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The IDSpatialStats R Package:
Quantifying Spatial Dependence of

Infectious Disease Spread
by John R. Giles, Henrik Salje, and Justin Lessler

Abstract Spatial statistics for infectious diseases are important because the spatial and temporal
scale over which transmission operates determine the dynamics of disease spread. Many methods
for quantifying the distribution and clustering of spatial point patterns have been developed (e.g. K-
function and pair correlation function) and are routinely applied to infectious disease case occurrence
data. However, these methods do not explicitly account for overlapping chains of transmission and
require knowledge of the underlying population distribution, which can be limiting when analyzing
epidemic case occurrence data. Therefore, we developed two novel spatial statistics that account for
these effects to estimate: 1) the mean of the spatial transmission kernel, and 2) the 7-statistic, a measure
of global clustering based on pathogen subtype. We briefly introduce these statistics and show how to
implement them using the IDSpatialStats R package.

Introduction

The transmission process which drives an epidemic can be characterized by the spatial distance
separating linked cases. When these transmission events accumulate over time, they are observed
as areas of elevated disease prevalence. Knowledge of the extent of the affected area and where new
cases may arise is crucial for many disease control strategies (e.g. ring vaccination, vector control etc).
In epidemiology, case occurrence data—(x,y) coordinates with temporal information () and other
covariates—are often used to understand these types of infectious disease dynamics. These data are
typically treated as a generic point process so that they can be described in terms of spatial intensity
(expected number of cases per unit area) or clustering due to spatial dependence (covariance in x,y
space).

In the broader field of spatial statistics, there are many methods that measure the spatial intensity
or clustering of a generic point process on a Cartesian (x,y) coordinate system (Table 1). These methods
primarily fall into three categories: first-order first-moment (FOFM), first-order second-moment
(FOSM), and second-order second-moment (SOSM). The FOFM measures use quadrature (aggregate
counts of points within cells) to quantify intensity of the point pattern continuously over (x,y) space.
Packages such as Igcp (Taylor et al., 2013, 2015) and ppmlasso (Renner and Warton, 2013) allow users
to model first-order intensity as a count process using a regressive function of (x,y) coordinates and
other covariates. The FOSM measures—Moran’s I and Geary’s C (Moran, 1950; Geary, 1954)—also
use quadrature, but they describe general covariance among cell counts across the (x,y) dimensions.
These spatial statistics can be calculated using the spdep R package (Bivand and Piras, 2015). The
SOSM measures, such as the K-function and its non-cumulative analogue, the pair correlation function,
quantify clustering among neighboring points. Both the FOSM and SOSM measures are considered
global spatial statistics because they describe spatial dependence for the entire study area. However,
the SOSM can further describe how spatial dependence changes as a function of distance by comparing
the observed intensity of neighboring points within distance d to that expected under complete spatial
randomness. The K-function and pair correlation function can be calculated using the ads (Pélissier
and Goreaud, 2015), spatstat (Baddeley et al., 2016), and splancs Rowlingson and Diggle (2017) R
packages.

These classic spatial measures are limited in their ability to describe infectious disease dynamics
primarily because they treat case occurrence data as a generic point process. The FOFM and FOSM
measures use quadrature, which make them vulnerable to error associated with data aggregation
(Robinson, 2009) and the modifiable areal unit problem (Openshaw and Taylor, 1979). The SOSM
measures, like the K-function and pair correlation function, are more common in epidemiology.
However, their statistical interpretation is less intuitive in terms of classic epidemiological quantities
of relative disease risk, such as the incidence rate ratio or hazard ratio. Additionally, even the temporal
forms of these functions (e.g. the space-time K-function) do not capture the typical distances traveled
in a single transmission generation as they quantify the overall spatial dependence between all cases,
not just those epidemiologically linked. The mean distance between sequential cases in a transmission
chain is an important epidemiological quantity because it provides insight into potential mechanisms
driving spread as well as helping inform interventions. Therefore, we developed novel measures that
build upon concepts in spatial statistics to characterize infectious disease spread using case occurrence
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Table 1: A selective list of R packages for the analysis of spatial point pattern data. This list is not
exhaustive. Visit the Spatial CRAN Task View for a more comprehensive list of resources.

Package  Description Citation

ads K function for enclosed point patterns Pélissier and Goreaud (2015)

DCluster  disease clustering for count data Gomez-Rubio et al. (2005)

Igcp modeling point patterns Taylor et al. (2013, 2015)
with log-Gaussian Cox processes

ppmlasso  modeling point patterns Renner and Warton (2013)
with LASSO regularization

SGCS third order clustering of point processes Rajala (2017)

sparr spatial relative risk functions with kernel smoothing  Davies et al. (2011)

spatstat comprehensive tools for analyzing Baddeley et al. (2016)
point patterns in many dimensions

spdep classic statistics to test for spatial dependence Bivand and Piras (2015)

splancs kernel smoothing and Poisson cluster processes Rowlingson and Diggle (2017)

data. Importantly, these measures are robust to heterogeneities in the underlying population, and
substantial case under-reporting, which is common in epidemiology.

We describe these two measures of spatial dependence for infectious diseases and show how
they can be calculated with the IDSpatialStats R package in the following three sections. First, we
introduce a function which simulates infectious disease spread as a spatial branching process. This
function is primarily intended to simulate example datasets for the est. transdist family of functions
and T-statistics that use temporal information to indicate linked cases. Second, we demonstrate how
to estimate the mean and standard deviation of the spatial transmission kernel (Salje et al., 2016b).
Estimating the spatial transmission kernel requires an understanding of the number of transmission
generations separating cases at different time points of the epidemic. This method provides a measure
of fine-scale spatial dependence between two cases, which can be interpreted as the mean distance
between sequential cases in a transmission chain. Third, we describe a measure of global clustering—
the T-statistic—that calculates the relative risk of infection given some criteria to identify cases closely
related along a chain of transmission (Lessler et al., 2016). The T-statistic is a global clustering statistic—
like the K-function and pair correlation function—that provides an overall measure of clustering for
the entire course of an outbreak. Depending on the parameterization, the 7-statistic represents the
odds of observing another case with distance d of an infected case compared with either the underlying
population or other pathogen types. The following sections contain a brief introduction to each statistic
to provide context to the code implementation—for more detailed description of each statistic, see
Lessler et al. (2016) and Salje et al. (2016b).

We have implemented these tools in the IDSpatialStats R package version 0.3.5 and above. The
latest stable release depends on the doParallel and foreach packages (Microsoft and Weston, 2017;
Corporation and Weston, 2018) and can be downloaded from CRAN. A development version of the
package is also available on Github at https://github.com/HopkinsIDD/IDSpatialStats.

Simulating spatial disease spread

We use a stochastic spatial branching process to simulate epidemiological data in the sim.epidemic
function. Simulations begin with an index case at (x,y,t) = (0,0,0) and transmission events that
link two cases follow according to a random Markov process in (x, y) space (i.e. Brownian motion).
The number of transmission events occurs according to a Poisson distribution, with its mean and
variance set to the effective reproduction number R of the infecting pathogen. The spatial distance
traversed by each transmission event is given by a user specified probability distribution which serves
as the dispersal kernel function. When specifying the dispersal kernel, the trans.kern. func argument
expects a list object containing a probability distribution function and its named arguments. For
example, to simulate an epidemic where transmission typically occurs at the local level, but long
distance transmission events sometimes occur, an exponential transmission kernel might be used
because of its long tail. Alternatively, if transmission is expected to consistently occur within a given
range, then a normal kernel may be more appropriate.

