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biclustermd: An R Package for

Biclustering with Missing Values
by John Reisner, Hieu Pham, Sigurdur Olafsson, Stephen Vardeman and Jing Li

Abstract Biclustering is a statistical learning technique that attempts to find homogeneous partitions
of rows and columns of a data matrix. For example, movie ratings might be biclustered to group both
raters and movies. biclust is a current R package allowing users to implement a variety of biclustering
algorithms. However, its algorithms do not allow the data matrix to have missing values. We provide
anew R package, biclustermd, which allows users to perform biclustering on numeric data even in
the presence of missing values.

Introduction

Traditional (one-way) clustering (such as with complete-link hierarchical clustering or k-means)
aims to partition only rows (or columns) of a data matrix into homogeneous subsets. Rows or
columns are clustered simply based upon their relational similarity to other observations. Biclustering
simultaneously groups rows and columns to identify homogeneous “cells”. Biclustering is known to
be NP-hard; as such, every existing algorithm approaches this problem heuristically. This methodology
was first investigated by Hartigan (1972) but was not given much attention until applied to gene
expression data (Cheng and Church, 2000). Today, biclustering is applied across many areas such as
biomedicine, text mining, and marketing (Busygin et al., 2008).

For our purposes, we consider rearranging a data matrix to obtain a checkerboard-like structure
where each cell is as homogeneous as possible. In this regard, our algorithm has the same goal as
spectral biclustering (Kluger et al., 2003), but approaches the problem in a different way. In contrast to
clustering with the end goal being a checkerboard-like structure, other techniques have been proposed
based on the singular value decomposition (Lazzeroni and Owen, 2002; Bergmann et al., 2003) and
others are based on a graph-theoretic approach (Tan and Witten, 2014). Although each technique is
different, each has the goal of finding substructure within the data matrix. In Figure 1 we provide a
visual suggestion of our biclustering goal. The color scheme represents similar numeric values and
our goal is to rearrange the data matrix so that these values form homogeneous cells.
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Figure 1: Biclustering with checkerboard-like structure

A publicly available R package for biclustering is biclust by Kaiser and Leisch (2008). This appears
to be a commonly used package developed with the intent of allowing users to choose from a variety
of algorithms and renderable visualizations. Other biclustering packages include superbiclust, iBBiG
QUBIC, s4vd, BiBitR which each provide unique algorithms and implementations (Khamiakova,
2014; Gusenleitner and Culhane, 2019; Zhang et al., 2017; Sill and Kaiser, 2015; Ewoud, 2017). However,
from an implementation and algorithmic standpoint, the methods implemented in these packages
fail when given a data matrix with missing values. This is clearly a limitation since there exist many
rectangular datasets with missing values. For handling missing data, many imputation methods exist
in the literature. While this does produce a complete two-way data table, which can subsequently
be fully analyzed using existing biclustering algorithms, it has inherent limitations. When large
percentages of data are missing, such as is, for example, common in plant breeding and movie rating
applications to be discussed later, it is difficult and impossible to reasonably infer missing values.
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Even if a small number of values are missing values those are potentially missing not-at-random due
to non-random and unknown devices. For example, in plant breeding, observation may be missing
because it is unreasonable to plant a crop in a particular environment or simply because a plant breeder
decides to not plant in certain environments. In these cases, imputing missing values would imply
that one can confidently estimate the performance of (say) crop yield in an environment where it was

never observed growing. There is a large body of literature on the difficult nature of this problem.

With this as motivation, our goal was to produce a biclustering algorithm which can successfully deal
with data with missing values without applying imputation or making any assumptions about why
data are missing.

Biclustering with missing data

The package described in this paper, biclustermd, implements the biclustering algorithm of Li et al.

(2020) and their paper gives a thorough explanation of the proposed biclustering algorithm as well as
its applicability. For completeness we give an overview of their algorithm here.

Notation

* X is a data matrix with [ rows and ] columns. X;; is a response measure of row i in column j for
ie{1,2,...,I}andje {1,2,...,]}.

e Row indexsetZ = {1,2,...,I} is partitioned into r mutually exclusive and exhaustive sets
Ty, Ty,...,T;. Q = partition of the row index set.

e Column index set 7 = {1,2,...,]} is partitioned into ¢ mutually exclusive and exhaustive sets
51,S2,...,5¢. P = partition of the column index set.

