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Fixed Point Acceleration in R
by Stuart Baumann, Margaryta Klymak

Abstract A fixed point problem is one where we seek a vector, X, for a function, f, such that f(X) = X.
The solution of many such problems can be accelerated by using a fixed point acceleration algorithm.
With the release of the FixedPoint package there is now a number of algorithms available in R that can
be used for accelerating the finding of a fixed point of a function. These algorithms include Newton
acceleration, Aitken acceleration and Anderson acceleration as well as epsilon extrapolation methods
and minimal polynomial methods. This paper demonstrates the use of fixed point accelerators in
solving numerical mathematics problems using the algorithms of the FixedPoint package as well as
the squarem method of the SQUAREM package.

Introduction

R has had a number of packages providing optimisation algorithms for many years. These include
traditional optimisers through the optim function, genetic algorithms through the rgenoud package
(Mebane, Jr. and Sekhon, 2011) and response surface global optimisers through packages like DiceK-
riging (Roustant et al., 2012). It also has several rootfinders like the uniroot method and the methods
of the BB package (Varadhan and Gilbert, 2009).

Fixed point accelerators are conceptually similar to both optimisation and root finding algorithms
but thus far implementations of fixed point finders have been rare in R. Prior to FixedPoint’s (Baumann
and Klymak, 2018) release the squarem method of the SQUAREM package1 (Varadhan, 2010) was the
only effective fixed point acceleration algorithm available in R.” In some part this is likely because
there is often an obvious method to find a fixed point by merely feeding a guessed fixed point into a
function, taking the result and feeding it back into the function. By doing this repeatedly a fixed point
is often found. This method (that we will call the "Simple" method) is often convergent but it is also
often slow which can be prohibitive when the function itself is expensive.

This paper shows how the finding of a fixed point of a function can be accelerated using fixed point
accelerators in R. The next section starts by with a brief explanation of fixed points before a number
of fixed point acceleration algorithms are discussed. The algorithms examined include the Newton,
Aitken and Scalar Epsilon Algorithm (SEA) methods that are designed for accelerating the convergence
of scalar sequences. Five algorithms for accelerating vector sequences are also discussed including the
Vector Epsilon Algorithm (VEA), Anderson acceleration and three minimal polynomial algorithms
(MPE, RRE and the squarem method provided in the SQUAREM package). The FixedPoint package
is then introduced with applications of how it can be used to find fixed points. In total five problems
are described which show how fixed point accelerators can be used in solving problems in asset
pricing, machine learning and economics. Here the intent is not only to showcase the capabilities
of FixedPoint and SQUAREM but also to demonstrate how various problems may be able to be
recast in an iterate way in order to be able to exploit fixed point accelerators. Finally this paper uses
the presented numerical problems to perform a speed of convergence test on all of the algorithms
presented in this paper.

Fixed point acceleration

Fixed point problems

A fixed point problem is one where we look for a vector, X € RV, so that for a given real valued
function f : RV — RN we have:

fX) =X )

If f : R — R! and thus any solution X will be a scalar then one way to solve this problem would
be to use a rootfinder on the function g(x) = f(x) — x or to use an optimiser to minimise a function
like h(x) = (f(x) — x)?. These techniques will not generally work however if f : RN — RN
where N is large. Consider for instance using a multidimensional Newtonian optimiser to minimise
h(x) = YN, (fi(x) — x;)? where f;(x) is the i’th element output by f(x). The estimation of gradients
for each individual dimension may take an unfeasibly long time. In addition this method may not
make use all of the available information. Consider for instance that we know that the solution for

1The squarem method has also been implemented in the turboEM package (Bobb and Varadhan, 2014).
2The Anderson method has since been implemented in the daarem package (Henderson and Varadhan, 2018).
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x will be an increasing vector (so x; > x; for any entries of x with i > j) with many elements. This
information can be preserved and used in the fixed point acceleration algorithms that we present but
would be more difficult to exploit in a standard optimisation algorithm.

Much of the intuition behind the use of optimisers and rootfinders carries over to the use of fixed
point acceleration algorithms. Like a function may have multiple roots and multiple local optima, a
function may have multiple fixed points. The extreme case of this is the identity mapping f(x) = x for
which every x is a fixed point. Some functions have no roots or optima and likewise some functions
do not possess fixed points. This is the case for the function f(x) = _Tl From a practical standpoint, it
is often useful to have access to multiple optimisers and rootfinders as different algorithms are better
suited to different types of functions. This is also the case for finding fixed points and the FixedPoint

package is useful in this regard, offering eight fixed point algorithms.

The first algorithm implemented in FixedPoint is the “simple” method which merely takes the
output of a function and feeds it back into the function. For instance starting with a guess of x,
the next guess will be x; = f(xg). The guess after that will be x = f(x7) and so on. Under some
conditions f will be a contraction mapping and so the simple method will be guaranteed to converge
to a unique fixed point (Stokey et al., 1989). Even when this is the case however the simple method
may only converge slowly which can be inconvenient. The other seven methods implemented in
FixedPoint and the squarem method of SQUAREM are designed to be faster than the simple method
but may not be convergent for every problem.