In simulations where the basic reproductive number Ry is used to define a constant R-value
and Rp > 1, the number of cases will continue to increase with each time step. This effect may
not be appropriate when simulating settings where intervention efforts or depletion of susceptible
individuals causes heterogeneity in R over the course of the epidemic. Thus, the sim.epidemic
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function accepts either a scalar value for a constant R value or a vector of R values with a length equal
to tot.generations, allowing simulations with a variable R value, as shown in the following R code.

# Epidemic simulations with variable R value

R1 <- 2

R2 <- 0.5

tot.gen <- 12

R.vec <- seq(R1, R2, (R2 - R1)/(tot.gen - 1))

dist.func <- alist(n=1, a=1/100, rexp(n, a))

sim <- sim.epidemic(R=R.vec, gen.t.mean=7, gen.t.sd=2, min.cases=100,
tot.generations=tot.gen, trans.kern.func=dist.func)

head(sim, n=4)

X yt
1 0.00000 0.000000 0
2 24.46125 3.280527 3
3 -60.73475 184.885784 7
4 -12.79933 -57.798696 4

sim.plot(sim)
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Figure 1: Left: the spatial distribution of simulated cases with the red cross showing the index case.
Right: the epidemic curve for a simulation with an R value decreasing from 2 to 0.5 over the course of
the epidemic.

The mean transmission distance

In Salje et al. (2016b), we introduced a method to estimate the mean and standard deviation of
the spatial transmission kernel using case occurrence data. These data include location (x,y) and
onset time t of each case (case times) and the infecting pathogen’s generation time g(x). To estimate
these spatial statistics, we use the Wallinga-Teunis (WT) method (Wallinga and Teunis, 2004) to
probabilistically estimate the number of transmission events required to link two cases, denoted as
6. In settings where a phylogenetic model or contact tracing provide information on transmission
pathways, the spatial kernel can be empirically estimated using the distribution of observed distances
among all linked cases. The mean and standard deviation of this kernel can then be calculated for
any time interval between ¢; and f, to give yfbs(tl, tp), with the assumption that the number of
transmission events separating all case pairs is homogeneous (6 = 1). When data that indicate case
linkage are lacking, this assumption is incorrect because the distance between two cases depends on
the number of transmission events separating them. In this case, the mean transmission distance at
each time interval y; must be estimated as a weighted mean:

ety b, i o) = Y w(0 =i ty, ) - pa(0 = i, i, %)
i
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Where, w(6 = i,t1,1;) gives the weight for each of the i elements of 6 and the second term (0 =
i, fg, 0% ) gives the mean distance separating case pairs that are linked by the ith value of 6.

We have implemented four nested functions that are used to estimate w(6 = i, {1, t,) and describe
them briefly below. Listed in order, they are comprised of est.wt.matrix.weights, est.wt.matrix,
get.transdist.theta, and est.transdist.theta.weights. Although, these functions are docu-
mented separately, they are all driven by the est. transdist family of functions and do not need to be
run manually unless desired.

Wallinga-Teunis matrices

The est.wt.matrix.weights function builds upon code from the R0 package (Obadia et al., 2012) to
calculate the basic WT matrix (Wallinga and Teunis, 2004). This matrix gives the probability that a
case at time #; (rows) infected a case at time ¢; (columns), i.e. & = 1, based on the generation time
distribution of the pathogen g(x). For an epidemic with ¢ unique case times, est.wt.matrix.weights
givesa T x T matrix.

The est.wt.matrix function produces a WT type matrix for all infector-infectee case pairs. Given
the WT matrix produced by est.wt.matrix.weights and total case count n, this function calculates an
n X n matrix giving the probability that case i (rows) infected case j (columns). The WT matrix object
can be handed directly to est.wt.matrix via the basic.wt.weights argument, or if this argument is
NULL, the est.wt.matrix.weights function is called automatically.

# Calculating Wallinga-Teunis matrices
case.times <- ¢(1,2,2,3,3) # times each case occurs
g.x <- c(0, 2/3, 1/3, @, @) # hypothetical generation time of a pathogen

mat.wts <- est.wt.matrix.weights(case.times=case.times, gen.t.dist=g.x)

# Calculate infector-infectee Wallinga-Teunis matrix

wt.matl <- est.wt.matrix(case.times=case.times, gen.t.dist=g.x,
basic.wt.weights=mat.wts)

wt.mat2 <- est.wt.matrix(case.times=case.times, gen.t.dist=g.x)

identical(wt.mat1, wt.mat2) # the two methods are equivalent
[1] TRUE

Estimation of 6 weights

The get.transdist. theta function estimates the number of transmission events 6 separating pairs
of cases using the probabilities in the infector-infectee WT matrix produced by the est.wt.matrix
function. Sampling all possible transmission trees is impractical for most datasets, so this function
constructs a transmission tree by randomly selecting the infector of each case in the epidemic and then
6 is determined by finding the product of all probabilities in the chain of transmission that link the
randomly sampled case pairs.

The object theta.wts (in the code segment below) contains a three-dimensional array [i,j k], where
the rows i and columns j represent unique case times and the third dimension k is the number of
transmission events 6. Each cell gives the probability that two cases occurring at times i and j are
connected by 6 transmission events in the randomly sampled transmission tree. Probabilities in each
[i,j,-] row are normalized across all § values. The get.transdist.theta function samples a single
randomized transmission tree from the epidemic data, therefore we want to simulate many iterations
of this random sampling to get a better estimate of the true distribution of 6.

The est.transdist.theta.weights function estimates the distribution of 6 across all ; and ¢;
combinations by simulating many iterations of transmission trees using the get. transdist.theta
function. Its output is the same as the get.transdist. theta function, however, it represents the
normalized probabilities after n. rep number of simulations.

# Estimate theta weights

case.times <- ¢(1,2,2,3,3) # times each case occurs

g.x <- c(0, 2/3, 1/3, @, @) # hypothetical generation time distribution of a pathogen
gen.time <- 1 # mean generation time

n.gen <- round((max(case.times) - min(case.times)) / gen.time) + 1 # total generations

# Calculate infector-infectee Wallinga-Teunis matrix
wt.mat <- est.wt.matrix(case.times=case.times, gen.t.dist=g.x)
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# Estimated theta weights from five randomized transmission trees
theta.wts <- est.transdist.theta.weights(case.times=case.times, n.rep=5,
gen.t.mean=gen.time, t1=0, t.density=g.x)
theta.wts[,,1]
[,1] [,21 [,3]
[1,] o0.000 NaN NaN
[2,] 0.625 0.0000 NaN
[3,] 0.000 0.4375 Q

Estimating mean of transmission kernel

To estimate the mean transmission distance over the duration of the epidemic we must use the
observed distances between case pairs given the time they occurred ¢’ (t;, t;) and combine them into
an overall estimate of the mean of the transmission kernel ;. The workhorse function est. trandsdist
estimates the overall mean i and standard deviation o} of the kernel. This function first calls the
est.wt.matrix.weights, est.wt.matrix, get.transdist.theta, and est.transdist.theta.weights
functions described above to estimate the distribution of  across all case pairs and then calculates each
of the weights w(0 = i, t1, ). The weights are calculated as the proportion of all case pairs occurring

att; and ¢; that are separated by each estimated 6 over all simulations:

NS[’” J— J— JR—
Lot Nt Xy Lt = b, tj = 1,05 = 6)

(0 =1i,t1,t) =
Do =irtrta) Noim Liq Ejg Ia(ti = t1,tj = t2)

Here, the functions I; and I, indicate if two cases occurred at time ¢; and t; and were linked by ¢
transmission events, or if they just occurred at ¢; and ¢; respectively. In words this can be written as:

Total cases att] and t; across all simulations separated by 6 transmission events

w0 =it,t)= - -
( 1h) Total cases at t] and f, across all simulations

Once the weights of the 6 values are estimated, the est.transdist function calculates y and oy as
the average weighted estimate over all combinations of ¢; and ¢;. If we now let k index the vector of 6
values, then:

1 2 g (b, 1) -y
Y Z] njj 5 7 Y@(0 =kt t]) -\ 27tk

For a derivation of these equations, see sections 2.3 and 2.4 of Salje et al. (2016b).

ik = 0 =

The est. trandist function requires case occurrence data—a matrix with three columns [x,y,{]—
and the mean and standard deviation of the infecting pathogen’s generation time (for calculating
WT matrices) as input. The function returns estimates of j; and oy, of the spatial transmission kernel.
These estimates are made under the assumption that y; = 0, so the upper bound of iy and dj
are also provided for when this assumption is violated. Bound estimates are equal to /2 times the
values estimated under the y; = 0} assumption (see section 2.5 of Salje et al. (2016b)). Additional
constraints on the estimation of i and oy can be defined in the remaining arguments, such as the
time step in which the analysis should begin (t1), the maximum number of time steps (max. sep) and
maximum spatial distance (max.dist) to consider when estimating 6, and the number of randomized
transmission tree simulations to run (n. transtree.reps).

To estimate the uncertainty around fi; due to sampling or observation error, we have implemented
a wrapper function called est.transdist.bootstrap.ci that performs bootstrap iterations using
the est.transdist function. Upon each iteration, the epidemiological data are resampled with
replacement and i is re-estimated. The est.transdist.bootstrap.ci function contains all the
same arguments as the est. transdist function, with additional arguments defining the number of
bootstrapped iterations to perform, the high and low boundaries of the desired confidence interval,
and options for running the bootstrap analysis in parallel.

When parallel computation is enabled (the default is parallel = FALSE), the function uses the
makeCluster () function of the parallel package to make the appropriate cluster type for the operating
system of the local machine (SOCK cluster for Windows or a Fork cluster for Unix-like machines). The
cluster is then registered as the parallel backend for the foreach package, which is used to run the
bootstraps in parallel. The user can define the number of cores to use when running in parallel using
the n.cores argument. If parallel = TRUE and n.cores = NULL, the function will use half the total
cores on the local machine.

# Estimate transmission distance for simulated data
set.seed(123)
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dist.func <- alist(n=1, a=1/100, rexp(n, a)) # Dispersal kernel
sim <- sim.epidemic(R=2, gen.t.mean=7, gen.t.sd=2, min.cases=100,
tot.generations=8, trans.kern.func=dist.func)

# Estimate mean transmission distance
sim.transdist <- est.transdist(epi.data=sim, gen.t.mean=7, gen.t.sd=2, t1=0,
max.sep=1e1@, max.dist=1e10@, n.transtree.reps=10)

sim.transdist
$mu.est

[1] 92.79699
$sigma.est

[1] 91.45614
$bound.mu.est
[1] 131.2348
$bound.sigma.est
[1] 129.3385

# Estimate confidence intervals around mean

sim.transdist.ci <- est.transdist.bootstrap.ci(epi.data=sim,
gen.t.mean=7,
gen.t.sd=2,
t1=0,
max.sep=1el10,
max.dist=1e10,
n.transtree.reps=10,
boot.iter=5,
ci.low=0.025,
ci.high=0.975)

sim.transdist.ci

$mu.est

[1] 131.2124

$mu.ci.low

2.5%

128.2505

$mu.ci.high

97.5%

134.3312

Change in mean transmission distance over time

An estimate of y over the duration of an epidemic is indicative of the overall spatial dependence.
However, conditions may change over the course of an epidemic that alter the spatial scale upon which
transmission operates. To quantify temporal heterogeneity in the mean transmission distance, we have
implemented the est.transdist.temporal and est.transdist.temporal.bootstrap.ci functions,
which estimate the change in fi; over time and its bootstrapped confidence intervals respectively.

When applying the temporal versions of the est. transdist functions, it is important to consider
the sample size at each time step because the est. transdist.temporal function estimates y; for all
cases leading up to each unique time step. Some time steps at the beginning of an epidemic may be
returned as NA if there are not enough unique cases to estimate ;. Furthermore, in scenarios where
time steps in the beginning of an epidemic have low sample sizes, such as an epidemic with a low
Ry, fiy may be over- or under-estimated and display larger confidence intervals due to sampling error.
Therefore, we recommend either setting the t1 argument to the first time step that contains a sufficient
sample size, or plotting results along with cumulative sample size as we have done in Figure 3.

# Estimate temporal transmission distance for simulated data

set.seed(123)

dist.func <- alist(n=1, a=1/100, rexp(n, a)) # Dispersal kernel

sim <- sim.epidemic(R=2, gen.t.mean=7, gen.t.sd=2, min.cases=100,
tot.generations=8, trans.kern.func=dist.func)

# Estimate mean and confidence intervals at each time step
sim.temp.transdist.ci <- est.transdist.temporal.bootstrap.ci(epi.data=sim,
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gen.t.mean=7,

gen.t.sd=2,

t1=0,

max.sep=1el10,

max.dist=1e10,

n.transtree.reps=10,

boot.iter=5,

ci.low=0.025,

ci.high=0.975)
head(sim.temp.transdist.ci)

t pt.est ci.low ci.high

1 0 NA NA NA
2 3 NA NA NA
3 8 NA NA NA
4 9 44.61359 35.52047 52.24099
5 10 101.55313 43.99469 203.11247
6 11 189.29767 113.79560 224.79960

o Ul W N = 3

Application to foot-and-mouth disease

To provide an example of how the functions shown above can be applied to real data, we estimate
the mean transmission distance for the 2001 foot-and-mouth epidemic among farms in Cumbria,
UK. These data can be found in the fmd data object included in the sparr package (Davies et al.,
2011). It contains transformed (x,y) coordinates of the infected farms and the time step (t) in which
it was infected, which is given in days since the index farm was infected (Figure 2). The generation
time for foot-and-mouth disease is estimated to have a mean of 6.1 days and a standard deviation
of 4.6 days (IHaydon et al., 2003), so we use these in the gen.t.mean and gen. t.sd arguments in the
est.transdist.temporal.bootstrap.ci function.

library(sparr)
data(fmd)
fmd <- cbind(fmd$cases$x, fmd$cases$y, fmd$cases$marks)

head(fmd, n=3)

[,1] [,21[,3]