Our goal for biclustering is to generate a rearranged data matrix with a checkerboard structure
such that each “cell” of the matrix defined by Q and P is as homogeneous as possible. Depending on
specifics of a real problem, “homogeneous” can have different subject matter meanings, and hence
optimization of different objective functions can be appropriate. We present our algorithm here with
the goal of optimizing a total within-cluster sum of squares given both the row groups in Q and
column groups in P. This can be interpreted as the total sum of squared errors between cell means
and data values within cells. Hence we refer to this as SSE. Using the above notations we have r row
groups (or row clusters) and ¢ column groups (or column clusters). Let A denote an r X ¢ “cell-average
matrix” with entries

1
Apn =
m |{Xi]'1i€Tm;j€Sn; Xl]#NA}‘

Xij @
{Xiji€T; JES; X ANA}

forme1,2,...,randn € 1,2,...,c. Here, |-| is the set cardinality function and NA denotes a missing
value. Then, the within-cluster sum of squares function to be minimized is

ssE=). ), (X- Amn)z. @
mn X;#NA
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Biclustering with missing data algorithm

1. Randomly generate initial partitions 09 and PO with respectively r row groups and ¢ column
groups.

2. Create a matrix A(©) using Equation (1) and the initial partitions. In the event that a “cell” (m, 1)
defined by {(i,]) |i € Ty and j € S, } is empty, Ay can be set to some pre-specified constant
or some function of the numerical values corresponding to the non-empty cells created by the
partition. (For example, the mean of the values coming from non-empty cells in row m or in
column 7 can be used.) This algorithmic step should not be seen as imputation of responses for
the cell under consideration, but rather only a device to keep the algorithm running.

3. At iteration s of the algorithm, with partitions P(~1) and Q=1 and corresponding matrix
A=Y inhand, fori =1,2,...,1 let

R _ 1
M |{j € sulx;; # NA}

JESn
s.t. X,‘]‘ #NA
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Then create Q(5)* by assigning each row i to T, with minimum X .

4. If for Q)* every Ty, is non-empty, proceed to Step 5. If at least one Ty, = @ do the following:

(a) Randomly choose a row group T,y with |T,/| > kR

min
parameter) and choose kR . . < kﬁin row indices to move to one empty T;,. Choose those

indices i from T,,; with the largest kX, corresponding values of the sum of squares

(a user-specified positive integer

C

2
YL (x-mf)
n=1  jeS,
s.t. X,‘l‘#NA

(b) If after the move in (a) no empty row group remains, proceed to Step 5. Otherwise return
to (a).

5. Replace Q°~1) in Step 3 with the updated version of Q(*)* and cycle through Steps 3 and 4 «
times, where « is a user-specified integer parameter. If row_shuffles > 1, replace Q61 jn 3.
with the updated version of Q*)* and cycle through steps 3. and 4. row_shuffles—1 times.

6. Set Q) = Q()*_ Then update A1) to A®)* using the partitions Q%) and P~V in Equation
).

7. Forj=1,2,...,] let

1
M, = YXy
. ]
i HzeTm|x,j7éNA} LT
L AGj

foreachm =1,2,...,r and compute forn =1,2,...,c
cC_ v c\?
46 = ¥ (Amn—MG,) - [{i € Tulx; # Na}|.
m=1

Then create P($)* by assigning each column j to S;; with minimum djcn.

8. If for P(*)* every S, is non-empty, proceed to Step 9. If at least one S, = @ do the following:

(a) Randomly choose a column group S, with |S,/| > krcnin (a user-specified positive integer

parameter) and choose kS,ve < erlnin column indices to move to one empty S,. Choose
those indices j from S, with the largest k§,,,e corresponding values of the sum of squares

r

2
C
Z Z (X’] - M]'m) :
m=1 €Ty,
s.t. X,/#NA

(b) If after the move in (a) no empty column group remains, proceed to Step 9. Otherwise
return to (a).