Fixed point acceleration algorithms
Newton acceleration
Here we will define g(x) = f(x) — x. The general approach is to solve g(x) with a rootfinder. The x

that provides this root will be a fixed point. Thus after two iterates we can approximate the fixed point
with:

Next guess = x; — 8(x:) (2)

FixedPoint approximates the derivative ¢’(x;) such that we use to get an estimated fixed point of:

g(x;)
22l ®)

Xi—Xj-1

Next guess = x; —

The implementation of the Newton method in FixedPoint uses this formula to predict the fixed
point given two previous function iterates. This method is designed for use with scalar functions. If it is
used with higher dimensional functions that take and return vectors then it will be used elementwise.
Aitken acceleration
Consider that a sequence of scalars {x;}$, that converges linearly to its fixed point of £. This implies

that for a some i:

F—xip1  X—xipo

)

Fox R

For a concrete example consider that every iteration halves the distance between the current value of
x; and the fixed point. In this case the left hand side will be one half which will equal the right hand
side which will also be one half. Equation 4 can be simply rearranged to give a formula predicting the
fixed point that is used as the subsequent iterate. This is:

2
Xig1 — X;
Next guess = x; — (i =)™ 5)
Xiy2 = 2Xip1 + X
The implementation of the Aitken method in FixedPoint uses this formula to predict the fixed
point given two previous iterates. This method is designed for use with scalar functions. If it is used
with higher dimensional functions that take and return vectors then it will be used elementwise.
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Figure 1: The Epsilon Algorithm applied to the cos(x) function

Epsilon algorithms

The epsilon algorithms introduced by Wynn (1962) provides an alternate method to extrapolate to a
fixed point. This paper will present a brief numerical example and refer readers to Wynn (1962) or
Smith et al. (1987) for a mathematical explanation of why it works. The basic epsilon algorithm starts
with a column of simple function iterates. If i iterates have been performed then this column will have
a length of i + 1 (the initial starting guess and the results of the i iterations). Then a series of columns
are generated by means of the below equation:

1 1 -1
€hg =€+ (el —ep) (6)

Where c is a column index and r is a row index. The algorithm starts with the €y column being all
zeros and €1 being the column of the sequence iterates. The value in the furthest right column ends up
being the extrapolated value.

This can be seen in the figure 1 which uses an epsilon method to find the fixed point of cos(x)
with an initial guess of a fixed point of 1. In this figure B1 is the initial guess of the fixed point.
Then we have the iterates B2 = cos(B1), B3 = cos(B2) and so on. Moving to the next column
we have C1 = A2+ 1/(B2— B1) and C2 = A3+ 1/(B3 — B2) and so on before finally we get
F1 = D2+1/(E2 — E1). As this is the last entry in the triangle it is also the extrapolated value.

Note that the values in columns C and E are poor extrapolations. Only the even columns D,F
provide reasonable extrapolation values. For this reason an even number of iterates (an odd number
of values including the starting guess) should be used for extrapolation. FixedPoint will enforce this
by throwing away the first iterate provided if necessary to get an even number of iterates.

In the vector case this algorithm can be visualised by considering each entry in the above table to
contain a vector going into the page. In this case the complication emerges from the inverse term in
equation 6: there is no clear interpretation of (e/*! — €/)~! when (e/*! — €/) represents a vector. The
Scalar Epsilon Algorithm (SEA) uses elementwise inverses to solve this problem which ignores the
vectorised nature of the function. The Vector Epsilon Algorithm (VEA) uses the Samuelson inverse of
each vector (€71 — €!) as described in Smith et al. (1987).

Minimal polynomial algorithms

FixedPoint implements two minimal polynomial algorithms, Minimal Polynomial Extrapolation
(MPE) and Reduced Rank Extrapolation (RRE). The key intuition for these methods is that a linear
combination of previous iterates is taken to generate a new guess vector. The coefficients of the
previous iterates are taken so that this new guess vector is expected to not be changed much by the
function.’

To first define notation, each vector (the initial guess and subsequent iterates) is defined by x, x1, ...
. The first differences are denoted u#; = x;,1 — x; and the second differences are denoted v; = u;,1 — u;.
If we have already completed k — 1 iterations (and so we have k terms) then we will use matrices of
first and second differences with U = [ug, 1, ..., ux_1] and V = [vg, v1, ..., Up_1].

3For more details an interested reader is directed to Cabay and Jackson (1976) or Smith et al. (1987) for a detailed
explanation.
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For the MPE method the extrapolated vector, is found by:

k
Yo Cix;
Next guess = ]kijj (7)
j=0 i
Where the coefficient vector is found by ¢ = —U"u; where U™ is the Moore-Penrose generalised

inverse of the U matrix. In the case of the RRE method the extrapolated vector, is found by:
Next guess = xg — UV " ug (8)

The only effective fixed point accelerator that was available in R prior to the release of the
FixedPoint package was the squarem method provided in the SQUAREM packages. This method
modifies the minimal polynomial algorithms with higher order terms and can thus be considered as a
variant of the MPE algorithms. The squarem method is primarily intended to accelerate convergence in
the solution of expectation maximisation problems but can be used more generally with any function
that is a contraction mapping (Varadhan and Roland, 2008).

Anderson acceleration

Anderson (1965) acceleration is an acceleration algorithm that is well suited to functions of vectors.
Similarly to the minimal polynomial algorithms it takes a weighted average of previous iterates.
It is different however to all previous algorithms in that the previous iterates used to generate a
guess vector need not be sequential but any previous iterates can be used. Thus it is well suited to
parallelising the finding of a fixed point.*

Consider that we have previously run an N-dimensional function M times. We can define a matrix
Gi = [8i-M,§i—M+1, - & where g(x;) = f(xj) — x;. Each column of this matrix can be interpreted as
giving the amount of “movement” that occurred in a run of the function.