[1,7 333.0328 541.3405 52
[2,] 336.1428 543.3462 46
[3,]1 341.4762 551.1794 38

sim.plot(fmd)
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Figure 2: The spatial and temporal distribution of case farms from the 2001 foot-and-mouth epidemic
among farms in Cumbria, UK; plotted using the sim.plot function. The x and y axis in the left plot
represent transformations of UTM coordinates in kilometers. On the right, case counts are plotted by
days since the index case. Data are provided by the sparr package (Davies et al., 2011).
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# NOTE: this function may take a while depending on the data set

fmd.trans <- est.transdist.temporal.bootstrap.ci(epi.data=fmd,
gen.t.mean=6.1,
gen.t.sd=4.6,
t1=0,
max.sep=1e10,
max.dist=1e10,
n.transtree.reps=5,
boot.iter=10,
ci.low=0.025,
ci.high=0.975,
parallel=TRUE,
n.cores=detectCores())

par (mfrow=c(1,1))

fmd.trans[,2:4] <- fmd.trans[,2:4]1/1000 # Convert to km

plot(fmd.trans$t, fmd.trans$pt.est, pch=19, col="grey', ylim=range(fmd.trans[,3:4], na.rm=T),

xlab='Time step', ylab='Estimated mean of transmission kernel (km)")

tmp <- seq(1, nrow(fmd.trans), 5)
axis(3, tmp, fmd.trans[tmp,5])
mtext('Sample size (n)', side=3, line=3)

tmp <- which(fmd.trans$n >= 30)[1]
abline(v=tmp, 1lty=2)
text(16, 1, 'n = 30')

tmp <- tmp:nrow(fmd.trans)
1ty <- c(NA,1,2,2)

for(i in 2:4) {
low <- loess(fmd.trans[tmp,i] ~ as.vector(tmp), span=0.3)
low <- predict(low, newdata=data.frame(as.vector(tmp)))
lines(c(rep(NA, tmp[1]1), low), lwd=2, 1lty=1ty[il, col='blue')

Using our approach described above, we estimated the mean transmission distance between case
farms in the sparr package foot-and-mouth disease data to be fiy = 5.8 km (95% CI = 5.7-6.1 km).
Interestingly, this estimate of y is lower than that reported in Salje et al. (2016b), where fiy = 9.1 km
(95% CI = 8.4-9.7 km). The difference in i, is likely due to differences in data sources. The values
estimated in Salje et al. (2016b) include case farms from both Cumbria and Dumbfriesshire, UK with
the additional constrain that only case farms where the source farm was confirmed were included.
The sparr data set, on the other hand, contains all case farms from only Cumbria.

Global clustering: the T-statistic

Estimating the mean of the spatial transmission kernel (above) provides information on the small
spatial scale of individual transmission events. After subsequent generations of transmission where
different transmission chains overlap in space, a larger area of elevated disease prevalence will be
observed. To describe this larger-scale process, we introduced the t-statistic in Lessler et al. (2016).
The T-statistic measures global clustering with an epidemiological interpretation—the relative risk of
an individual being a related case (under some definition) given they are within a particular distance
from another case. The spatial distances where the relative risk is high represent an area of elevated
prevalence that is likely to have greater public health utility compared with the scale of individual
transmission because interventions must account for ongoing transmission at the population level
to contain an outbreak. Therefore, the T-statistic provides a more intuitive global measure of spatial
clustering, which can be interpreted as the relative risk of infection.

Formulation of the T-statistic has a mathematical relationship to the K-function and pair correlation
function. The K-function quantifies the expected number of neighboring points within distance d of a
typical point Z relative to the intensity of the underlying population distribution A.

K(d) = %E [neighbors within distance d | x, y coordinates of Z]

In the simplest scenario, A is assumed to be homogeneously distributed, so that A = N/ A, where N
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Figure 3: Output from the est. transdist.temporal.bootstrap.ci function showing the change in
the mean transmission distance over the course of the 2001 foot-and-mouth disease epidemic for case
farms in the fmd data set in the sparr package. The point estimates are plotted as grey circles and a loess
smooth of the mean estimate is plotted (blue line) along with its 95% bootstrapped confidence intervals
(dashed blue lines). The loess smooth begins with the first time step that contains a cumulative sample
size of 30, indicated by the dashed line.

is the total number of cases and A is the total study area. Under the assumption of a heterogeneous
underlying population distribution, A becomes the location specific intensity A(S), where S C A
within distance d of location Z. In both cases, the K-function is plotted with the theoretical value of the
K-function for a homogeneous Poisson process 71d?, which indicates clustering or dispersion relative
to complete randomness. The cumulative aspect of the K-function (using all neighbors within distance
d) is, however, a well-known constraint that makes it difficult to interpret changes in clustering over
distance. The pair correlation function alleviates this constraint by applying the K-function within
a distance range (d, d2) and standardizing it by the complete spatial randomness expectation for a
homogeneous Poisson process within this range:

K(d1 + Ad) — K(dy)

Gldy, da) = 27tdiAd + Ad?

where, Ad = dy — dy. Both the K-function and pair correlation functions have seen general application
due to developments that accommodate inhomogeneous underlying population distribution, cluster-
ing between typed points, and edge effects. However, these functions assume complete knowledge
of the underlying population distribution and use a null statistical hypothesis of complete spatial
randomness, which is precarious for scenarios in epidemiology where the underlying population is
unknown and relative risk is used to understand disease dynamics.

To incorporate other metrics of global clustering, the IDSpatialStats package provides wrapper
functions for calculating both the cross K- and cross pair correlation functions using the Kcross and
PCFcross functions from the spatstat package (Baddeley et al., 2016). These wrapper functions allow
for straightforward calculation of these statistics using typed epidemiological data that is formatted
for IDSpatialStats functions (Figure 4).

# Calculate cross-K and cross pair correlation functions with simulated data
data(DengueSimRepresentative)

r.vals <- seq(@, 1000, 20)
labs <- seq(@, 1000, 200)

k <- get.cross.K(epi.data=DengueSimRepresentative, type=5, hom=1, het=NULL,
r=r.vals, correction='border"')
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head(k, n=3)

r theo border
1 0 0.000 0.000
2 20 1256.637 2166.362
3 40 5026.548 5956.887

g <- get.cross.PCF(epi.data=DengueSimRepresentative, type=5, hom=1, het=NULL,
r=r.vals, correction='border"')

head(g, n=3)

r theo pcf
1 0 1 1.000000
2 20 1 1.720848
3 40 1 1.178406

par (mfrow=c(1,2))

plot(k[,3], type='l"', lwd=2, xaxt='n', xlab='distance (m)', ylab='cross K function')
lines(k[,2], col='red', 1lty=2, lwd=2)

axis(1, at=which(r.vals %in% labs), labels=labs)

legend(-3, 4.15e6, legend=c("Theoretical Poisson process”, "Observed function"),
col=c("red", "black"”), lty=2:1, box.lty=0, bg='transparent',
Xx.intersp=0.7, y.intersp = 1.2)

plot(g$pcf, type='l', lwd=2, xaxt='n', xlab='distance (m)',
ylab='cross pair correlation function')

abline(h=1, col='red', 1lty=2, lwd=2)

axis(1, at=which(r.vals %in% labs), labels=labs)
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Figure 4: Output from the cross K function (left) and the cross pair correlation function (right) with
the observed function shown in black and the value of a theoretical homogeneous Poisson process
shown in red.

A measure of relative risk that does not assume knowledge of the underlying population distri-
bution was developed for point pattern data in veterinary epidemiology (Diggle et al., 2005). This
function, which is implemented in the sparr (Davies et al.,, 2011) and spatstat (Baddeley et al., 2016)
packages, uses spatial kernel functions to calculate a ratio of spatial intensity for two different point
types p(S) = A1(S)/Ap(S). This formulation can quantify the relative risk for case-control point data
or case occurrences with multiple types, but it is not a global clustering statistic.