9. Replace P~V in Step 3 with the updated version of P(®)* and cycle through Steps 7 and 8 B
times, where § is a user-specified integer parameter. If col_shuffles > 1, replace P~V in 3.
with the updated version of P(*)* and cycle through steps 7. and 8. col_shuffles—1 times.

10. Set P() = P(9)* and we have new partitions Q(5) and P). Then update A®)* to A(®) using
the partitions Q*) and P(*) in Equation (1).

11. Steps 3-10 are executed N times or until the algorithm converges, which is when the Rand
Indices for successive row and column partitions are both 1. (See the description of the Rand
Index below.)

Intuitively, our proposed algorithm is nothing more than a rearrangement of rows and columns
with the objective to minimize the objectives given in Steps 3 and 7. We consider Step 1 (the random
generation of initial cluster assignments) to be of high importance to avoid any bias in the original
structure of the data. As a quantitative way to measure the effectiveness of our biclustering, we
consider the sum of squared errors (SSE) as the measure of within cell homogeneity. Paired with the
SSE, we allow for three different convergence criteria, the Rand Index (Rand, 1971), the Adjusted
Rand Index (Hubert and Arabie, 1985), and the Jaccard Index (Goodall, 1966). These indices provide
measures for the similarity between two clusterings.
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Overview of biclustermd

The biclustermd package consists of six main functions with the most important being bicluster().
This function is where the algorithmic process is embedded and contains numerous tunable parame-
ters.

¢ data: dataset to bicluster. Must be a data matrix/table with only numbers and missing values in
the dataset. It should have row names and column names.

e row_clusters: The number of clusters to partition the rows into. Default is {\ﬁ J

* col_clusters: The number of clusters to partition the columns into. Default is | /] |

* missing_val: Value or function used to represent empty cells of the data matrix. If a value, a
random normal variable centered at itself with standard deviation miss_val_sd is used each
iteration. Note that this is not data imputation but a temporary value used by the algorithm.

* missing_val_sd: Standard deviation of the normal distribution miss_val follows if miss_val is
a number. By default this equals 1.

* similarity: The metric used to compare two successive clusterings. Can be "Rand" (default),
"HA" for the Hubert and Arabie adjusted Rand index or "Jaccard". See clues for details.

* row_min_num: Minimum row cluster size in order to be eligible to be chosen when filling an
empty row cluster. Defaultis [I/7].

¢ col_min_num: Minimum column cluster size in order to be eligible to be chosen when filling
an empty column cluster. Defaultis |]/c|.

* row_num_to_move: Number of rows to remove from the sampled cluster to put in an empty
row cluster. Default is 1.

¢ col_num_to_move: Number of columns to remove from the sampled cluster to put in an empty
column cluster. Default is 1.

¢ row_shuffles: Number of times to shuffle rows in each iteration. Default is 1.
¢ col_shuffles: Number of times to shuffle columns in each iteration. Default is 1.
* max.iter: Maximum number of iterations to let the algorithm run.

¢ verbose: Logical. If TRUE, will report iteration progress.

In the following sections, we provide an overview of the functionality of biclustermd. For the first
dataset, we display the array of visualizations available, in the second example we demonstrate the
impact of numerous tunable parameters, our final example demonstrates the computational times of
our algorithm.

Example with NYCflights13

For a first example, we will utilize the flights dataset from Wickham'’s package nycflights13 (Wickham,
2017). Per the package documentation, flights contains data on all flights in 2013 that departed NYC
via JFK, LaGuardia, or Newark. The variables of interest are month, dest, and arr_delay these are the
rows, columns and response value, respectively. In a dataset such as this, an application of biclustering
would be to determine if there exist subsets of months and airports with similar numbers of delays.
From a pragmatic perspective, this discovery may allow for air officials to investigate the connection
between these airports and months and why delays are occurring.

Using functions from tidyverse (Wickham, 2016), we generate a two-way data table such that
rows represent months, columns represent destination airports, and the numeric response values
are the average arrival delays in minutes. This data matrix contains 12 rows (months), 105 columns
(destination airports), and approximately 11.7% missing observations. Below is a snippet of our data
matrix.

