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RSSampling: A Pioneering Package for
Ranked Set Sampling
by Busra Sevinc, Bekir Cetintav, Melek Esemen, and Selma Gurler

Abstract Ranked set sampling (RSS) is an advanced data collection method when the exact mea-
surement of an observation is difficult and/or expensive used in a number of research areas, e.g.,
environment, bioinformatics, ecology, etc. In this method, random sets are drawn from a population
and the units in sets are ranked with a ranking mechanism which is based on a visual inspection or a
concomitant variable. Because of the importance of working with a good design and easy analysis,
there is a need for a software tool which provides sampling designs and statistical inferences based
on RSS and its modifications. This paper introduces an R package as a free and easy-to-use analysis
tool for both sampling processes and statistical inferences based on RSS and its modified versions.
For researchers, the RSSampling package provides a sample with RSS, extreme RSS, median RSS,
percentile RSS, balanced groups RSS, double versions of RSS, L-RSS, truncation-based RSS, and robust
extreme RSS when the judgment rankings are both perfect and imperfect. Researchers can also use
this new package to make parametric inferences for the population mean and the variance where the
sample is obtained via classical RSS. Moreover, this package includes applications of the nonparametric
methods which are one sample sign test, Mann-Whitney-Wilcoxon test, and Wilcoxon signed-rank test
procedures. The package is available as RSSampling on CRAN.

Introduction

Data collection is the crucial part in all types of scientific research. Ranked set sampling (RSS) is one
of the advanced data collection methods, which provides representative sample data by using the
ranking information of the sample units. It was firstly proposed by McIntyre (1952) and the term
"ranked set sampling" was introduced in the study of Halls and Dell (1966) about the estimation of
forage yields in a pine hardwood forest. Takahasi and Wakimoto (1968) theoretically studied the
efficiency of the mean estimator based on RSS which is unbiased for the population mean. They found
that its variance is always smaller than the variance of the mean estimator based on simple random
sampling (SRS) with the same sample size when the ranking is perfect. Some other results on the
efficiency of RSS can be found in Dell and Clutter (1972), David and Levine (1972), and Stokes (1980a).
Stokes (1977) studied the use of concomitant variables for ranking of the sample units in the RSS
procedure and found that the ranking procedure was allowed to be imperfect. In another study, she
constructed the estimator for the population variance in the presence of the ranking error (Stokes,
1980b). For some examples and results on the regression estimation based on RSS, see, Yu and Lam
(1997) and Chen (2001). The estimation of a distribution function with various settings of RSS can
be found in Stokes and Sager (1988), Kvam and Samaniego (1993), and Chen (2000). Other results
on distribution-free test procedures based on RSS can be found in Bohn and Wolfe (1992, 1994), and
Hettmansperger (1995). Additional results for inferential procedures based on RSS can be found in the
recent works of Zamanzade and Vock (2015), Zhang et al. (2016), and Ozturk (2018). For more details
on RSS, we refer the review papers by Kaur et al. (1995), Chen et al. (2003), and Wolfe (2012).

The RSS method and its modified versions have come into prominence recently due to its efficiency
and therefore new software tools or packages for a quick evaluation is required. A free software
called Visual Sample Plan (VSP) created by Pacific Northwest National Labaratory has many sampling
designs including classical RSS method for developing environmental sampling plans under balanced
and unbalanced cases. It provides the calculation of the required sample size and cost information
with the location to be sampled. Also, a package NSM3 by Schneider (2015) in R has two functions
related to classical RSS method. It only provides the Monte Carlo samples and computes a statistic
for a nonparametric procedure. Both the VSP and NSM3 package include only the classical RSS
method as a sampling procedure and provide limited methods for inference. Therefore, there is
no extensive package for sampling and statistical inference using both classical and modified RSS
methods in any available software packages. In this study, we propose a pioneering package, named
RSSampling, for sampling procedures based on the classical RSS and the modified RSS methods in
both perfect and imperfect ranking cases. Also, the package provides the estimation of the mean and
the variance of the population and allows the use of the one sample sign, Mann-Whitney-Wilcoxon,
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and Wilcoxon signed-rank test procedures under classical RSS. The organization of the paper is as
follows: in the following section, we give some brief information about classical RSS and modified
RSS methods. Then, we introduce the details of RSSampling package and further, we give some
illustrative examples with a real data analysis. In the last section, we give the conclusion of the study.