In Anderson acceleration we assign a weight to apply to each column of the matrix. This weight
vector is M-dimensional and can be denoted & = {ag, a1, ...,ps}. These weights are determined by
means of the following optimisation:

min ||Gjal[2 ©)
M

s.t. Z aj = 1
j=0

Thus we choose the weights that will be predicted to create the lowest “movement” in an iteration.
With these weights we can then create the expression for the next iterate as:
M

Next guess = Z ajf (Xi—mj) (10)
j=0

Robustness of fixed point algorithms

Functions with restricted input spaces

Some functions have a restricted input space. Acceleration schemes can perform badly in these settings
by proposing vectors that sit outside of the required input space. As an example consider the following
R2 — R? function, that we try to find the fixed point for with the Anderson method:

v/Input[1] + Input 2] SInput(l] Iﬂplzltm D 11)

Output = < 5 , >

library(FixedPoint)
SimpleVectorFunction = function(x){c(@.5*sqrt(x[1]1 + x[21), abs(1.5*x[1] + 0.5*xx[2]1))}
FPSolution = FixedPoint(Function = SimpleVectorFunction, Inputs = c(0.3,900),

Method = "Anderson”)

4An example of this is shown in the appendix for the consumption smoothing problem described later in this
paper.
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Unfortunately an error will occur here. After four iterates the Anderson method decides to try the
vector (—1.085113, —3.255338). This results in the square root of a negative number and hence the
output is undefined.

In cases like this there are a few things a user can try. The first is to change the function to another
function that retains the same fixed points. In the above case we could change the function to take
the absolute value of the sum of the two inputs before taking the square root. Then after finding a
fixedpoint we can verify if the sum of the two entries is positive and hence it is also a solution to the
original function. Another measure that could be tried is to change the initial guess. Finally we could
change the acceleration method. The simple method will be robust in this case as the function will
never return an Output vector that sums to a negative number. It is still likely to be slow however.”
A special feature of the FixedPoint package is that it allows methods to be changed while retaining
previous iterates. So in this case we can run the preceding code until an error causes the acceleration
to stop, switch to the simple method for a few iterates and then switch back to the anderson method.
No error will result as we are close enough to the fixedpoint that each new guess sums to be positive:

FPSolution = FixedPoint(Function = SimpleVectorFunction, Inputs = FPSolution$Inputs,
Outputs = FPSolution$Outputs, Method = "Simple”, MaxIter = 5)

# Now we switch to the Anderson Method again. No error results because we are

# close to fixed point.

FPSolution = FixedPoint(Function = SimpleVectorFunction, Inputs = FPSolution$Inputs,
Outputs = FPSolution$Outputs, Method = "Anderson")

Another example of a restricted input space is shown in the consumption smoothing example
presented later in this paper. In this example the input vector must reproduce a monotonic and
concave function. All of the vectorised methods presented in this paper take a combination of previous
iterates all of which take and return vectors representing monotonic and concave functions. As a result
these methods will only propose vectors representing monotonic and concave functions. By contrast
the Newton, SEA and Aitken methods do not take into account the entire vector when proposing the
fixedpoint value for each element of the vector and as a result some of the input vectors proposed by
these methods may not be valid. Ensuring that a vectorised method is chosen is thus sufficient in this
case to ensure that each vector tried is within the input space of the function for which a fixedpoint is
sought.

Convergence by constant increments

Most fixed point acceleration algorithms will fail in finding the fixed point of a function that converges
by a fixed increment. For instance we may have a function that takes x and returns x shifted 1 unit
(in Euclidean norm) in a straight line towards its fixed point. A realistic example of this type of
convergence is the training of a perceptron classifier which is explored later in this paper.

This type of convergence is problematic for all algorithms presented except for the simple method.
The basic problem can be illustrated simply by looking at the Newton and Aitken methods. For the

Newton method consider the derivative in equation 3 which is approximated by %. When
there is convergence by constant increments then g(x;) = g(x;_1) and the derivative is zero which
means calculating the Newton method’s recommended new guess of the fixed point involves division
(xi1—x:)?
Xi+272x1+1 +xi "
When there is convergence by constant increments then x; — x;;,1 = x;31 — x;4» and so we have

Xivo —2x;01 +x; = (%, — x;11) — (xj11 — X;42) = 0. It is not possible to calculate the new guess.

by zero. Now considering the Aitken method of equation 5 the new guess is given by x; —

More generally, when there is convergence by constant increments then then the fixed point
method receives information about what direction to go in but no information about how far to go.
This is a complication that is common to all fixed point acceleration methods. In these cases it may be
possible to change the function to make it converge by varying increments while retaining the same set
of fixed points. An example of this is shown in the perceptron example presented later in this paper.
In other cases where it is not possible to modify the function, it is advisable to use the simple method.