> flights[1:5,1:5]

ABQ ACK ALB ANC ATL
January NA NA 35.17460 NA 4.152047
February NA NA 17.38889 NA 5.174092
March NA NA 17.16667 NA 7.029286
April 12.222222 NA 18.00000 NA 11.724280
May -6.516129 3.904762 10.19643 NA 8.187036
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The first step is to determine the number of clusters for months and the number of clusters for
destination airports. Since we are clustering months, in this analysis, choosing r = 4 row clusters
seems reasonable (create a group for each season/quarter of the year). Although this is arbitrary, we
choose ¢ = 6 column clusters. Since this algorithm incorporates purposeful randomness (by row and
column cluster initialization), biclustermd() should be run multiple times keeping the result with the
lowest sum of squared errors (SSE) since it may be expected that for different initialization one can
obtain a different local minimum (Li et al., 2020).

6, row_clusters = 4

> bc <- biclustermd(data = flights, col_clusters ,
+ miss_val = mean(flights, na.rm = TRUE), miss_val_sd = 1,
+ col_min_num = 5, row_min_num = 3,

+ col_num_to_move = 1, row_num_to_move = 1,

+ col_shuffles = 1, row_shuffles = 1,
+ max.iter = 100)
> bc

Data has 1260 values, 11.75% of which are missing

10 Iterations

Initial SSE = 186445; Final SSE = 82490

Rand similarity used; Indices: Columns (P) = 1, Rows (Q) =1

The output of biclustermd() is a list of class “biclustermd” and “list” containing the following:

¢ The two-way table of data provided to the function.

¢ The final column and row partition matrices.

® SSE generated from the initial partitioning.

® SSE of each iteration, as an “biclustermd_sse” object.

* Similarity measures for rows and columns for each iteration, as an “biclustermd_sim” object.
e The number of iterations to convergence.

* A table of resulting cell means.

Analyzing the NYCflights13 biclustering

The list output of biclustermd() is used for rendering plots and to obtain cell information. One such
visual aid is a plot of the convergence indices versus iteration, given in Figure 2. From this graphic,
we can determine the rate at which convergence occurs for both row and column clusters. Moreover,
this provides confirmation that our algorithm can indeed achieve good clusterings along both dimen-
sions. Plotting of the similarity measures and SSE is done with autoplot.biclustermd_sim() and
autoplot.biclustermd_sse(), methods added to autoplot() of ggplot2 (Wickham, 2009).

> autoplot(bc$Similarities, ncol = 3) +
+  theme_bw() +

+  theme(aspect.ratio = 1) +

+ scale_x_continuous(breaks = 0:9)

Adjusted Rand (HA) Jaccard Rand
1.004 /
0.754
Dimension
g
< 0.504 Column
>
—— Row
0.254
0.00 4

01 2 3 456 7 8 9 012 3 456 7 89 012 3 456 7 8 9
Iteration

Figure 2: Plot of similarity measures for the flights biclustering

In addition to the similarity plots, one can utilize the SSE graphic as an indication of convergence
to a (local) minimum biclustering. This can be seen in Figure 3. From this we can observe the rate of
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decrease of the SSE as well as the relative difference between the first and final iteration. Observing
closely each of the three convergence criteria suddenly decrease in value along the columns, namely
from iteration three to four. The algorithm is simply (attempting to) obtain a lower SSE which may
result in column shuffles which differ from iteration to iteration.

> autoplot (bc$SSE) +

+  theme_bw() +

+  theme(aspect.ratio = 1) +

+ scale_y_continuous(labels = comma) +
+ scale_x_continuous(breaks = 0:9)

100,000 A

95,000 A

SSE

90,000

85,000 1

0 1 2 3 4 5 6 7 8 9
Iteration

Figure 3: SSE plot of flights biclustering

Traditionally visualizations of biclustering plots are in a heat map fashion. autoplot.biclustermd()
makes visual analysis of biclustering results easy by rendering a heat map of the biclustered data
and allows for additional customization. Each of Figure 4-7 provide an example of the flexibility of
this function. Recall that the algorithm uses purposeful randomness, so a replicated result may look
different.

In Figure 4, we provide the default visualization without additional parameters. The white space
represent cells without any observations which is directly useful for our interpretation, and the color
scale is represented on the same spread as the numerical response.