The classical and modified RSS methods

RSS and its modifications are advanced sampling methods using the rank information of the sample
units. The ranking of the units can be done by visual inspection of a human expert or a concomitant
variable. The procedure for the RSS method is as follows:

1. Select m units at random from a specified population.

2. Rank these m units by judgment without actual measurement.

3. Keep the smallest judged unit from the ranked set.

4. Select second set of m units at random from a specified population, rank these units without
measuring them, keep the second smallest judged unit.

5. Continue the process until m ranked units are measured.

The first five steps are referred to as a cycle. Then, the cycle repeats r times and a ranked set sample
of size n =mr is obtained. Figure 1 illustrates the RSS procedure with visual inspection for the case of
r = 1 and m = 3, and in the following scheme, Xi(j:m) represents the jth ranked unit in ith set where
i = 1, 2, . . . , m and j = 1, 2, . . . , m and bold units represent the units which are chosen to ranked set
sample.

X1(1:3) ≤ X1(2:3) ≤ X1(3:3)
X2(1:3) ≤ X2(2:3) ≤ X2(3:3)
X3(1:3) ≤ X3(2:3) ≤ X3(3:3)



Figure 1: Ranking with visual inspection for one cycle, Haq et al. (2013)

RSS design obtains more representative samples and gives more precise estimates of the population
parameters relative to SRS (EPA, 2012). The main difference between the RSS method and the other
modified methods is the selection procedure of the sample units from the ranked sets. For example,
Samawi et al. (1996) suggested extreme RSS using the minimum or maximum units from each ranked
set. Muttlak (1997) introduced median RSS using only median units of the random sets. Jemain et al.
(2008) suggested balanced groups RSS which is defined as the combination of extreme RSS and median
RSS. For additional examples of modified methods, see Muttlak (2003a), Al-Saleh and Al-Kadiri (2000),
and for robust methods see, Al-Nasser (2007), Al-Omari and Raqab (2013), and Al-Nasser and Mustafa
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(2009). In literature, the studies for modified RSS methods are generally interested in obtaining a
sample more easily or making a more robust estimation for a population parameter. Such studies are
made for the investigation of properties (for example, bias and mean squared error) of a proposed
estimator and they have generally focused on the comparisons of SRS and RSS methods. Note that
the true comparisons of the modified RSS methods to the others are difficult to present in general
terms. Because the advantages of the sampling methods, when compared to each other, may vary
according to the situations such as the parameter to be estimated, underlying distribution, the presence
of ranking error, etc. For more detailed information on the modifications of RSS, see Al-Omari and
Bouza (2014) and references therein. In the following, the modified RSS methods which are considered
in RSSampling are introduced.

Extreme RSS

Extreme RSS (ERSS) is the first modification of RSS suggested by Samawi et al. (1996) to estimate the
population mean only using the minimum or maximum ranked units from each set. The procedure for
ERSS can be described as follows: select m random sets each of size m units from the population and
rank the units within each set by a human expert or a concomitant variable. If the set size m is even,
the lowest ranked units of each set are chosen from the first m/2 sets, and the largest ranked units of
each set are chosen from the other m/2 sets. If the set size is odd, the lowest ranked units from the
first (m− 1)/2 sets, the largest ranked units from the other (m− 1)/2 sets and median unit from the
remaining last set are chosen. If we repeat the procedure r times, we have a sample of size n = mr. An
example of the procedure for r = 1 and m = 4 is shown below.


X1(1:4) ≤ X1(2:4) ≤ X1(3:4) ≤ X1(4:4)
X2(1:4) ≤ X2(2:4) ≤ X2(3:4) ≤ X2(4:4)
X3(1:4) ≤ X3(2:4) ≤ X3(3:4) ≤ X3(4:4)
X4(1:4) ≤ X4(2:4) ≤ X4(3:4) ≤ X4(4:4)



Median RSS

Median RSS (MRSS) was suggested by Muttlak (1997). In this method, only median units of the
random sets are chosen as the sample for estimation of population mean. For the odd set sizes, the
((m + 1)/2)th ranked units are chosen as the median of each set. For even set sizes, the (m/2)th
ranked units are chosen from the first m/2 sets and the ((m + 2)/2)th ranked units are chosen from
the remaining m/2 sets. If necessary, procedure can be repeated r times and we have n = mr sample
of size. An example of the procedure for r = 1 and m = 3 is shown below.