5As the simple method is so often monotonic and convergent the FixedPoint package has a “dampening”
parameter which allows users to create guesses by linearly combining the guesses of their desired acceleration
method with the simple iterates. This allows users to combine the robustness advantages of the simple method
with the speed advantages of another method.
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Applications of fixed point acceleration with the FixedPoint package

Simple examples with analytical functions

For the simplest possible example we will use the FixedPoint package to accelerate the solution for a
square root. Consider we want to estimate a square root using the Babylonian method. To find the
square root of a number x, given an initial guess ty, the following sequence converges to the square
root:

1 X
tiy1 =5 {tn + a} (12)
This is a fast converging and inexpensive sequence which probably makes an acceleration algorithm
overkill but for sake of exposition we can implement this in FixedPoint. In the next code block we
find the square root of 100 with the SEA method and an initial guess of six:

library(FixedPoint)
SequenceFunction = function(tn){@.5%x(tn + 100/tn)}
FP = FixedPoint(Function = SequenceFunction, Inputs = 6, Method = "SEA")

The benefit of fixed point accelerators is more apparent when applied to vectorised functions. For
a simple example consider the below function where each element of the returned vector depends on
both elements of the input vector:

Vec_Function = function(x){c(@.5*sqrt(abs(x[1] + x[2])), 1.5%x[1] + @.5*x[2])}

FP_Simple = FixedPoint(Function = Vec_Function, Inputs = c(0.3,900),
Method = "Simple")
FP_Anderson = FixedPoint(Function = Vec_Function, Inputs = c(90.3,900),

Method = "Anderson”)

Here it takes 105 iterates to find a fixed point with the simple method but only 14 with the
Anderson acceleration method.

Gas diffusion

For a more complex example consider we want to model the diffusion of gas in a two dimensional
space. We set up a two dimensional grid split into ¢ divisions along the side so there are ¢? grid
squares in total. Pure nitrogen is being released at location (1,1) and pure oxygen is being released at
location (¢, ¢). We are interested in determining the steady state gas concentrations in each square of
the grid. We will model equilibrium as occurring when each square has a gas concentration equal to
the average of itself with its contiguous squares.

phi = 10
Numbering = matrix(seq(1,phi*2,1), phi) # Numbering scheme for squares

NeighbourSquares = function(n,phi){
SurroundingIndexes = c(n)

if (n %% phi != 1){SurroundingIndexes = c(SurroundingIndexes, n-1)} # above
if (n %% phi != @){SurroundingIndexes = c(SurroundingIndexes, n+1)} # below
if (n > phi){SurroundingIndexes = c(SurroundingIndexes, n-phi)} # right

if (n <= phi*2-phi){SurroundingIndexes = c(SurroundingIndexes, n+phi)} # left
return(SurroundingIndexes)

3

TwoDimensionalDiffusionIteration = function(x, phi){
xnew = X
for (i in 1:(phi*2)){
Subset = NeighbourSquares(i, phi)
xnew[i] = mean(x[Subset])
}
xnew[1] = @
xnew[phi*2] = 1
return(xnew)
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Figure 2: Equilibrium concentrations of Oxygen found by the fixedpoint function

FP = FixedPoint(Function

function(x) TwoDimensionalDiffusionIteration(x,phi),
Inputs =

c(rep(0,50), rep(1,50)), Method = "RRE")
The fixed point found here can then be used to plot the density of oxygen over the space. The code
for this is below while the plot can be found in figure 2.

x = 1:phi

y = 1:phi

oxygen_densities = matrix(FP$FixedPoint, phi)
persp(x, y, oxygen_densities)

Finding equilibrium prices in a pure exchange economy

Consider now we are modeling a pure exchange economy and want to determine the equilibrium
prices given household preferences and endowments. We have N households. Every household has
preferences over G types of good. Household n € N has a utility function of

G
u, = Z Tn,i 10g(Cn,i) (13)

i=1
Where 7,, ; is a parameter describing household #’s taste for good i, ¢, ; is household #’s consumption
of good i. Each household is endowed with an amount of each good. They can then trade goods before

consumption. We have data on each household’s endowment and preferences for each good and want
to determine the equilibrium prices for this pure exchange economy.

We will choose good 1 as the numeraire, so we will have P; = 1. First we will find an expression for
demand given a price vector. Setting up the lagrangian for household #:

G G
L, = Z Yn,i log(cn,i) + An [2 Pi(en,i - Cn,i)] (14)
i=1 i=1
Where A, is household n’s shadow price, e, ; is this household’s endowment of good 7 and P, is the
price of good i. Taking the first order condition with respect to c; of this lagrangian yields:

(15)

and taking the first order condition with respect to A, yields the budget constraint. Subbing the above
equation into the budget constraint and rearranging yields:

G .
A, = Zg:l Yn,i (16)
Z,‘:l pien,i
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We can also sum over households to find total demand for each good as:

1 < Yn,i
D= = / 17
i~ n; A (17)

We will find the equilibrium price vector by using an approximate price vector to estimate the As using
equation 16. We can then find an estimate of the equilibrium price P; which solves clears the market,

G .
Dj =Y, _qeni:

o,
p=2 e (18)
Zn:] en,i

We use this approach in the code below for the case of 10 goods with 8 households. For exposition
sake we generate some data below before proceeding to find the equilibrium price vector.

# Generating data
set.seed(3112)

N=28

G =10

Endowments = matrix(rlnorm(N*G), nrow = G)
Gamma = matrix(runif(N*G), nrow = G)

# Every column here represents a household and every row is a good.
# So Endowments[1,2] is the second household's endowment of good 1.