> autoplot(bc) +

+ scale_fill_viridis_c(na.value = 'white') +
+ labs(x = "Destination Airport”,

+ y = "Month",

+ fill = "Average Delay")

Often it may aid in interpretation to run the data through an S-shaped function before plotting.
Two parameter arguments in autoplot() are transform_colors = TRUE and ¢ where c is the constant
to scale the data by before running it through a standard normal cumulative distribution function.
See Figure 5 for an illustration. Applying this transformation, one can immediately notice the distinct
dissimilarity between cells that were not clearly present in Figure 4.

> autoplot(bc, transform_colors = TRUE, ¢ = 1/15) +
+ scale_fill_viridis_c(na.value = 'white') +

+ labs(x = "Destination Airport”,

+ y = "Month"”,

+ fill = "Average Delay")

To further aid interpretations, we make use of reorder_biclust in Figure 6. This command
reorders row and column clusters from increasing to decreasing mean. In our fights dataset, this may
be particularly useful to determine if there is a slow shift in airport locations moving from a high to
low number of delays.

> autoplot(bc, reorder = TRUE, transform_colors = TRUE, ¢ = 1/15) +
+ scale_fill_viridis_c(na.value = 'white') +
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Month

Destination Airport

Figure 4: A heat map of the flights biclustering without transforming colors

Month

Destination Airport

Figure 5: A heat map of the flights biclustering after transforming colors.
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+ labs(x = "Destination Airport”,
+ y = "Month”,
+ fill = "Average Delay")

Average Delay

0.75

Month

0.50

0.25

Destination Airport
Figure 6: An ordered heat map of the flights biclustering after transforming colors.
Lastly, with large heat maps the authors have found it useful to zoom into selected row and column

clusters. In Figure 7, row clusters three and four and column clusters one and four are shown, using
the row_clusts and col_clusts arguments of autoplot(). Colors are not transformed.

> autoplot(bc, col_clusts = c(3, 4), row_clusts = c(1, 4)) +
+ scale_fill_viridis_c(na.value = 'white') +

+ labs(x = "Destination Airport”,

+ y = "Month",

+ fill = "Average Delay")

Average Delay
40
20

Month

Destination Airport

Figure 7: A zoomed in view of the heat map of the biclustering.

There are two additional visualizations that provide insight into the quality of each cell: mse_heatmap ()
and cell_heatmap(). mse_heatmap() gives the mean squared error (MSE) of each cell. Here, MSE
is defined as the mean squared difference between data values and the mean in each cell. Whereas
cell_heatmap() provides a heatmap with the total number of observations in the given cell. Combined,
these tools provide valuable insight into the homogeneity of each cell.
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> mse_heatmap(bc) +

+  theme_bw() +

+ scale_fill_viridis_c() +

+ labs(fill = "Cell MSE") +

+ scale_x_continuous(breaks = 1:6)

Cell MSE
300

200

100

Row Cluster Index

2 3 4 5
Column Cluster Index

Figure 8: A heat map of cell MSEs for the flights biclustering

> cell_heatmap(bc) +
+  theme_bw() +
+ scale_fill_viridis_c()

Cell Size

Row Cluster Index

2 3 4 5
Column Cluster Index

Figure 9: A heat map of cell sizes for the flights biclustering

Finally, for interpretation purposes, retrieving row or column names and their corresponding
clusters is easily done using the biclustermd method of row.names() (for rows) and use of a new
generic col.names() and its method col.names.biclustermd() (for columns). Two final examples are
given below showing the output of each function, which have class data. frame.

> row.names(bc) %>% head()

row_cluster name
1 1 January
2 1 April
3 2 February
4 2 March
5 2 August
6 3 May
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> col.names(bc) %>% head()
col_cluster name

1 ABQ
1 ACK
1 AUS
1 AVL
1 BGR
1 BON

o Ul w N =

Further capabilities

As previously mentioned, due to the purposeful randomness of initial row and column clusterings,
multiple runs of the algorithm can produce different results. Hence it is recommended to perform
several trials (with various parameters) and store the result which obtains the lowest SSE. These multi-
ple runs can easily be done in parallel using the tune_biclustermd() function with the parameters as
listed below. To utilize this, first a tuning grid must be defined as an input for tune_biclustermd().
Below we provide an illustration of the process.