X1(1:3) ≤ X1(2:3) ≤ X1(3:3)
X2(1:3) ≤ X2(2:3) ≤ X2(3:3)
X3(1:3) ≤ X3(2:3) ≤ X3(3:3)



Percentile RSS

Muttlak (2003a) suggested another modification for the RSS, percentile RSS (PRSS), where only the
upper and lower percentiles of the random sets are chosen as the sample for selected value of p,
where 0 ≤ p ≤ 1. Suppose that m random sets with the size m are chosen from a specific population
to sample m units and ranked visually or with a concomitant variable. If the set size is even, the
(p(m + 1))th smallest units from the first m/2 sets and the ((1− p)(m + 1))th smallest units from
the other m/2 sets are chosen. If m is odd, the (p(m + 1))th smallest units are chosen from the first
(m− 1)/2 sets, the ((1− p)(m + 1))th smallest units are chosen from the other (m− 1)/2 sets and the
median unit is chosen as the mth unit from the last set. An example of the procedure for r = 1, m = 5
and p = 0.3 is as below.

X1(1:5) ≤ X1(2:5) ≤ X1(3:5) ≤ X1(4:5) ≤ X1(5:5)
X2(1:5) ≤ X2(2:5) ≤ X2(3:5) ≤ X2(4:5) ≤ X2(5:5)
X3(1:5) ≤ X3(2:5) ≤ X3(3:5) ≤ X3(4:5) ≤ X3(5:5)
X4(1:5) ≤ X4(2:5) ≤ X4(3:5) ≤ X4(4:5) ≤ X4(5:5)
X5(1:5) ≤ X5(2:5) ≤ X5(3:5) ≤ X5(4:5) ≤ X5(5:5)


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Balanced groups RSS

Balanced groups RSS (BGRSS) can be defined as the combination of ERSS and MRSS. Jemain et al.
(2008) suggested to use BGRSS for estimating the population mean with a special sample size m = 3k.
In their study, BGRSS procedure can be described as follows: m = 3k (where k = 1, 2, 3, . . . ) sets each
size of m are selected randomly from a specific population. The sets are randomly allocated into three
groups and units in each set are ranked. The smallest units from the first group, median units from the
second group and the largest units from the third group of ranked sets are chosen. When the set size is
odd, the median unit in the second group is defined as the ((m + 1)/2)th ranked unit in the set and
when the set size is even, the median unit is defined as the mean of the (m/2)th and the ((m + 2)/2)th
ranked units. BGRSS process for one cycle and k = 2 can be described as below.

X1(1:6) ≤ X1(2:6) ≤ X1(3:6) ≤ X1(4:6) ≤ X1(5:6) ≤ X1(6:6)
X2(1:6) ≤ X2(2:6) ≤ X2(3:6) ≤ X2(4:6) ≤ X2(5:6) ≤ X2(6:6)
X3(1:6) ≤ X3(2:6) ≤ X3(3:6) ≤ X3(4:6) ≤ X3(5:6) ≤ X3(6:6)
X4(1:6) ≤ X4(2:6) ≤ X4(3:6) ≤ X4(4:6) ≤ X4(5:6) ≤ X4(6:6)
X5(1:6) ≤ X5(2:6) ≤ X5(3:6) ≤ X5(4:6) ≤ X5(5:6) ≤ X5(6:6)
X6(1:6) ≤ X6(2:6) ≤ X6(3:6) ≤ X6(4:6) ≤ X6(5:6) ≤ X6(6:6)



Double RSS

Al-Saleh and Al-Kadiri (2000) introduced another modification of RSS, that is double RSS (DRSS) as a
beginning of multistage procedure. Several researchers also extended the DRSS method to modified
versions such as double extreme RSS (DERSS) by Samawi (2002), double median RSS (DMRSS) by
Samawi and Tawalbeh (2002), and double percentile RSS (DPRSS) by Jemain and Al-Omari (2006).
The DRSS procedure is described as follows: m3 units are identified from the target population and
divided randomly into m groups, the size of each is m2. Then, the usual RSS procedure is used on each
group to obtain m ranked set samples each of size m. Finally, RSS procedure is applied again on the
obtained ranked set samples in the previous step to get a double ranked set sample of size m.