The 7-statistic can be computed in two ways depending on the underlying assumption that the
true population distribution is known. If this assumption is true, then the 7-statistic is similar to
other common measures of global clustering that rely on knowledge of the background population
distribution to quantify generic clustering of a point process.

ﬁ(dlr dZ)

t(d1,da) = #(0,00) ’

where 7t (dq, dy) represents the incidence rate within distance dq to d, of a case and 7(0, co) represents
the incidence rate over the entire extent of the study area. This can be implemented by defining
the numerator and denominator using the get.pi function or by using the generalized get.tau
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function with comparison.type = 'representative' argument. The 7(-) terms in the numerator
and denominator use the occurrence data to calculate the incidence rates for linked cases within
some defined distance. Therefore, a critical step in performing an analysis with the 7-statistic is
specifying which cases are linked through some defined relationship (homologous) and those that are
not (non-homologous). Homology can be defined statically or dynamically. When defined statically,
the get.pi.typed and get. tau.typed functions can be used to assign case types based on a type
column supplied by the data matrix. When defined dynamically, an indicator function I(-) is used to
delineate linked and unlinked cases in the data, which allows greater flexibility when defining case
type homology.

# Calculate tau-statistic using get.pi.typed functions
data(DengueSimRepresentative)

type <- 2 - (DengueSimRepresentative[, 'serotype'] == 1)
typed.data <- cbind(DengueSimRepresentative, type=type)
d2 <- seq(20, 1000, 20)

dl <- d2 - 20

# Static definition of case type homology

num <- get.pi.typed(typed.data, typeA=1, typeB=2, r.low=dl, r=d2)
den <- get.pi.typed(typed.data, typeA=1, typeB=2, r.low=0, r=1e10)
head(num$pi/dens$pi, n=4)

[1] 0.2641154 0.2104828 0.2451847 0.2487042

tau <- get.tau.typed(typed.data, typeA=1, typeB=2, r.low=d1, r=d2,
comparison.type = "representative”) # Equivalent
head(tau, n=4)
r.low r tau
0 20 0.2641154
20 40 0.2104828
40 60 0.2451847
60 80 0.2487042

Hw N =

# Calculate tau-statistic using dynamic expression indicating serotype homology
ind.func <- function(a, b){
if (a[5] == 1 & b[5] == 1) {

x <=1
} else {

X <- 2
3
return(x)

3

num <- get.pi(posmat=DengueSimRepresentative, fun=ind.func, r.low=d1, r=d2)
den <- get.pi(posmat=DengueSimRepresentative, fun=ind.func, r.low=0, r=Inf)
head(num$pi/den$pi, n=4)

[1] 5.084735 4.967885 4.605805 4.409876

tau <- get.tau(posmat=DengueSimRepresentative, fun=ind.func, r.low=d1, r=d2,
comparison.type="representative”) # Equivalent
head(tau, n=4)
r.low r tau
0 20 5.084735
20 40 4.967885
40 60 4.605805
60 80 4.409876

Hw N =

plot(tau$r.lowttau$r/2, tau$tau, type='l', lwd=2, col='blue', xlab='distance (m)')
abline(h=1, 1lty=2, lwd=2, col='red')
abline(v=100)

The interpretation of the T-statistic is analogous to that of the pair-correlation function in two ways.
First, the T-statistic is not compared to the theoretical measure of a random Poisson process because
the metric is an incidence rate ratio with epidemiological meaning. Instead, this measure is plotted in
comparison to a ratio of 1, indicating no relative difference in disease risk among homologous cases.
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tau

distance (m)

Figure 5: The 7-statistic calculated using the get. tau function (blue line) with the theoretical value of
no relative difference in disease risk shown by the dashed red line. The vertical black line indicates the
mean of the spatial dispersal kernel (100m) used to simulate the DengueSimRepresentative data set.

Second, the T-statistic measures relative risk using case pairs within a distance range (d; < d,-j < dy).
This approach can describe how fine-scale spatial dependence changes over distance. However, if the
user wishes to estimate cumulative spatial dependence (analogous to the K-function), then d; can be
fixed at zero (0 < d;j < dp).

Estimating the T-statistic with §

If the underlying population distribution is unknown, then the 7-statistic can be computed so that it
quantifies global clustering in terms of relative risk. This goes beyond classic measures of clustering
by utilizing some relationship between linked and unlinked cases to distinguish transmission chains
and quantify relative clustering between them. To do so, we use the function §(-) which gives the
odds ratio of cases related to case i to those independent of i to give an estimate of the T-statistic that
is not biased by assumptions about the underlying population distribution.

. dy,d
t(dy,dy) = ﬁ,

>

where,
~ Ywilvjh(zi=1,dy < dij <d)
Yvi Lvj la(zij = 0, dy <djj < dy)’

The indicator function I(-) is applied to all ij case pairs within distance d1 and d;. It returns a binary
response which is equal to 1 when case pairs meet user-specified criteria to be homologous and equal
to 2 when they are non-homologous. The result is an i x j relation matrix z;; which is used to find
the sums of homologous and non-homologous case pairs. Using an indicator function also allows
additional criteria to be used to define case type homology, such as temporal proximity (Figure 6).

0(dy, do)

# Calculate tau-statistic using serotype homology and time

data(DengueSimR0o1)
d2 <- seq(20, 1000, 20)
dl <- d2 - 20

# Dynamic expression indicating serotype homology and temporal proximity
ind.func <- function(a, b, t.limit=20){
if (al5] == b[5] & (abs(al3] - b[3]) <= t.limit)){

x <=1
} else {

X <- 2
}
return(x)
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num <- get.theta(DengueSimR@1, ind.func, r.low=d1, r=d2)
den <- get.theta(DengueSimR@1, ind.func, r.low=0, r=Inf)
head(num$theta/den$theta, n=4)

[1] 3.9148969 3.5145802 4.5963608 5.1082210

tau <- get.tau(posmat=DengueSimR@1, fun=ind.func, r.low=dl, r=d2,
comparison.type="independent”) # Equivalent
head(tau, n=4)
r.low r tau
0 20 3.914897
20 40 3.514580
40 60 4.596361
60 80 5.108221

A w N =

plot(tau$r, tau$tau, type='l', lwd=2, col='blue', xlab='distance (m)')
abline(h=1, 1lty=2, lwd=2, col='red')
abline(v=100)

tau

distance (m)

Figure 6: The T-statistic calculated using get.tau with an indicator function based on serotype
homology and temporal proximity (blue line) with the theoretical value of no relative difference in
disease risk shown by the dashed red line. The vertical black line indicates the mean of the spatial
dispersal kernel (100m) used to simulate the DengueSimRo1 data set.

Calculating variance in point estimates

In the examples above, the get.pi, get. theta, and get. tau function families calculate point estimates
for #t, 0, and © respectively. In scenarios where observation error, sampling bias, or measurement error
are expected to introduce additional variance, users may wish to place confidence intervals around
these point estimates. For this purpose, each family of functions contains a function ending with a
.bootstrap suffix, which generates point estimates for boot. iter number of bootstrapped samples of
the data (Efron and Tibshirani, 1994). Functions ending with a . ci suffix are wrappers that calculate
user specified confidence intervals based on the bootstrapped samples (Figure 7).