¢ data: Dataset to bicluster. Must to be a data matrix with only numbers and missing values in
the data set. It should have row names and column names.

* nrep: dataset to bicluster. The number of times to repeat the biclustering for each set of
parameters. Default 10.

e parallel : Logical indicating if the user would like to utilize the foreach parallel backend.
Default is FALSE.

* ncores: The number of cores to use if parallel computing. Default 2.

* tune_grid: A data frame of parameters to tune over. The column names of this must match the
arguments passed to biclustermd().

> flights_grid <- expand.grid(

+ row_clusters = 4,

+ col_clusters = c(6, 9, 12),

+ miss_val = fivenum(flights),

+ similarity = c("Rand”, "Jaccard")
4

)

> flights_tune <- tune_biclustermd(
+ flights,

+ nrep = 10,

+ parallel = TRUE,

+  tune_grid = flights_grid

+)

The output of tune_biclustermd() is a list of class “biclustermd” and “list” containing the following:

* best_combn: The best combination of parameters
* best_bc: The minimum SSE biclustering using the parameters in best_combn

¢ grid: tune_grid with columns giving the minimum, mean, and standard deviation of the final
SSE for each parameter combination

¢ runtime: CPU runtime & elapsed time.

Users can easily identify which set of tuning parameters gives the best results and corresponding
performance with the below code. The minimum SSE is obtained when 12 column clusters are used,
the missing value used is —34, and the Rand similarity is used. A minimum SSE of 70,698 was
obtained in the 10 repeats with that combination, which is a 16% reduction in SSE from our original
parameter guesses above. Due to the unsupervised nature of biclustering, ultimately, it is the user’s
responsibility to choose reasonable number of row and column clusters for interpretations. Each
domain and application of biclustering may lead to a different number of desired row or column
clusters for a given array size. We simply utilize the SSE and convergence criteria as quantitative
measures in determining the quality of the biclustering result.

> flights_tune$grid[trimws(flights_tune$grid$best_combn) == '%' ]
row_clusters col_clusters miss_val similarity min_sse mean_sse sd_sse best_combn
3 4 12 -34 Rand 70697.95 76581.85 4934.83 *
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Any of the previously discussed exploratory functions can be used on the biclustering fit with the
best tuning parameters by accessing the best_bc element of flights_tune since it is a biclustermd
object:

> flights_tune$best_bc

Data has 1260 values, 11.75% of which are missing

8 Iterations

Initial SSE = 184165; Final SSE = 69586

Rand similarity used; Indices: Columns (P) = 1, Rows (Q) =1

Finally, biclustermd also possesses a method for gather () (Wickham and Henry, 2019) which
provides the name of the row and column a data point comes from as well as its corresponding
row and column group association. This is particularly useful since we can easily determine the cell
membership of each row and column to do further analysis. Namely, given these associations one
can further analyze the quality of each cell and paired with domain knowledge of their data make
informed judgments about the value of the biclustering. The following output was created from
flights_tune$best_bc.

> gather(flights_tune$best_bc) %>% head()

row_name col_name row_cluster col_cluster bicluster_no value
1 January ABQ 1 1 1 NA
2 March ABQ 1 1 1 NA
3 April ABQ 1 1 1 12.22222
4 January ACK 1 1 1 NA
5 March ACK 1 1 1 NA
6 April ACK 1 1 1 NA

Example with soybean yield data

For our next example, we perform biclustering on a dataset which has a larger fraction of missing data
to further show the practicability of our algorithm. Using data from a commercial soybean breeding
program, we consider 132 soybean varieties as rows, 73 locations as columns, and yield in bushels per
acre as the response. The locations span across the Midwestern United States and includes parts of
Illinois, Iowa, Minnesota, Nebraska, and South Dakota, and each of the 132 soybean varieties represent
a different genetic make-up. As one can imagine, not every soybean is grown in each location, as such
we obtain a dataset with approximately 72.9% missing values. One application of a dataset such as
this would be to determine if there are some subset of soybeans that perform consistently better (or
worse) in some locations than others. From a plant breeding perspective, it is of vital importance to
understand the relationship between the genetics and environments of crops, and identifying cells
non-overlapping homogeneous cells from biclustering can provide insights into this matter (Malosetti
etal., 2013).