L-RSS

L-RSS, which is a robust RSS procedure, is based on the idea of L statistic and it was introduced
by Al-Nasser (2007) as a generalization of different type of RSS methods. The first step for L-RSS
procedure is selecting m random sets with m units and ranking the units in each set. Let k be the
L-RSS coefficient, where k = bmαc for 0 ≤ α < 0.5 and bmαc is the largest integer value less than or
equal to mα. Then, the (k + 1)th ranked units from the first k + 1 sets, (m− k)th ranked units from
the last k + 1 sets and ith ranked units from the remaining sets which are numbered with i, where
i = k + 2, . . . , m− k− 1 are selected. The L-RSS procedure for the case of m = 6 and k = 1 (α = 0.20)
in a cycle can be shown as below:

X1(1:6) ≤ X1(2:6) ≤ X1(3:6) ≤ X1(4:6) ≤ X1(5:6) ≤ X1(6:6)
X2(1:6) ≤ X2(2:6) ≤ X2(3:6) ≤ X2(4:6) ≤ X2(5:6) ≤ X2(6:6)
X3(1:6) ≤ X3(2:6) ≤ X3(3:6) ≤ X3(4:6) ≤ X3(5:6) ≤ X3(6:6)
X4(1:6) ≤ X4(2:6) ≤ X4(3:6) ≤ X4(4:6) ≤ X4(5:6) ≤ X4(6:6)
X5(1:6) ≤ X5(2:6) ≤ X5(3:6) ≤ X5(4:6) ≤ X5(5:6) ≤ X5(6:6)
X6(1:6) ≤ X6(2:6) ≤ X6(3:6) ≤ X6(4:6) ≤ X6(5:6) ≤ X6(6:6)


When k = 0, then this procedure leads to the classical RSS and when k = b(m− 1)/2c, then it

leads to the MRSS method.

Truncation-based RSS

The truncation-based RSS (TBRSS) was presented by Al-Omari and Raqab (2013). This procedure
can be summarized as follows: select randomly m sets each of size m units from the population and
rank the units in each set. Then, determine TBRSS coefficient k as in the L-RSS method and select the
minimums of the first k sets and the maximums of the last k sets. From the remaining m− 2k samples,
select the ith ranked unit of the ith sample (k + 1 ≤ i ≤ m− k). The one cycled TBRSS method for the
case of m = 8 and k = 2 (α = 0.35) is shown below.
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

X1(1:8) ≤ X1(2:8) ≤ X1(3:8) ≤ X1(4:8) ≤ X1(5:8) ≤ X1(6:8) ≤ X1(7:8) ≤ X1(8:8)
X2(1:8) ≤ X2(2:8) ≤ X2(3:8) ≤ X2(4:8) ≤ X2(5:8) ≤ X2(6:8) ≤ X2(7:8) ≤ X2(8:8)
X3(1:8) ≤ X3(2:8) ≤ X3(3:8) ≤ X3(4:8) ≤ X3(5:8) ≤ X3(6:8) ≤ X3(7:8) ≤ X3(8:8)
X4(1:8) ≤ X4(2:8) ≤ X4(3:8) ≤ X4(4:8) ≤ X4(5:8) ≤ X4(6:8) ≤ X4(7:8) ≤ X4(8:8)
X5(1:8) ≤ X5(2:8) ≤ X5(3:8) ≤ X5(4:8) ≤ X5(5:8) ≤ X5(6:8) ≤ X5(7:8) ≤ X5(8:8)
X6(1:8) ≤ X6(2:8) ≤ X6(3:8) ≤ X6(4:8) ≤ X6(5:8) ≤ X6(6:8) ≤ X6(7:8) ≤ X6(8:8)
X7(1:8) ≤ X7(2:8) ≤ X7(3:8) ≤ X7(4:8) ≤ X7(5:8) ≤ X7(6:8) ≤ X7(7:8) ≤ X7(8:8)
X8(1:8) ≤ X8(2:8) ≤ X8(3:8) ≤ X8(4:8) ≤ X8(5:8) ≤ X8(6:8) ≤ X8(7:8) ≤ X8(8:8)


Note that when k = 0 or k = 1, TBRSS scheme is equivalent to the classical RSS scheme.