# We now start solving for equilibrium prices:

TotalEndowmentsPerGood = apply(Endowments, 1, sum)

TotalGammasPerHousehold = apply(Gamma, 2, sum)

LambdasGivenPriceVector = function(Price){
ValueOfEndowmentsPerHousehold = Price * Endowments
TotalValueOfEndowmentsPerHousehold = apply(ValueOfEndowmentsPerHousehold, 2, sum)
return(TotalGammasPerHousehold /TotalValueOfEndowmentsPerHousehold)

3

IterateOnce = function(Price){
Lambdas = LambdasGivenPriceVector(Price) # eqn 16
GammaOverLambdas = t(apply(Gamma, 1, function(x) x / Lambdas))
SumGammaOverLambdas = apply(GammaOverLambdas, 1, sum)

NewPrices = SumGammaOverlLambdas/ TotalEndowmentsPerGood # eqgn 18
NewPrices = NewPrices/NewPrices[1] # normalising with numeraire
return(NewPrices)

3

InitialGuess = rep(1,10)
FP = FixedPoint(Function = IterateOnce, Inputs = InitialGuess, Method = "VEA")

The fixed point contained in the FP object is the vector of equilibrium prices.

The training of a perceptron classifier

The perceptron is one of the oldest and simplest machine learning algorithms (Rosenblatt, 1958). In
its simplest form, for each observation it is applied it uses an N-dimensional vector of features x
together with N+1 weights w to classify the observation as being of type one or type zero. It classifies
observation j as a type one if wg + Z,Ii1 w;x;; > 0 and as a type zero otherwise.

The innovation of the perceptron was its method for training its weights, w. This is done by
looping over a set of observations that can be used for training (the “training set”) and for which the
true category information is available. The perceptron classifies each observation. When it classifies
an observation correctly no action is taken. On the other hand when the perceptron makes an error
then it updates its weights with the following expressions.

wp = wo + (dj — yj) (19)
wf =w; + (d] — ]/]')X]‘,,' fori >0 (20)

Where w; is the old weight for the i'th feature and w; is the updated weight. x;; is the feature
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value for observation j’s feature i, d; is the category label for observation j and y; is the perceptron’s
prediction for this observation’s category.

This training algorithm can be rewritten as fixed point problem. We can write a function that takes
perceptron weights, loops over the data updating these weights and then returns the updated weight
vector. If the perceptron classifies every observation correctly then the weights will not update and we
are at a fixed point.®

Most acceleration algorithms perform poorly in accelerating the convergence of this perceptron
training algorithm. This is due to the perceptron often converging by a fixed increment. This occurs
because multiple iterates can result in the same observations being misclassified and hence the same
change in the weights. As a result we will use the simple method which is guaranteed to be convergent
for this problem (Novikoff, 1963).

# Generating linearly separable data

set.seed(10)

data = data.frame(x1 = rnorm(100,4,2), x2 = rnorm(100,8,2), y = -1)

data = rbind(data,data.frame(x1 = rnorm(100,-4,2), x2 = rnorm(100,12), y = 1))

# Iterating training of Perceptron
IteratePerceptronWeights = function(w, LearningRate = 1){
intSeq = 1:length(datal,"y"1)
for (i in intSeq){
target = datali,c("y")]

score = w[1] + (w[2]xdatali, "x1"]) + (w[3]*xdatali, "x2"])
ypred = 2x(as.numeric( score > @ )-0.5)
update = LearningRate * @.5%(target-ypred)
wl1] = w[1] + update
wl2] = w[2] + updatexdatali, "x1"]
w31 = w[3] + updatexdatali, "x2"]
}
return(w)

3

InitialGuess = c(1,1,1)
FP = FixedPoint(Function = IteratePerceptronWeights, Inputs = InitialGuess,
Method = "Simple”, MaxIter = 1200)

The result of this algorithm can be seen in figure 3. It can be seen that the classification line perfectly
separates the two groups of observations.

Only the simple method is convergent here and it is relatively slow taking 1121 iterations. We can
still get a benefit from accelerators however if we can modify the training algorithm to give training
increments that change depending on distance from the fixed point. This can be done by updating the
weights by an amount proportional to a concave function of the norm of wg + Zilil w;x; ;. Note that
the instances in which the weights are not updated stay the same and hence the modified training
function will result in the same set of fixed points as the basic function. This is done in the next piece
of code where the MPE method is used. It can be seen that there is a substantial increase in speed with
only 54 iterations required by the MPE method.

IteratePerceptronWeights = function(w, LearningRate = 1){
intSeq = 1:length(datal,"y"1)
for (i in intSeq){
target = datali,c("y")]
score = w[1] + (w[2]xdatali, "x1"]) + (w[3]*datal[i, "x2"1])
ypred = 2x(as.numeric( score > @ )-0.5)
if ((target-ypred) != 0){
update = LearningRate * -sign(score) * sqrt(abs(score))
w[1] = w[1] + update
wl[2] = w[2] + updatexdatali, "x1"]
w[3] = w[3] + updatexdatali, "x2"]

®Note that when a perceptron has one fixed point then there are uncountably many such fixed points where the
perceptron correctly classifies the entire training set and will not further update. This is because a scalar multiple of
any set of weights will generate the same classification line and the new set of weights will also be a fixed point.
There may also be multiple linearly independent hyperplanes that correctly classify every observation. On the
other hand it is possible that the data is not linearly separable in which case there may be no fixed point and the
weights will continue to update forever.
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Figure 3: The perceptron linear classifier
3
}
return(w)

3
FP = FixedPoint(Function = IteratePerceptronWeights, Inputs = InitialGuess,

Method = "MPE")

Valuation of a perpetual American put option

For an application in finance consider the pricing of a perpetual American put option on a stock. It
never expires unless it is exercised. Its value goes to zero however if the spot price rises to become
« times as much as the strike price, denoted S.” We will denote x to be the current spot price, 0 is
the market volatility, d is the risk free rate. In each period the underlying price either increases by a
multiple of ¢’ (which happens with probability p) or decreases by a multiple of e~ (which happens
with probability 1 — p) in each unit of time. We have —0 < d < 0.