The main purpose of this dataset is to demonstrate our algorithm on a dataset with a large amount
of missing values as well as show the usefulness of the tuning parameters. Below is our first trial on
the soybean yield data where we partition into 10 column clusters, 11 row clusters, and use the Jaccard
similarity measure.

> yield_bc <- biclustermd(
+ yield,

+ col_clusters = 10,

+  row_clusters = 11,

+ similarity = "Jaccard”,
+ miss_val_sd = sd(yield, na.rm = TRUE),
+ col_min_num = 3,
+  row_min_num = 3
+

>

)
yield_bc

Data has 9636 values, 72.9% of which are missing

13 Iterations

Initial SSE = 239166; Final SSE = 51813, a 78.3% reduction
Jaccard similarity used; Indices: Columns (P) = 1, Rows (Q) =1

In observing Figure 10, we notice that perfect convergence through the Rand Index, adjusted
Rand Index, and Jaccard similarity; however, the similarities suggest that the columns converge more
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quickly than the rows. This may be attributed to the high percentage of missing values in the rows of
the data table. That is, for each location there is more data available than there is for each soybean
variety. Again we notice decreases in the values for each of the three indices, but observing Figure
11, we are assured that the algorithm is only making a column/row swap because a lower SSE is
obtainable.

> autoplot(yield_bc$Similarities, facet = TRUE, ncol = 3, size = @) +
+  theme_bw() +

+  theme(aspect.ratio = 1)
Adjusted Rand (HA) Jaccard Rand
1.004 /_/\/—\/‘
0.751
Dimension
g
E 0.50 1 Column
— Row
0.254
0.00

00 25 50 75 100 1250 25 50 75 100 125.0 25 50 75 100 125
Iteration

Figure 10: Plot of similarity measures for the soybean yield biclustering

> autoplot(yield_bc$SSE, size = 1) +
theme_bw() +

+  theme(aspect.ratio = 1) +

+ scale_y_continuous(labels = comma)

+

80,0001

w J
) 70,000
[%2]

60,000

0.0 25 5.0 75 10.0 125
Iteration

Figure 11: SSE plot of soybean yield biclustering

For the initial trial we observe that the Jaccard index converges in 13 iterations to an SSE value of
51,813. To see if it is possible to decrease this SSE even further, we test the impact of col_shuffles and
row_shuffles. Recall that these parameters determine how many row and column rearrangements
the algorithm makes before completing one iteration. Below we use tune_biclustermd() to test
combinations of col_shuffles and row_shuffles as well as its corresponding SSE. We define the tune
grid to mimic that of the yield_bc creation above, but let col_shuffles and row_shuffles take on
values in {1, 3,6} independent of each other. We repeat the biclustering ten times for each parameter,
specified by nrep = 10. Note that parallel = TRUE allows us to tune over the grid in parallel.

> yield_tbc <- tune_biclustermd(
+ yield,
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+ nrep = 10,

+  tune_grid = expand.grid(

+ col_clusters = 10,

+ row_clusters = 11,

+ similarity = "Jaccard",

+ miss_val_sd = sd(yield, na.rm = TRUE),
+ col_min_num = 3,

+ row_min_num = 3,

+ row_shuffles = c(1, 3, 6),

+ col_shuffles = c(1, 3, 6)

),

+ parallel = TRUE,

+ ncores = 2

+)

> yield_tbc$grid[, c('row_shuffles', 'col_shuffles', 'min_sse', 'sd_sse', 'best_combn')]

row_shuffles col_shuffles min_sse sd_sse best_combn
1 51202.74 2640.662

54073.92 2766.218

52203.23 3198.391

51296.99 1883.676

52869.85 2118.745

50530.38 2107.578 *

51442.19 1895.268

52111.31 2015.416

52870.18 2652.400

W oo N Ul WwiN =
oW = 0w = o0 Ww
oo W W W = ==

Algorithm time study with movie ratings data

For our last example, we focus our attention on a movie ratings dataset obtained from MovieLens
(Harper and Konstan, 2015). If we consider movie raters as defining rows, movies as defining columns,
and a rating from 1-5 (with 5 being the most favorable) as a response, then biclustering can be used to
determine subsets of raters who have similar preferences towards some subset of movies.