Robust extreme RSS

Robust extreme RSS (RERSS) scheme was introduced by Al-Nasser and Mustafa (2009). This method
can be described as follows: identify m random sets with m units and rank the units within each set.
Select the (k + 1)th ranked units from the first m/2 sets where k = bmαc for 0 < α < 0.5 and bmαc is
the largest integer value less than or equal to mα. Then, select the (m− k)th ranked units from the
other m/2 sets. If the set size m is odd, ((m + 1)/2)th ranked unit is selected additionally from the last
remaining set. The procedure for one cycle and the case of m = 6 and k = 1 (α = 0.20) can be shown
as below. 

X1(1:6) ≤ X1(2:6) ≤ X1(3:6) ≤ X1(4:6) ≤ X1(5:6) ≤ X1(6:6)
X2(1:6) ≤ X2(2:6) ≤ X2(3:6) ≤ X2(4:6) ≤ X2(5:6) ≤ X2(6:6)
X3(1:6) ≤ X3(2:6) ≤ X3(3:6) ≤ X3(4:6) ≤ X3(5:6) ≤ X3(6:6)
X4(1:6) ≤ X4(2:6) ≤ X4(3:6) ≤ X4(4:6) ≤ X4(5:6) ≤ X4(6:6)
X5(1:6) ≤ X5(2:6) ≤ X5(3:6) ≤ X5(4:6) ≤ X5(5:6) ≤ X5(6:6)
X6(1:6) ≤ X6(2:6) ≤ X6(3:6) ≤ X6(4:6) ≤ X6(5:6) ≤ X6(6:6)


If k = 0 and k = (m/2), then this sampling procedure corresponds to ERSS and MRSS methods,

respectively.

RSSampling package

The package RSSampling is available on CRAN and can be installed and loaded via the following
commands:

> install.packages("RSSampling")
> library("RSSampling")

The package depends on the stats package and uses a function from the non-standard package
LearnBayes (Albert, 2018) for random data generation in the Examples section. The proposed package
consists of two main parts which are the functions for sampling methods described in Table 1 and
the functions for inference procedures described in Table 2 based on RSS. The sampling part of the
package includes perfect and imperfect rankings with a concomitant variable allowing researchers to
sample with classical RSS and the modified versions. The functions for inference procedures provide
estimation for parameters and some hypothesis testing procedures based on RSS.

Sampling with RSSampling

In this part, we introduce a core function, which is called rankedsets, to obtain s ranked sets consisting
of randomly chosen sample units with the set size m. By using this function, we developed the
functions given in Table 1 which provide researchers means to obtain a sample under different
sampling schemes. One can also use rankedsets function for the studies based on other modified RSS
methods which are not mentioned in this paper.

The function rss provides the ranked set sample with perfect ranking from a specific data set, X,
provided in matrix form where the columns and rows represent the sets and cycles, respectively. One
can see the randomly chosen ranked sets by defining sets = TRUE (default sets = FALSE) with the set
size m and the cycle size r. For the modified RSS methods, the function Mrss provides a sample from
MRSS, ERSS, PRSS, and BGRSS which are represented by "m","e", "p", and "bg", respectively. The
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Function Description

rss Performs classical RSS method
Mrss Performs modified RSS methods (MRSS, ERSS, PRSS,BGRSS)
Rrss Performs robust RSS methods (L-RSS, TBRSS, RERSS)
Drss Performs double RSS methods (DRSS, DMRSS, DERSS, DPRSS)
con.rss Performs classical RSS method by using a concomitant variable
con.Mrss Performs modified RSS methods (MRSS, ERSS, PRSS,BGRSS)

by using a concomitant variable
con.Rrss Performs robust RSS methods (L-RSS, TBRSS, RERSS)

by using a concomitant variable
obsno.Mrss Determines the observation numbers of the units which will be

chosen to the sample for classical and modified RSS methods
by using a concomitant variable

Table 1: The functions for the sampling methods in RSSampling package

type = "r", defined as the default, represents the classical RSS. For the sampling procedure PRSS,
there is an additional parameter p which defines the percentile. We note that, when p = 0.25 in PRSS,
one can obtain a sample with quartile RSS given by Muttlak (2003b). Rrss provides samples from
L-RSS, TBRSS, and RERSS methods which are represented by "l", "tb", and "re", respectively. The
parameter alpha is the common parameter for these methods and defines the cutting value. Drss
function is for double versions of RSS, MRSS, ERSS, and PRSS under perfect ranking. type = "d" is
defined as the default which represents the double RSS. Values "dm", "de", and "dp" are defined for
DMRSS, DERSS, and DPRSS methods, respectively.

