M1 parallel
rCBA M2
rCBA M2 parallel
arulesCBA M1
arulesCBA M2

(a) Sensitivity to ruleset size.

●●●●●
●

●

●

●

●

●

0
5

10
15

20

Dataset size

T
im

e
[s

]

0 100k 200k 300k

● arc
rCBA M1
rCBA M1 parallel
rCBA M2
rCBA M2 parallel
arulesCBA M1
arulesCBA M2

(b) Sensitivity to dataset size.

Figure 2: Comparison of the run time of different implementations on an oversampled Lymphography
dataset

M. Elkano, M. Galar, J. A. Sanz, A. Fernández, E. Barrenechea, F. Herrera, and H. Bustince. Enhancing
multiclass classification in farc-hd fuzzy classifier: On the synergy between n-dimensional overlap
functions and decomposition strategies. IEEE Transactions on Fuzzy Systems, 23(5):1562–1580, 2015.
ISSN 1063-6706. URL https://doi.org/10.1109/TFUZZ.2014.2370677. [p254]

U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuous-valued attributes for
classification learning. Artificial intelligence, 13, page 1022–1027, 1993. URL https://doi.org/10.
1007/978-3-642-40897-7_11. [p255]

R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(7):
179–188, 1936. URL https://doi.org/10.1111/j.1469-1809.1936.tb02137.x. [p256]

M. Hahsler, B. Grün, and K. Hornik. Arules - a computational environment for mining association
rules and frequent item sets. Journal of Statistical Software, 14(15):1–25, 2005. ISSN 1548-7660. URL
https://doi.org/10.18637/jss.v014.i15. [p254, 255, 257]

M. Hahsler, S. Chelluboina, K. Hornik, and C. Buchta. The arules R-package ecosystem: Analyzing
interesting patterns from large transaction data sets. Journal of Machine Learning Research, 12(Jun):
2021–2025, 2011. [p257]

J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candidate generation: A frequent-
pattern tree approach. Data Mining and Knowledge Discovery, 8(1):53–87, 2004. ISSN 1384-5810. URL
https://doi.org/10.1023/B:DAMI.0000005258.31418.83. [p261, 262]

J. Hipp, U. Güntzer, and G. Nakhaeizadeh. Algorithms for association rule mining – A general survey
and comparison. SIGKDD Explorations, 2(2):1–58, 2000. URL https://doi.org/10.1145/360402.
360421. [p255]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.1109/TFUZZ.2014.2370677
https://doi.org/10.1007/978-3-642-40897-7_11
https://doi.org/10.1007/978-3-642-40897-7_11
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.18637/jss.v014.i15
https://doi.org/10.1023/B:DAMI.0000005258.31418.83
https://doi.org/10.1145/360402.360421
https://doi.org/10.1145/360402.360421

CONTRIBUTED RESEARCH ARTICLE 266

I. Johnson and M. Hahsler. arulesCBA: Classification Based on Association Rules, 2019. URL https:
//CRAN.R-project.org/package=arulesCBA. R package version 1.1.5. [p254, 260]

H. Kim. Discretization: Data Preprocessing, Discretization for Classification., 2012. URL https://CRAN.R-
project.org/package=discretization. R package version 1.0-1. [p257, 259]

T. Kliegr. QCBA: Postoptimization of quantitative attributes in classifiers based on association rules.
arXiv preprint, 2017. URL https://arxiv.org/abs/1711.10166. [p256]

T. Kliegr. Arc: Association Rule Classification, 2018. URL https://CRAN.R-project.org/package=arc.
R package version 1.2. [p254, 258]

T. Kliegr and J. Kuchar. Tuning hyperparameters of classification based on associations (CBA). In
Proceedings of the 19th Conference Information Technologies - Applications and Theory ITAT’19. CEUR-
WS.org, 2019. [p259, 262]

T. Kliegr, J. Kuchař, D. Sottara, and S. Vojíř. Learning business rules with association rule classifiers.
In A. Bikakis, P. Fodor, and D. Roman, editors, International Symposium on Rules and Rule Markup
Languages for the Semantic Web (RuleML 2014): Rules on the Web. From Theory to Applications, pages
236–250. Springer-Verlag, 2014. ISBN 978-3-319-09870-8. URL https://doi.org/10.1007/978-3-
319-09870-8_18. [p262]