Given the risk neutral pricing principle the returns from holding the stock must equal the risk-free
rate. Hence we must have pe” + (1 — p)e™7 = e”. This implies that:

d -
e —e
P= o @
The price of this option at any given spot price of the stock can be solved by means of a fixed point
algorithm as shown below:®

d=0.05

sigma = 0.1

alpha 2

S =10

chi =0

p = (exp(d) - exp(-sigma) ) / (exp(sigma) - exp(-sigma))

7This is a common approximation when pricing American options with a finite difference method. While no
option’s price will ever become exactly zero, at a sufficiently high spot price the option will be low enough value
for this to be a good approximation.

8In this case the SQUAREM package is used with the squarem method. To use the MPE method through the
SQUAREM package we could add list(K = 2, method="mpe", square=FALSE) as the control argument to the
squarem function call. RRE can be implemented analogously.
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Figure 4: Price of Perpetual American put for each level of the spot price

# Initially we guess that the option value decreases linearly from S
# (when the spot price is @) to @ (when the spot price is \alpha S).
UnderlyingPrices = seq(@,alpha*S, length.out = 100)

OptionPrice = seq(S,chi, length.out = 100)

ValueOfExercise = function(spot){S-spot}
ValueOfHolding = function(spot, EstimatedValueOfOption){
if (spot > alpha*S-1e-10){return(chi)}
IncreasePrice = exp(sigma)*spot
DecreasePrice = exp(-sigma)*spot
return((p*EstimatedValueOfOption(IncreasePrice) +
(1-p)*EstimatedValueOfOption(DecreasePrice)))
}
ValueOfOption = function(spot, EstimatedValueOfOption){
Holding = ValueOfHolding(spot, EstimatedValueOfOption)*exp(-d)
Exercise = ValueOfExercise(spot)
return(max(Holding, Exercise))
}
IterateOnce = function(OptionPrice){
EstimatedValueOfOption = approxfun(UnderlyingPrices, OptionPrice, rule = 2)
for (i in 1:length(OptionPrice)){
OptionPrice[i] = ValueOfOption(UnderlyingPrices[i], EstimatedValueOfOption)
3
return(OptionPrice)

3

library(SQUAREM)
FP = squarem(par=OptionPrice, IterateOnce)

plot(UnderlyingPrices,FP$par, type = "1",
xlab = "Price of Underlying”, ylab = "Price of Option")

Here the fixed point gives the price of the option at any given level of the underlying asset’s spot
price. This can be visualized as seen in figure 4.

plot(UnderlyingPrices,FP$FixedPoint, type = "1",
xlab = "Price of Underlying”, ylab = "Price of Option")

A consumption smoothing problem

A common feature of macroeconomic models is the simulation of consumer spending patterns over
time. These computations are not trivial, in order for a consumer to make a rational spending decision
they need to know their future wellbeing as a function of their future wealth. Often models exhibit
infinitely lived consumers without persistent shocks and in this setting the relationship between
wealth and wellbeing can be found with a fixed point algorithm. Consider an infinitely lived consumer
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that has a budget of B; at time t and a periodic income of 1. She has a periodic utility function given
by e:x¢, where x; is spending in period f and e is the shock in period t drawn from some stationary
nonnegative shock process with pdf f(e) defined on the interval [y, z]. The problem for the consumer
in period ¢ is to maximise her value function:

Z
V(Bler) = max ex)+p /y V(By1le)f(e)de 22)
t t

Where f is a discounting factor and B;11 = 1+ By — x;.

Our goal is to find a function that gives the optimal spending amount, £(B, €;), in period t which
is a function of the shock magnitude €; and the available budget B; in this period. If we knew the
function f; V(Biy1]€) f (€)de then we could do this by remembering B;1 = 1 + By — x; and using the
optimisation:

'z
#(Br,er) = argmaxy_, . €0 + B /y V(Brsle)f(€)de (23)

So now we need to find the function || yz V(Biy1l€)f (€)de. Note as the shock process is stationary, the

consumer lives forever and income is always 1, this function will not vary with t. As a result we will
rewrite it as simply f(b), where b is the next period’s budget.

Now we will construct a vector containing a grid of budget values, b, for instance b = [0,0.01,0.02, ..., 5]
(we will use bars to describe approximations gained from this grid). If we could then approximate a vec-
tor of the corresponding function values, f, so we had for instance f = [f(0), f(0.01), £(0.02), ..., f(5)]
then we could approximate the function by constructing a spline f(b) between these points. Then we
can get the function:

X(Bt, €r) = argmaxg_,_p, erx! + f(By — x) (24)

So this problem reduces to finding the vector of function values at a discrete number of points, f. This
can be done as a fixed point problem. We can first note that this problem is a contraction mapping
problem. In this particular example this means that if we define a sequence fy = fy where f; is some
initial guess and f;,1 = g(f;) where g is given by the IterateOnce function below then this sequence
will be convergent.” Convergence would be slow however so below we will actually use the Anderson
method:

library(FixedPoint)

library(schumaker)

library(cubature)

delta = 0.2

beta = 0.99

BudgetStateSpace = c(seq(@,1, 0.015), seq(1.05,3,0.05))
InitialGuess = sqrt(BudgetStateSpace)

ValueGivenShock = function(Budget, epsilon, NextValueFunction){
optimize(f = function(x) epsilon*(x*delta) + beta*NextValueFunction(Budget - x + 1),
lower = @, upper = Budget, maximum = TRUE)
}