In the literature, most of the theoretical inferences and numerical studies are conducted based
on perfect ranking. However, in real life applications, the ranking process is done with an expert
judgment or a concomitant variable. Let us consider RSS with a concomitant variable Y. A set of m
units is drawn from the population, then the units are ranked by the order of Y. The concomitant
variable Yi(j:m) represents the jth ranked unit in ith set and the variable of interest X(i,j) represents the
jth unit in ith set, where i = 1, 2, . . . , m and j = 1, 2, . . . , m. In the following example, the procedure of
RSS using Y is given for m = 3.

(Y1(1:3), X(1,1)) ≤ (Y1(2:3), X(1,2)) ≤ (Y1(3:3), X(1,3)) −→ X(1,1)
(Y2(1:3), X(2,1)) ≤ (Y2(2:3), X(2,2)) ≤ (Y2(3:3), X(2,3)) −→ X(2,2)
(Y3(1:3), X(3,1)) ≤ (Y3(2:3), X(3,2)) ≤ (Y3(3:3), X(3,3)) −→ X(3,3)

The functions con.rss, con.Mrss, and con.Rrss provide methods to obtain a sample under im-
perfect ranking. With the con.rss function, a researcher can obtain a classical ranked set sample
from a specific data set using a concomitant variable Y with the set size m and cycle size r to make
inference about the variable of interest X. The functions con.Mrss and con.Rrss have similar usage
with con.rss function except the selection method which is defined by type parameter. Also, these
functions are simply extensions of the Mrss and Rrss for concomitant variable cases.

In a real-world research, the values of the variable of interest X are unknown and the researchers
measure X values of the sample units after choosing them from the population with a specific sampling
method. The function obsno.Mrss provides the code for this kind of application, when the researchers
prefer to use RSS methods. After determining the sample frame and the concomitant variable to be
used for ranking, the code provides the number of the units to be selected according the values of the
concomitant variable. Then, the researcher obtain easily the observation numbers of the units which
will be chosen to the sample. type = "r" is defined as the default which represents the classical RSS.
MRSS, ERSS, PRSS, and BGRSS are represented by "m" , "e", "p", and "bg", respectively.

Inference with RSSampling

Statistical inference refers to the process of drawing conclusions and having an information about
the interested population. Researchers are generally interested in fundamental inferences for the
parameters such as mean and variance. Using the RSSampling package, we provide an easy way to
estimate the parameters about the interested population and to use some distribution-free tests; namely
the sign, Mann-Whitney-Wilcoxon, and Wilcoxon signed-rank tests for nonparametric inference when
the sampling procedure is RSS.

The meanRSS function provides point estimation, confidence interval estimation, and asymptotic
hypothesis testing for the population mean based on RSS see, (Chen et al., 2003). For the variance
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Function Description

meanRSS Performs mean estimation and hypothesis testing with classical RSS method
varRSS Performs variance estimation with classical RSS method
regRSS Performs regression estimation for mean of interested population

with classical RSS method
sign1testrss Performs one sample sign test with classical RSS method
mwwutestrss Performs Mann-Whitney-Wilcoxon test with classical RSS method
wsrtestrss Performs Wilcoxon signed-rank test with classical RSS method

Table 2: The functions for inference in RSSampling package

estimation based on RSS, we define varRSS function which has two type parameters; "Stokes" and
"Montip". Stokes (1980b) proved that estimator of variance is asymptotically unbiased regardless
of presence of ranking error. For the "Montip" type estimation, Tiensuwan and Sarikavanij (2003)
showed that there is no unbiased estimator of variance for one cycle but they proposed unbiased
estimator of variance for more than one cycle. With regRSS function, regression estimator for mean
of interested population can be obtained based on RSS. The β coefficient ("B" in regRSS function) is
calculated under the assumption of known population mean for concomitant Y. Note that, the ranked
set samples for interested variable X and for concomitant variable Y must be the same length. One
can find the detailed information about regression estimator based on RSS in Yu and Lam (1997).

Finally, for nonparametric inference, sign1testrss, mwwutestrss, and wsrtestrss functions im-
plement, respectively, the sign test, the Mann-Whitney-Wilcoxon test, and the Wilcoxon signed-rank
test depending on RSS. The normal approximation is used to construct the test statistics and an
approximate confidence intervals. For detailed information on these test methods, see the book of
Chen et al. (2003).