J. Kuchar. rCBA: CBA Classifier for R, 2018. URL https://CRAN.R-project.org/package=rCBA. R
package version 0.4.3. [p254, 261]

W. Li, J. Han, and J. Pei. CMAR: Accurate and efficient classification based on multiple class-association
rules. In Proceedings of the 2001 IEEE International Conference on Data Mining, ICDM ’01, pages
369–376, Washington, DC, USA, 2001. IEEE Computer Society. ISBN 0-7695-1119-8. URL https:
//doi.org/10.1109/ICDM.2001.989541. [p256]

B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In Proceedings of the
Fourth International Conference on Knowledge Discovery and Data Mining, KDD’98, pages 80–86. AAAI
Press, 1998. [p254, 255, 256, 257, 258, 260, 262]

R. S. Mickalski, I. Mozetic, H. J., and H. Lavrack. The multi purpose incremental learning system AQ15
and its testing application to three medical domains. In Proceedings of the 5th National Conference on
Artificial Intelligence, 1986. [p262]

P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining, (First Edition). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2006. ISBN 0321321367. [p254]

K. Vanhoof and B. Depaire. Structure of association rule classifiers: a review. In 2010 International
Conference on Intelligent Systems and Knowledge Engineering (ISKE), pages 9–12, 2010. URL https:
//doi.org/10.1109/ISKE.2010.5680784. [p255]

H. Yang, C. Rudin, and M. Seltzer. Scalable Bayesian rule lists. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 3921–3930. JMLR. org, 2017. [p256]

H. Yang, M. Chen, C. Rudin, and M. Seltzer. sbrl: Scalable Bayesian Rule Lists Model, 2019. URL
https://CRAN.R-project.org/package=sbrl. R package version 1.2. [p256]

X. Yin and J. Han. CPAR: Classification based on predictive association rules. In Proceedings of the
SIAM International Conference on Data Mining, pages 369–376, San Franciso, 2003. SIAM Press. [p254,
255, 256]

Michael Hahsler
Office of Information Technology and Department of Engineering Management, Information, and Systems
Bobby B. Lyle School of Engineering
Southern Methodist University
P. O. Box 750123, Dallas, TX 75275, USA
mhahsler@lyle.smu.edu

Ian Johnson
Google,
Boulder, CO, USA
ianjjohnson@icloud.com

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=discretization
https://CRAN.R-project.org/package=discretization
https://arxiv.org/abs/1711.10166
https://CRAN.R-project.org/package=arc
https://doi.org/10.1007/978-3-319-09870-8_18
https://doi.org/10.1007/978-3-319-09870-8_18
https://CRAN.R-project.org/package=rCBA
https://doi.org/10.1109/ICDM.2001.989541
https://doi.org/10.1109/ICDM.2001.989541
https://doi.org/10.1109/ISKE.2010.5680784
https://doi.org/10.1109/ISKE.2010.5680784
https://CRAN.R-project.org/package=sbrl
mailto:mhahsler@lyle.smu.edu
mailto:ianjjohnson@icloud.com

CONTRIBUTED RESEARCH ARTICLE 267

Tomáš Kliegr
Department of Information and Knowledge Engineering
Faculty of Informatics and Statistics
University of Economics, Prague
Winston Churchill Sq. 4, Prague, Czech Republic
ORCiD https://orcid.org/0000-0002-7261-0380
first.last@vse.cz

Jaroslav Kuchař
Web Intelligence Research Group
Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9, 160 00, Prague, Czech Republic
first.last@fit.cvut.cz

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://orcid.org/0000-0002-7261-0380
mailto:first.last@vse.cz
mailto:first.last@fit.cvut.cz

	Associative Classification in R: arc, arulesCBA, and rCBA
	Introduction
	Background: Association rule mining
	The CBA algorithm
	Implementations
	Package arc
	Package arulesCBA
	Package rCBA
	Comparison of R implementations

	Conclusion
	Acknowledgments