ExpectedUtility = function(Budget, NextValueFunction){
if (Budget > 0.001){
adaptIntegrate(f = function(epsilon) ValueGivenShock(Budget,
epsilon,NextValueFunction)$objective * dlnorm(epsilon),
lowerLimit = glnorm(@.0001), upperLimit = glnorm(@.9999))$integral
} else {
betaxNextValueFunction(1)
}

9We use two additional packages in solving this problem. The first is the cubature package (Narasimhan and
Johnson, 2017) which is used for the integral in equation 23. The second is the schumaker package (Baumann and
Klymak, 2017) which generates a spline representing f(B; — x) in equation 24. It is necessary for this spline to be
shape preserving to ensure there is a unique local maxima to be found for the optimiser used in evaluating this
expression.
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}

IterateOnce = function(BudgetValues){
NextValueFunction = schumaker: :Schumaker (BudgetStateSpace, BudgetValues,
Extrapolation = "Linear”)$Spline
for (i in 1:length(BudgetStateSpace)){ # This is often a good loop to parallelise
BudgetValues[i] = ExpectedUtility(BudgetStateSpace[i], NextValueFunction)
}
return(BudgetValues)
}
FP = FixedPoint(Function = IterateOnce, Inputs = InitialGuess,
Method = "Anderson”)

This takes 71 iterates which is drastically better than the 2316 iterates it takes with the simple
method. Now the optimal spending amount can be found for any given budget and any income shock.
For instance with the following code we can work out what a consumer with a budget of 1.5 and a
shock of 1.2 would spend:

NextValueFunction = Schumaker (BudgetStateSpace, FP$FixedPoint)$Spline
ValueGivenShock (1.5, 1.2, NextValueFunction)$maximum

Using parallelisation with the Anderson method

It takes 71 iterates for the Anderson method to find the fixed point, however we might want to get
it going even faster though parallelisation. The easiest way to do this for this particular problem
is to parallelise the for loop through the budgetspace. For exposition however we show how to do
this by doing multiple iterates at the same time. We will do this by using six cores and using the
parallel capabilities of the foreach and doParallel packages (Revolution Analytics and Weston, 2015;
Microsoft Corporation and Weston, 2017). Each node will produce an different guess vector through
the Anderson method. This will be done by giving each node a different subset of the previous iterates
that have been completed. The first node will have all previous iterate information. For i > 1, the ith
node will have all previous iterates except for the ith most recent iterate. The code for this approach is
presented in the appendix.

This parallel method takes 102 iterates when using six cores which takes approximately the same
time as running 6 + %6 = 22 iterates sequentially. This is a significant speedup and is possible with the
Anderson method as previous iterates do not need to be sequential. The simple parallel algorithm
here may also be able to be modified for better performance, for instance different methods could be
used in each core or the dampening parameter could be modified.

Speed of convergence comparison

All of the algorithms of the FixedPoint package as well as the squarem algorithm of the SQUAREM
package were run for a variety of problems. In addition to all of the above problems fixed points were
found for some basic analytical functions such as cos(x), x3 and the linear case of 95(18 — x).'” The
results are shown in table 1.

It can be seen that the Anderson algorithm performed well in almost all cases. The minimal
polynomial methods tended to outperform the epsilon extrapolation methods. This is largely in
agreement with previous benchmarking performed in Jbilou and Sadok (2000). The MPE tended to
generally outperform the RRE and the VEA outperformed the SEA in all cases. The squarem method
tended to be outperformed by the standard minimal polynomial methods. While it was generally
amongst the slowest methods, the simple method was the most generally applicable, converging in all
but one of the test cases studied.

Conclusion

R has had available a multitude of algorithms for rootfinding and multidimensional optimisation for a
long time. Until recently however the range of fixed point accelerators available in R has been limited.

0The starting guesses, convergence criteria, etc can also be found in the test files for FixedPoint which are
included with the package’s source files. The squarem method provided in the SQUAREM package checks for
convergence in a different way to the FixedPoint package. To overcome this the convergence target was adjusted
for this package so that in general the squarem achieves slightly less convergence than the FixedPoint methods in
the convergence tests in this table which results in any bias being slightly in favor of the squarem method.
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Case | Dimensions | Function

1 1 Babylonian Square Root

2 1 cos(x)

3 6 x1/3

4 6 95(18 — x)

5 2 Simple Vector Function

6 100 Gas Diffusion

7 3 Perceptron

8 3 Modified Perceptron

9 10 Equilibrium Prices

10 100 Perpetual American Put

11 107 Consumption Smoothing
Case| Simple Anderson Aitken Newton VEA SEA MPE RRE squarem
1 6 7 7 7 6 6 6 6 6
2 58 7 11 9 13 13 19 25 55
3 22 12 9 9 13 13 9 10 12
4 * 5 3 3 25 * 19 7 *
5 105 14 67 239 20 25 31 31 44
6 221 26 323 * 150 221 44 50 159
7 1 121 * * * * * * * *
8 1156 * * 20 75 158 54 129 638
9 11 9 14 24 11 11 11 12 11
10 | 103 37 203 * 108 103 43 52 103
11 | 2316 71 * * * * 217 159 285

Table 1: The performance of each algorithm for test cases. An asterix indicates the algorithm did not
converge.

Before the release of FixedPoint, only the squarem method of the SQUAREM package was available
as a general use fixed point accelerator.