Examples

In this section, we present examples illustrating the RSSampling package.

Sampling with TBRSS using a concomitant variable

This example shows the process to obtain a sample by using TBRSS method for the variable of interest,
X, ranked by using the concomitant variable Y assuming that they are distributed as multivariate
normal. We determined the set size m is 4 and the cycle size r is 2. The ranked sets of Y and the sets of
X are obtained using the function con.Rrss. Thus, the resultant sample for X is given as below.

##Loading packages
library("RSSampling")
library("LearnBayes")

## Imperfect ranking example for interested (X) and concomitant (Y) variables
## from multivariate normal dist.
set.seed(1)
mu <- c(10, 8)
variance <- c(5, 3)
a <- matrix(c(1, 0.9, 0.9, 1), 2, 2)
v <- diag(variance)
Sigma <- v%*%a%*%v
x <- rmnorm(10000, mu, Sigma)
xx <- as.numeric(x[,1])
xy <- as.numeric(x[,2])

## Selecting a truncation-based ranked set sample
con.Rrss(xx, xy, m = 4, r = 2, type = "tb", sets = TRUE, concomitant = FALSE,

alpha = 0.25)

$corr.coef
[1] 0.9040095

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 8

$var.of.interest
[,1] [,2] [,3] [,4]

[1,] 12.332134 13.116611 15.675967 21.72312
[2,] 11.350275 8.846237 10.164005 17.07950
[3,] 4.143757 9.608573 8.708221 11.57671
[4,] 2.284106 9.535388 12.709489 14.11595
[5,] 3.212739 8.089833 11.430411 14.53190
[6,] 6.556222 12.759335 13.210037 11.02219
[7,] 3.337564 -0.864634 12.800243 13.47315
[8,] 5.988893 8.850680 13.208956 15.82731

$concomitant.var.
[,1] [,2] [,3] [,4]

[1,] 8.034720 10.398398 11.800919 13.754743
[2,] 8.003575 8.118947 11.136804 12.149531
[3,] 4.733177 7.377396 8.866563 11.658837
[4,] 4.027061 8.008146 9.977435 10.912382
[5,] 3.909958 6.220087 7.564130 8.739562
[6,] 5.893001 8.760754 10.067927 10.244593
[7,] 2.119661 2.813413 10.651769 10.775596
[8,] 5.406154 7.722866 8.602551 10.874853

$sample.x
m = 1 m = 2 m = 3 m = 4

r = 1 12.332134 8.846237 8.708221 14.11595
r = 2 3.212739 12.759335 12.800243 15.82731

Obtaining observation number in MRSS method

Random determination of the sample units is an important task for practitioners. The function
obsno.Mrss is for the practitioners who have the frame of the population with unknown variable X
and known concomitant variable Y. In the following example, the observation numbers for median
ranked set sample units are obtained in order to take the measurement of the interested variable X.

## Loading packages
library("RSSampling")

## Generating concomitant variable (Y) from exponential dist.
set.seed(5)
y = rexp(10000)

## Determining the observation numbers of the units which are chosen to sample
obsno.Mrss(y, m = 3, r = 5, type = "m")

m = 1 m = 2 m = 3
r = 1 "Obs. 2452" "Obs. 6417" "Obs. 3227"
r = 2 "Obs. 9094" "Obs. 1805" "Obs. 9877"
r = 3 "Obs. 1333" "Obs. 9252" "Obs. 3219"
r = 4 "Obs. 6397" "Obs. 7038" "Obs. 5019"
r = 5 "Obs. 446" "Obs. 9663" "Obs. 10"

A simulation study based on RSS using a concomitant variable

In order to illustrate the usage of the package, we give a simulation study with 10,000 repetitions for
mean estimation of X based on RSS method using a concomitant variable. It demonstrates the effect
of the correlation level between X and Y on the mean squared error (MSE) of estimation. Samples
are obtained when m = 5 and r = 10 assuming that X and Y are distributed as multivariate normal.
Figure 2 as an output of the simulation study indicates that when the correlation level is increasing,
MSE values are decreasing.