# Calculate variance around point estimates of the tau-statistic
data(DengueSimR02)

d2 <- seq(20, 1000, 20)
dl <- d2 - 20

# Function indicating genotype homology
ind.func <- function(a, b){
if(al4] == b[41){
x =1
} else{
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return(x)

}

# Bootstrapped estimates of tau
tau.boot <- get.tau.bootstrap(DengueSimR@2, ind.func, r.low=d1, r=d2, boot.iter=5)
head(tau.boot, n=4)
r.low r X1 X2 X3 X4 X5
0 20 51.04283 49.17736 60.45922 43.36588 37.26332

20 40 20.80095 29.62483 26.54935 34.11416 31.32279

40 60 34.05415 35.66984 40.21975 31.02943 32.77966

60 80 30.52361 35.46972 27.77247 36.64628 32.43156

A w N =

# Wrapper function of get.tau.bootstrap calculates confidence intervals
tau.ci <- get.tau.ci(DengueSimR@2, ind.func, r.low=d1, r=d2, boot.iter=25)
head(tau.ci, n=4)
r.low r pt.est «ci.low ci.high
0 20 44.05161 22.73147 59.44465

20 40 30.83943 19.68758 42.05249

40 60 37.57434 30.48664 45.78121

60 80 33.54134 28.12390 38.76330

A w N =

plot(tau.ci$r, tau.ci$pt.est, ylim=range(tau.cil,4:5]1), type="1", lwd=2, col='blue',
xlab="distance (m)', ylab='tau')

lines(tau.ci$r, tau.ci$ci.low, lty=2, lwd=1, col='blue')

lines(tau.ci$r, tau.ci$ci.high, 1lty=2, lwd=1, col='blue')

abline(h=1, 1lty=2, lwd=2, col='red')

tau

distance (m)

Figure 7: The T-statistic calculated using get.tau with an indicator function based on genotype
homology (blue line). The dashed blue lines show the bounds for the 95% confidence intervals
calculated by the get. tau.ci function. The theoretical value of no relative difference in disease risk
shown by the dashed red line.

Null hypothesis testing

A common approach for interpreting spatial clustering statistics includes hypothesis testing using
simulation envelopes to assess whether an observed spatial measure is statistically significant (Ripley,
1979; Baddeley et al., 2014). To enable null hypothesis tests, we have implemented a permutation
method (Good, 2010) to simulate the nonparametric distribution of 7, 6, and * under the null hy-
pothesis of no spatial dependence. The permutation algorithm simulates the null distribution by
randomly reassigning case coordinates to observations upon each permutation. Null distributions can
be computed using functions ending in the . permute suffix and then plotted with observed measures
to assess statistical significance as a function of distance (Figure 8).
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# Compare tau statistic to its null distribution using permutation
data(DengueSimR02)
set.seed(123)

d2 <- seq(20, 1000, 20)
d1 <- d2 - 20

# Compare spatial dependence by time case occurs
type <- 2 - (DengueSimR@2[,"time"] < 120)
typed.data <- cbind(DengueSimR@2, type=type)

typed.tau <- get.tau.typed(typed.data, typeA=1, typeB=2, r.low=dl1, r=d2,
comparison.type = "independent")

head(typed.tau, n=4)
r.low r tau
0 20 0.4040661

20 40 0.5471728

40 60 0.7897655

60 80 0.8901166

A w N =

# Perform permutations of observed case times and locations for null distribution
typed.tau.null <- get.tau.typed.permute(typed.data, typeA=1, typeB=2, r.low=d1, r=d2,
permutations=100,
comparison.type = "independent")
head(typed.tau.null[,1:7], n=4)
r.low r X1 X2 X3 X4 X5
0 20 1.2570945 0.8530284 3.5019060 1.0326133 1.0775095
20 40 1.1448539 0.7045255 0.7224212 2.0742058 0.8754765
40 60 0.6947101 0.8904419 0.8249682 0.6990984 0.5128531
60 80 1.6266250 1.0916873 0.8326210 0.8432683 1.4815756

Hw N =

# 95% confidence intervals of null distribution

null.ci <- apply(typed.tau.null[,-(1:2)], 1, quantile, probs=c(0.025, 0.975))

plot(typed.tau$r, typed.tau$tau, type='l'
xlab="distance (m)", ylab="tau")

lines(typed.tau$r, null.ci[1,], 1ty=2)

lines(typed. tau$r, null.ci[2,], lty=2)

abline(h=1, 1lty=2, lwd=2, col='red')

, lwd=2, ylim=range(c(typed.tau$tau, null.ci)),

Summary

Conventional spatial statistics are often used to describe the intensity or clustering of point processes.
Quantifying spatial dependence of infectious disease spread, however, requires a modified approach
that considers overlapping transmission chains and the likelihood of case linkage. Therefore, we have
implemented two types of spatial statistics in the IDSpatialStats package (the mean transmission
distance i, and the T-statistic) that can be used along with other measures of spatial dependence (e.g.
the cross K-function and cross pair correlation function) to understand the spatial spread of infectious
diseases.

We showed how to simulate epidemiological data and estimate yy, and the 7-statistic, which can
be used as templates for other analyses. First, the transdist family of functions provides a measure
of fine-scale spatial dependence by estimating the mean of the transmission distance fi; between
sequentially linked cases in a transmission chain (Salje et al., 2016b). Second, the get. tau family of
functions measure spatial dependence on a larger-scale by estimating the 7-statistic, which describes
the area of elevated prevalence surrounding cases. This family of functions does so by estimating the
relative risk of a case being homologous compared with non-homologous case types. The definition of
case type homology is flexible and can utilize temporal or biological information, such as genotype
and serotype of the pathogen.

The generalized structure of the get. tau family allows for diverse applications of the T-statistic to
epidemiological data. Previous studies have used the T-statistic to quantify spatial and/or temporal
dependence of transmission for Dengue, Cholera, HIV, and Measles disease systems (see Table 2 for
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Figure 8: A null hypothesis test for the T-statistic calculated using the get. tau. typed.permute func-
tion. The point estimate for 7 is shown by the black line and the 95% confidence bounds of permuted
values are indicated by the dashed lines. The theoretical value of no relative difference in disease risk
is shown by the dashed red line. The plot indicates that the point estimates for ¥ are not statistically
significant in this example because they are within the bounds of the null distribution.

detailed descriptions). These studies illustrate that, regardless of the system under study, analyses are
enhanced when bootstrapping, permutation tests, and/or assessment of observation error is employed
to understand the distribution of error and statistical significance for estimates of the T-statistic.

The IDSpatialStats package is undergoing continued development. Future directions include
expanding the implementation of the T-statistic to facilitate estimation of spatio-temporal dependence
by incorporating a temporal interval into the spatial search window. This technique was used by Salje
et al. (2012) in the form of the ¢-statistic to estimate (f)(d 1,d2, t1, 7). Additional developments include a
theoretical framework for the T-statistic that incorporates uncertainty due to pathogen generation time,
and to define case type homology more continuously using genetic distance matrices. We hope these
developments will enable users to address more complex questions and incorporate more sources of

uncertainty into estimates of spatial dependence. Check Github at https://github.com/HopkinsIDD/
IDSpatialStats for latest development release.
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Table 2: Descriptions of how previous studies have used the T-statistic to quantify spatial dependence
for infectious diseases. Listed in chronological order.