The main topic of this section will be to perform time studies to test the scalability of our proposed
algorithm. In some applications, it is not uncommon to have a two-way data table with 10,000+ rows
or columns. Intuitively as the dimensions of the two-way data table increases so will the computational
time. In it is not uncommon for other biclustering algorithms to run for 24+ hours (Oghabian et al.,
2014). We ran the biclustering over a grid of 80 combinations of I rows, | columns, r row clusters, and
¢ column clusters with 30 replications for each combination. In addition to the four grid parameters,
we consider the following metrics which are byproducts of the four parameters: the size of the dataset
N =1 x ], average row cluster size I/r, and average column cluster size J/c. Table 1 summarizes the
grid parameters, their byproducts and the defined lower and upper limits on each.

N=Ix] I ] r c I/r J/c
Lower Limit 2,500 50 50 4 4 5 5
Min 18,146 86 98 4 4 5 5
Mean 665,842 784 839 42 45 49 47
Max 1,929,708 1,495 1,457 239 258 293 346

Upper Limit 2,225,000 1,500 1,500 300 300 375 375

Table 1: Summary of the movie data runtime grid with defined lower and upper limits

Table 2 gives a five number summary and the mean runtime in seconds paired with the parameters
which produced run times closest to each statistic. In all, we see that the algorithm can take less
than a second to run, while in the other extreme the algorithm requires 39 minutes to converge. It is
particularly interesting that for the two parameter combinations closest to the median run time, one
dataset is nearly twice the size of the other. Furthermore, note than the mean run time is more than
twice that of the median, but the size of the dataset is just 38% of that at the median. However, at the
mean, 3744 = 72 - 52 biclusters are computed, while at the medians, only 80 = 20 - 4 and 481 = 13 - 37
biclusters are computed. For a visual summary of the results, we point the reader to Figure 12.

Figure 12 plots run times versus the five parameters controlled for in the study as well as average
row cluster size, average column cluster size, and sparsity. We encourage the reader to personally
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Seconds I ] N T c Sparsity
Min 04 210 98 20,580 10 9 96.2%
Q1 247 820 184 150,880 53 12 98.2%
Median 63.6 988 1,240 1,225120 20 4 98.5%
Median 635 501 1,302 652,302 13 37 98.0%
Mean 1375 1,084 427 462,868 72 52 98.4%
Q3 141.0 485 875 424,375 36 126 98.0%
Max 2,369.0 1,495 1,233 1,843,335 147 204 98.5%

Table 2: Five number summary and mean runtime in seconds along with parameters achieved at

explore the results; the run time data is the runtimes dataset in the package. Moreover, Li et al. (2020),
provides further insights into the effect of sparsity on runtimes.

N Rows Columns
1,500+
1,000 4
5004
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Figure 12: Relationship between movie grid parameters and elapsed time

Finally, we address the trade-off between interpretability and computation time. Figure 13 plots
elapsed time versus average cluster size on a doubly log 10 scales for row clusters (left) and column
clusters (right). Clearly, computation time can be decreased by increasing the average cluster size, but
doing so potentially reduces the interpretability of results; biclusters may be too large for certain use
cases. Keeping in mind that the y-axis is on a log 10 scale, increasing average cluster size will have
diminishing returns. Reviewing the plot on the right-hand side of the second row and the left-hand
side of row three in Figure 12 sheds more light into this notion.

Summary

Based on the work of (Li et al., 2020) we provide a user-friendly R implementation of their proposed
biclustering algorithm for missing data as well as a variety of visual aids that are helpful for biclustering
in general and biclustering with missing data specifically. The unique benefit biclustermd provides
is in its ability to operate with missing values. Compared to other packages which do not allow
incomplete data or make use of some sort of imputation, we approach this problem with a novel
framework that does not alter the structure of an inputted data matrix. Moreover, given the tunability
of our biclustering algorithm, users are able to run trials on numerous combinations in an attempt to
best bicluster their data.
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Figure 13: Relationship between average cluster sizes and elapsed time
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