## Loading packages
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library("RSSampling")
library("LearnBayes")

## Imperfect ranking example for interested (X) and concomitant (Y) variables
## from multivariate normal dist.
mu <- c(10, 8)
variance <- c(5, 3)
rho = seq(0, 0.9, 0.1)
se.x = mse.x = numeric()
repeatsize = 10000
for (i in 1:length(rho)) {

set.seed(1)
a <- matrix(c(1, rho[i], rho[i], 1), 2, 2)
v <- diag(variance)
Sigma <- v%*%a%*%v
x <- rmnorm(10000, mu, Sigma)
xx <- as.numeric(x[,1])
xy <- as.numeric(x[,2])
for (j in 1:repeatsize) {

set.seed(j)
samplex = con.Mrss(xx, xy, m = 5, r = 10, type = "r", sets = FALSE,

concomitant = FALSE)$sample.x
se.x[j] = (mean(samplex)-mu[1])^2

}
mse.x[i] = sum(se.x)/repeatsize

}
plot(rho[-1], mse.x[-1], type = "o", lwd = 2,

main = "MSE values based on increasing correlation levels",
xlab = "corr.coef.", ylab = "MSE", cex = 1.5, xaxt = "n")

axis(1, at = seq(0.1, 0.9, by = 0.1))

Figure 2: MSE values based on increasing correlation levels

A real data example

In this real data example, we used the abolone data set which is freely available at https://archive.
ics.uci.edu/ml/machine-learning-databases/abalone/abalone.data. The data consists of 9 vari-
ables of 4177 units and the variables are; sex (Male/Female/Infant), length (mm), diameter (mm),
height (mm), whole weight (grams), shucked weight (grams), viscera weight (grams), shell weight
(grams), and rings (+1.5 gives the age of abalone in years), respectively. The data comes from an
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original study of the population biology of abalone by Nash et al. (1994). Also, Cetintav et al. (2016)
and Sevinç et al. (2018) used the abalone data set for application of the fuzzy based modification of
RSS and partial groups RSS methods, respectively. The data set can be obtained easily by using the
following R command.

abaloneData <- read.csv(url("https://archive.ics.uci.edu/ml/machine-learning-databases
/abalone/abalone.data"), header = FALSE, col.names = c("sex", "length",
"diameter", "height", "whole.weight", "shucked.weight", "viscera.weight",
"shell.weight", "rings"))

Suppose that we aimed to estimate the mean of viscera weight and confidence interval and also
test the hypothesis claiming that the mean of the viscera weight is equal to 0.18. The measurement of
viscera weight which is the gut weight of abalone after bleeding is an expensive and time-consuming
process. Because the measurement of whole weight is easy and highly correlated with viscera weight
(the correlation coefficient is 0.966), we used whole weight as the concomitant variable to obtain a
sample of size 25 in RSS method. We have the following results for viscera weight.

cor(abaloneData$viscera.weight, abaloneData$whole.weight)
[1] 0.9663751

set.seed(50)
sampleRSS = con.rss(abaloneData$viscera.weight, abaloneData$whole.weight, m = 5, r = 5,

sets = TRUE, concomitant = FALSE)$sample.x

meanRSS(sampleRSS, m = 5, r = 5, alpha = 0.05, alternative = "two.sided", mu_0 = 0.18)
$mean
[1] 0.17826

$CI
[1] 0.1293705 0.2271495

$z.test
[1] -0.06975604

$p.value
[1] 0.9443878

varRSS(sampleRSS, m = 5, r = 5, type = "Stokes")
[1] 0.0135364

The results from our sample data indicate that the estimated mean and the variance are 0.17826 and
0.01354, respectively. According to the hypothesis testing result, we conclude that there is no strong
evidence against the null hypothesis (p.value> 0.05).

Conclusion

RSS is an efficient data collection method compared to SRS especially in situations where the measure-
ment of a unit is expensive but the ranking is less costly. In this study, we propose a package which
obtains sample from RSS and its modifications and provide functions to allow some inferential proce-
dures by RSS. We create a set of functions for sampling under both perfect and imperfect rankings with
a concomitant variable. For the inferential procedures, we consider mean, variance, and regression
estimator and sign, Mann-Whitney-Wilcoxon, and Wilcoxon signed-rank tests for the distribution free
tests. Proposed functions in the package are illustrated with the examples and analysis of a real data is
given. Future improvements of the package may be provided by adding new inference procedures
based on RSS methods.
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