Description Citation

Spatial and temporal dependence of homotypic and heterotypic Dengue  Salje et al. (2012)
virus serotypes over a 5 year period in Bangkok, Thailand

Clustering of HIV prevalence and incidence around HIV-seropositive Grabowski et al. (2014)
individuals using cohort data from rural Rakai District, Uganda

Overview of the T-statistic, its performance given observation error, Lessler et al. (2016)
and illustrations using Dengue, HIV, and Measles

Spatial dependence of seroconverted individuals in the 2012-2013 Salje et al. (2016a)
Chikungunya outbreak in the Phillipines

Comparison of spatial dependence in endemic transmission of Dengue Quoc et al. (2016)
virus serotypes in Bangkok and Ho Chi Min City, Thailand

Risk of Cholera transmission within spatial and temporal zones after case ~ Azman et al. (2018)
presentation during urban epidemics in Chad and D.R. Congo

Summary statistic to fit micro-simulations of Cholera interventions Finger et al. (2018)
to epidemic data using Approximate Bayesian Computation

Temporal clustering of subclinical infections and homologous serotypes Salje et al. (2018)
within schools using Dengue cohort data in Thailand

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 325

Bibliography

A.S. Azman, F.]J. Luquero, H. Salje, N. N. Mbaibardoum, N. Adalbert, M. Ali, E. Bertuzzo, F. Finger,
B. Toure, L. A. Massing, R. Ramazani, B. Saga, M. Allan, D. Olson, J. Leglise, K. Porten, and J. Lessler.
Micro-hotspots of risk in urban cholera epidemics. 218(7):1164-1168, 2018. ISSN 0022-1899. doi:
10.1093/infdis /jiy283. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107744/. [p324]

A. Baddeley, P. ]. Diggle, A. Hardegen, T. Lawrence, R. K. Milne, and G. Nair. On tests of spatial
pattern based on simulation envelopes. Ecological Monographs, 84(3):477-489, 2014. ISSN 0012-9615.
doi: 10.1890/13-2042.1. URL http://doi.wiley.com/10.1890/13-2042.1. [p321]

A. Baddeley, E. Rubak, and R. Turner. Spatial Point Patterns: Methodology and Applications with R. CRC
Press, 2016. ISBN 978-1-4822-1021-7. [p308, 309, 316, 317]

R. Bivand and G. Piras. Comparing implementations of estimation methods for spatial econometrics.
Journal of Statistical Software, 63(18):1-36, 2015. URL https://www. jstatsoft.org/v63/118/. [p308,
309]

M. Corporation and S. Weston. doParallel: Foreach Parallel Adaptor for the 'parallel” Package, 2018. URL
https://CRAN.R-project.org/package=doParallel. R package version 1.0.14. [p309]

T. M. Davies, M. L. Hazelton, and J. C. Marshall. sparr: Analyzing spatial relative risk using fixed
and adaptive kernel density estimation in r. 39(1), 2011. ISSN 1548-7660. doi: 10.18637 /jss.v039.i01.
URL http://www. jstatsoft.org/v39/i01/. [p309, 314, 317]

P. Diggle, P. Zheng, and P. Durr. Nonparametric estimation of spatial segregation in a multivariate
point process: bovine tuberculosis in Cornwall, UK. Journal of the Royal Statistical Society: Series C
(Applied Statistics), 54(3):645-658, 2005. ISSN 1467-9876. doi: 10.1111/].1467-9876.2005.05373.x. URL
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/3.1467-9876.2005.05373.x. [p317]

B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. CRC Press, 1994. ISBN 9780412042317.
[p320]

F. Finger, E. Bertuzzo, F. J. Luquero, N. Naibei, B. Touré, M. Allan, K. Porten, J. Lessler, A. Ri-
naldo, and A. S. Azman. The potential impact of case-area targeted interventions in re-
sponse to cholera outbreaks: A modeling study. 15(2):e1002509, 2018. ISSN 1549-1676. doi:
10.1371/journal.pmed.1002509. URL https://journals.plos.org/plosmedicine/article?id=10.
1371/journal.pmed.1002509. [p324]

R. C. Geary. The contiguity ratio and statistical mapping. 5(3):115-146, 1954. ISSN 1466-9404. doi:
10.2307/2986645. URL http://www. jstor.org/stable/2986645. [p308]

P.1. Good. Permutation, Parametric, and Bootstrap Tests of Hypotheses. Springer New York, 2010. ISBN
9781441919076. [p321]

M. K. Grabowski, J. Lessler, A. D. Redd, J. Kagaayi, O. Laeyendecker, A. Ndyanabo, M. I. Nelson,
D. A. T. Cummings, J. B. Bwanika, A. C. Mueller, S. J. Reynolds, S. Munshaw, S. C. Ray, T. Lutalo,
J. Manucci, A. A. R. Tobian, L. W. Chang, C. Beyrer, J. M. Jennings, F. Nalugoda, D. Serwadda,
M. J. Wawer, T. C. Quinn, R. H. Gray, and t. R. H. S. Program. The role of viral introductions in
sustaining community-based HIV epidemics in rural uganda: Evidence from spatial clustering,
phylogenetics, and egocentric transmission models. 11(3):e1001610, 2014. ISSN 1549-1676. doi:
10.1371/journal.pmed.1001610. URL https://journals.plos.org/plosmedicine/article?id=10.
1371/journal.pmed.1001610. [p324]

V. Gémez-Rubio, J. Ferrdndiz-Ferragud, and A. Lopez-Quilez. Detecting clusters of disease with r.
Journal of Geographical Systems, 7(2):189-206, 2005. [p309]

D. T. Haydon, M. Chase-Topping, D. J. Shaw, L. Matthews, J. K. Friar, J. Wilesmith, and M. E. J.
Woolhouse. The construction and analysis of epidemic trees with reference to the 2001 UK
foot-and-mouth outbreak. 270(1511):121-127, 2003. ISSN 0962-8452. doi: 10.1098/rspb.2002.2191.
[p314]

J. Lessler, H. Salje, M. K. Grabowski, and D. A. T. Cummings. Measuring Spatial Dependence
for Infectious Disease Epidemiology. PLoS ONE, 11(5):e0155249, 2016. ISSN 1932-6203. doi:
10.1371/journal.pone.0155249. [p309, 315, 324]

Microsoft and S. Weston. foreach: Provides Foreach Looping Construct for R, 2017. URL https://CRAN.R-
project.org/package=foreach. R package version 1.4.4. [p309]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107744/
http://doi.wiley.com/10.1890/13-2042.1
https://www.jstatsoft.org/v63/i18/
https://CRAN.R-project.org/package=doParallel
http://www.jstatsoft.org/v39/i01/
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9876.2005.05373.x
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002509
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002509
http://www.jstor.org/stable/2986645
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001610
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001610
https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=foreach

CONTRIBUTED RESEARCH ARTICLE 326

P. a. P. Moran. Notes on continuous stochastic phenomena. 37(1):17-23, 1950. ISSN 0006-3444. [p308]

T. Obadia, R. Haneef, and P.-Y. Boélle. The r0 package: a toolbox to estimate reproduction numbers
for epidemic outbreaks. 12:147, 2012. ISSN 1472-6947. doi: 10.1186/1472-6947-12-147. URL
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582628/. [p311]