This paper examines the use of fixed point accelerators in R. The algorithms of the FixedPoint
and SQUAREM packages are used to demonstrate the use of fixed point acceleration algorithms in
the solution of numerical mathematics problems. A number of applications were shown. First the
package was used to accelerate the finding of an equilibrium distribution of gas in a diffusion setting.
The package was then used to accelerate the training of a perceptron classifier. The acceleration of
this training was complicated by the training function converging in fixed increments however it was
possible to speed up the solution using a fixed point accelerator by changing the training algorithm
while retaining the same set of fixed points. A number of problems in economics were then examined.
First the equilibrium price vector was found for a pure exchange economy. Next a vector was found
that gives the price of a perpetual American put option at various values of the underlying asset’s
spot price. Finally the future value function was found for an infinitely lived consumer facing a
consumption smoothing problem.

In all of these example applications it can be noted that the solving for a fixed point was accelerated
significantly by the use of a fixed point acceleration algorithm. In many cases an accelerator was
available that was more than an order of magnitude faster than the simple method. The results indicate
that large speedups are available to R programmers that are able to apply fixed point acceleration
algorithms to their numerical problem of interest.
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Appendix: An algorithm for finding a fixed point while using parallelisation

library(foreach)
library(doParallel)
cores = 6

NodeTaskAssigner = function(Inputs, Outputs, i, Function){
library(FixedPoint)
library(schumaker)
library(cubature)
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Iterates = dim(Inputs)[2]

if (i > 1.5) {IterateToDrop = Iterates-i+1} else {IterateToDrop = 0}

IteratesToUse = (1:Iterates)[ 1:Iterates != IterateToDrop]

Inputs = matrix(Inputs[,IteratesToUse], ncol = length(IteratesToUse), byrow = FALSE)
Outputs = matrix(Outputs[,IteratesToUse], ncol = length(IteratesToUse), byrow = FALSE)
Guess = FixedPointNewInput(Inputs = Inputs, Outputs = Outputs, Method = "Anderson"”)
Outputs = matrix(Function(Guess), ncol = 1, byrow = FALSE)

Inputs = matrix(Guess, ncol = 1, byrow = FALSE)

return(list(Inputs = Inputs, Outputs = Outputs))
}

# This combines the results returned by each node

CombineLists = function(List1, List2){
width = dim(List1$Inputs)[2] + dim(List2$Inputs)[2]
C = list()
C$Inputs = matrix(c(List1$Inputs , List2$Inputs ), ncol = width, byrow = FALSE)
C$0utputs = matrix(c(List1$Outputs, List2$0utputs), ncol = width, byrow = FALSE)
return(C)

}

# ReSortIterations
# This function takes the previous inputs and outputs from the function, removes
# duplicates and then sorts them in order of increasing convergence.
ReSortIterations = function(PreviousIterates,
ConvergenceMetric = function(Resids){max(abs(Resids))})

{
# Removing any duplicates
NotDuplicated = (!(duplicated.matrix(PreviousIterates$Inputs, MARGIN = 2)))
PreviousIterates$Inputs = PreviousIterates$Inputs[,NotDuplicated]
PreviousIterates$Outputs = PreviousIterates$Outputs[,NotDuplicated]
# Resorting
Resid = PreviousIterates$Outputs - PreviousIterates$Inputs
Convergence = ConvergenceVector = sapply(1:(dim(Resid)[2]), function(x)

ConvergenceMetric(Resid[,x1) )

Reordering = order(Convergence, decreasing = TRUE)
PreviousIterates$Inputs = PreviousIterates$Inputs[,Reordering]
PreviousIterates$Outputs = PreviousIterates$Outputs[,Reordering]
return(PreviousIterates)

}

ConvergenceMetric = function(Resid){max(abs(Resid))}

# Preparing for clustering and getting a few runs to input to later functions:
PreviousRuns = FixedPoint(Function = IterateOnce, Inputs = InitialGuess,

Method = "Anderson”, MaxIter = cores)
PreviousRuns$Residuals = PreviousRuns$Outputs - PreviousRuns$Inputs
PreviousRuns$Convergence = apply(PreviousRuns$Residuals, 2, ConvergenceMetric)
ConvergenceVal = min(PreviousRuns$Convergence)

registerDoParallel (cores=cores)

iter = cores
while (iter < 100 & ConvergenceVal > 1e-10){
NewRuns = foreach(i = 1:cores, .combine=CombinelLists) %dopar% {
NodeTaskAssigner (PreviousRuns$Inputs, PreviousRuns$Outputs, i, IterateOnce)
}
# Appending to previous runs
PreviousRuns$Inputs = matrix(c(PreviousRuns$Inputs, NewRuns$Inputs),
ncol = dim(PreviousRuns$Inputs)[2] + cores, byrow = FALSE)
PreviousRuns$Outputs = matrix(c(PreviousRuns$Outputs, NewRuns$Outputs),
ncol = dim(PreviousRuns$Outputs)[2] + cores, byrow = FALSE)
PreviousRuns = ReSortIterations(PreviousRuns)
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PreviousRuns$Residuals = PreviousRuns$Outputs - PreviousRuns$Inputs

PreviousRuns$Convergence = apply(PreviousRuns$Residuals, 2, ConvergenceMetric)

# Finding Convergence
ConvergenceVal = min(PreviousRuns$Convergence)
iter = iter + cores

3

stopImplicitCluster()
# And the fixed point comes out to be:
PreviousRuns$Outputs[, dim(PreviousRuns$Outputs)[2]]
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