S. Openshaw and P. Taylor. A million or so correlation coefficients: Three experiments on the modifiable
areal unit problem. Statistical Application in the Spatial Sciences, 1272144, 1979. [p308]

R. Pélissier and F. Goreaud. ads package for R: A fast unbiased implementation of the k-function family
for studying spatial point patterns in irregular-shaped sampling windows. Journal of Statistical
Software, 63(6):1-18, 2015. URL http://www. jstatsoft.org/v63/106/. [p308, 309]

C. H. Quoc, S. Henrik, R.-B. Isabel, Y. In-Kyu, N. V. V. Chau, N. T. Hung, H. M. Tuan, P. T. Lan,
B. Willis, A. Nisalak, S. Kalayanarooj, D. A. T. Cummings, and C. P. Simmons. Synchrony of
dengue incidence in ho chi minh city and bangkok. 10(12):e0005188, 2016. ISSN 1935-2735. doi:
10.1371 /journal.pntd.0005188. URL http://journals.plos.org/plosntds/article?id=10.1371/
journal.pntd.0005188. [p324]

T. Rajala. SGCS: Spatial Graph Based Clustering Summaries for Spatial Point Patterns, 2017. URL https:
//CRAN.R-project.org/package=SGCS. R package version 2.6. [p309]

I. W. Renner and D. I. Warton. Equivalence of maxent and poisson point process models for species
distribution modeling in ecology. Biometrics, 69(6):274-281, 2013. [p308, 309]

B. D. Ripley. Tests of ‘/Randomness’ for Spatial Point Patterns. Journal of the Royal Statistical Society.
Series B (Methodological), 41(3):368-374, 1979. ISSN 0035-9246. URL https://www. jstor.org/stable/
2985065. [p321]

W. S. Robinson. Ecological Correlations and the Behavior of Individuals. International Journal of
Epidemiology, 38(2):337-341, 2009. ISSN 0300-5771, 1464-3685. doi: 10.1093/ije/dyn357. URL
http://ije.oxfordjournals.org/content/38/2/337. [p308]

B. Rowlingson and P. Diggle. splancs: Spatial and Space-Time Point Pattern Analysis, 2017. URL
https://CRAN.R-project.org/package=splancs. R package version 2.01-40. [p308, 309]

H. Salje, J. Lessler, T. P. Endy, E. C. Curriero, R. V. Gibbons, A. Nisalak, S. Nimmannitya, S. Kalayanarooj,
R. G.Jarman, S. J. Thomas, D. S. Burke, and D. A. T. Cummings. Revealing the microscale spatial
signature of dengue transmission and immunity in an urban population. 109(24):9535-9538, 2012.
ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1120621109. URL http://www.pnas.org/content/
109/24/9535. [p323, 324]

H. Salje, S. Cauchemez, M. T. Alera, I. Rodriguez-Barraquer, B. Thaisomboonsuk, A. Srikiatkhachorn,
C.B. Lago, D. Villa, C. Klungthong, I. A. Tac-An, S. Fernandez, ]. M. Velasco, V. G. Roque, A. Nisalak,
L. R. Macareo, J]. W. Levy, D. Cummings, and L-K. Yoon. Reconstruction of 60 years of chikungunya
epidemiology in the philippines demonstrates episodic and focal transmission. 213(4):604-610,
2016a. ISSN 0022-1899. doi: 10.1093/infdis/jiv470. URL https://academic.oup.com/jid/article/
213/4/604/2459450/Reconstruction-of-60-Years-of-Chikungunya. [p324]

H. Salje, D. A. T. Cummings, and J. Lessler. Estimating infectious disease transmission distances using
the overall distribution of cases. Epidemics, 17:10-18, 2016b. ISSN 1755-4365. doi: 10.1016/j.epidem.
2016.10.001. [p309, 310, 312, 315, 322]

H. Salje, D. A. T. Cummings, I. Rodriguez-Barraquer, L. C. Katzelnick, J. Lessler, C. Klungthong,
B. Thaisomboonsuk, A. Nisalak, A. Weg, D. Ellison, L. Macareo, L.-K. Yoon, R. Jarman, S. Thomas,
A. L. Rothman, T. Endy, and S. Cauchemez. Reconstruction of antibody dynamics and infection
histories to evaluate dengue risk. 557(7707):719-723, 2018. ISSN 1476-4687. doi: 10.1038/s41586-
018-0157-4. URL https://www.nature.com/articles/s41586-018-0157-4. [p324]

B. M. Taylor, T. M. Davies, B. S. Rowlingson, and P. J. Diggle. lgcp: An R package for inference with
spatial and spatio-temporal log-Gaussian Cox processes. Journal of Statistical Software, 52(4):1-40,
2013. URL http://www. jstatsoft.org/v52/i04/. [p308, 309]

B. M. Taylor, T. M. Davies, B. S. Rowlingson, and P. J. Diggle. Bayesian inference and data augmentation
schemes for spatial, spatiotemporal and multivariate log-Gaussian Cox processes in R. Journal of
Statistical Software, 63(7):1-48, 2015. URL http://www. jstatsoft.org/v63/107/. [p308, 309]

J. Wallinga and P. Teunis. Different epidemic curves for severe acute respiratory syndrome reveal
similar impacts of control measures. American Journal of Epidemiology, 160(6):509-516, 2004. doi:
10.1093/aje/kwh255. [p310, 311]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582628/
http://www.jstatsoft.org/v63/i06/
http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0005188
http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0005188
https://CRAN.R-project.org/package=SGCS
https://CRAN.R-project.org/package=SGCS
https://www.jstor.org/stable/2985065
https://www.jstor.org/stable/2985065
http://ije.oxfordjournals.org/content/38/2/337
https://CRAN.R-project.org/package=splancs
http://www.pnas.org/content/109/24/9535
http://www.pnas.org/content/109/24/9535
https://academic.oup.com/jid/article/213/4/604/2459450/Reconstruction-of-60-Years-of-Chikungunya
https://academic.oup.com/jid/article/213/4/604/2459450/Reconstruction-of-60-Years-of-Chikungunya
https://www.nature.com/articles/s41586-018-0157-4
http://www.jstatsoft.org/v52/i04/
http://www.jstatsoft.org/v63/i07/

CONTRIBUTED RESEARCH ARTICLE 327

John R Giles

Department of Epidemiology

Johns Hopkins Bloomberg School of Public Health
615 N Wolfe St

Baltimore, MD, USA 21205

ORCiD: 0000-0002-0954-4093

giles@jhu.edu

Henrik Salje

Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur
25-28 Rue du Dr Roux, Paris, France 75015
henrik.salje@pasteur.fr

Justin Lessler

Department of Epidemiology

Johns Hopkins Bloomberg School of Public Health
615 N Wolfe St

Baltimore, MID, USA 21205

justin@jhu.edu

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859


mailto:giles@jhu.edu
mailto:henrik.salje@pasteur.fr
mailto:justin@jhu.edu

	The IDSpatialStats R Package: Quantifying Spatial Dependence of Infectious Disease Spread
	Introduction
	The mean transmission distance
	Wallinga-Teunis matrices
	Estimation of  weights
	Estimating mean of transmission kernel
	Change in mean transmission distance over time
	Application to foot-and-mouth disease

	Global clustering: the -statistic
	Estimating the -statistic with 
	Calculating variance in point estimates
	Null hypothesis testing

	Summary


