
CONTRIBUTED RESEARCH ARTICLE 1

swgee: An R Package for Analyzing
Longitudinal Data with Response
Missingness and Covariate Measurement
Error
by Juan Xiong and Grace Y. Yi

Abstract Though longitudinal data often contain missing responses and error-prone covariates,
relatively little work has been available to simultaneously correct for the effects of response missingness
and covariate measurement error on analysis of longitudinal data. Yi (2008) proposed a simulation
based marginal method to adjust for the bias induced by measurement error in covariates as well
as by missingness in response. The proposed method focuses on modeling the marginal mean and
variance structures, and the missing at random mechanism is assumed. Furthermore, the distribution
of covariates are left unspecified. These features make the proposed method applicable to a broad
settings. In this paper, we develop an R package, called swgee, which implements the method
proposed by Yi (2008). Moreover, our package includes additional implementation steps which extend
the setting considered by Yi (2008). To describe the use of the package and its main features, we report
simulation studies and analyses of a data set arising from the Framingham Heart Study.

Introduction

Longitudinal studies are commonly conducted in the health sciences, biochemical, and epidemiology
fields; these studies typically collect repeated measurements on the same subject over time. Missing
observations and covariate measurement error frequently arise in longitudinal studies and they present
considerable challenges in statistical inference about such data (Carroll et al., 2006; Yi, 2008). It has
been well documented that ignoring missing responses and covariate measurement error may lead to
severely biased results, thus leading to invalid inferences (Fuller, 1987; Carroll et al., 2006).

Regarding longitudinal data with missing responses, there has been extensive methods such as
maximum likelihood, multiple imputation, and weighted generalized estimating equations (GEE)
method (Little and Rubin, 2002). In terms of methods of handling measurement error in covariate,
many methods have been developed for various settings. Comprehensive discussions can be found
in Fuller (1987), Gustafson (2003), Carroll et al. (2006), Buonaccorsi (2010) and Yi (2017). However,
there has been relatively little work on simultaneously addressing the effects of response missingness
and covariate measurement error in longitudinal data analysis, although some work such as Wang
et al. (2008), Liu and Wu (2007) and Yi et al. (2012), are available. In particular, Yi (2008) proposed an
estimation method based on the marginal model for the response process, which does not require the
full specification of the distribution of the response variable but models only the mean and variance
structures. Furthermore, a functional method is applied to relax the need of modeling the covariate
process. These features make the method of Yi (2008) flexible for many applications.

Relevant to our R package, a set of R packages and statistical software have been available for
performing the GEE and weighted GEE analyses for longitudinal data with missing observations.
In particular, package gee (Carey, 2015) and yags (Carey, 2011) perform the GEE analyses under the
strong assumption of missing completely at random (MCAR) (Kenward, 1998). Package wgeesel (Xu
et al., 2018) can perform the multiple model selection based on weighted GEE/GEE. Package geepack
(Hojsgaard et al., 2016) implements the weighted GEE analyses under the missing at random (MAR)
assumption, in which an optional vector of weights can be used in the fitting process but the weight
vector has to be externally calculated. In addition, the statistical software SAS/STAT version 13.2 (SAS
Institute Inc., 2014) includes an experimental version of the function PROC GEE (Lin and Rodriguez,
2015), which fits weighted GEE models.

Our swgee package has several features distinguishing from existing packages. First, swgee is
designed to analyze longitudinal data with both missing responses and error-prone covariates. To
the best of our knowledge, this is the first R package that can simultaneously account for response
missingness and covariate measurement error. Secondly, this simulation based marginal method
can be applied to a broad range of problems because the associated model assumptions are minimal.
swgee can be directly applied to handle continuous and binary responses as well as count data with
dropouts under the MAR and MCAR mechanisms. Thirdly, observations are weighted inversely
proportional to their probability of being observed, with weights calculated internally. Lastly, the
swgee package employs the simulation extrapolation (SIMEX) algorithm to account for the effect of
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measurement error in covariates.

The remainder is organized as follows. Section Notation and framework introduces the notation
and model setup. In Section Methodology, we describe the method proposed by Yi (2008) and its
implementation in R in Section Implementation in R. The developed R package is illustrated with
simulation studies and analyses of a data set arising from the Framingham Heart Study in Section
Examples. General discussion is included in Section Summary and discussion.

Notation and framework

For i = 1, . . . , n and j = 1, . . . , m, let Yij be the response variable for subject i at time point j, let Xij be
the vector of covariates subject to error, and Zij be the vector of covariates which are error-free. Write
Yi = (Yi1, Yi2, . . . , Yim)

′, Xi = (X′i1, X′i2, . . . , X′im)
′, and Zi = (Z′i1, Z′i2, . . . , Z′im)

′.

Response model

For i = 1, . . . , n and j = 1, . . . , m, let µij = E(Yij|Xi, Zi) and vij = var(Yij|Xi, Zi) be the conditional
expectation and variance of Yij, given the covariates Xi and Zi, respectively. We model the influence of
the covariates on the marginal response mean by means of a regression model:

g(µij) = X′ijβx + Z′ijβz, (1)

where β = (β′x, β′z)
′ is the vector of regression parameters and g(·) is a specified monotone function.

The intercept term, if any, of the model may be included as the first element of βz by including the
unit vector as the first column of Zi.

To model the variance of Yij, we consider

vij = h(µij; φ), (2)

where h(·; ·) is a given function and φ is the dispersion parameter that is known or to be estimated.
We treat φ as known with emphasis setting on estimation of the β parameter. Here we assume
that E(Yk

ij|Xi, Zi) = E(Yk
ij|Xij, Zij) for k = 1 and 2, that is, the dependence of the mean µij and the

variance vij on the subject-level covariates Xi and Zi is completely reflected by the dependence on the
time-specific covariates Xij and Zij. This assumption has been widely used in marginal analysis of
longitudinal analysis (e. g. , Diggle and Kenward, 1994; Lai and Small, 2007). The necessity of these
assumptions was discussed by Yi (2017, Section 5.1.1).

Missing data model

For i = 1, . . . , n and j = 1, . . . , m, let Oij be 1 if Yij is observed and 0 otherwise, and let Oi =

(Oi1, Oi2, . . . , Oim)
′ be the vector of missing data indicators. Dropouts or monotone missing data

patterns are considered here. That is, Oij = 0 implies Oij′ = 0 for all j′ > j. We assume that Oi1 = 1
for every subject i. To reflect the dynamic nature of the observation process over time, we assume an
MAR mechanism for the missing process. That is, given the covariates, the missingness probability
depends on the observed responses but not unobserved response components (Little and Rubin, 2002).
Let λij = P(Oij = 1|Oi,j−1 = 1, Xi, Zi, Yi) and πij = P(Oij = 1|Xi, Zi, Yi), then

πij =
j

∏
t=2

λit. (3)

Logistic regression models are used to model the dropout process:

logit(λij) = u′ijα, (4)

for j = 2, . . . , m, where uij is the vector consisting of the information of the covariates Xi, Zi and
the observed responses, and α is the vector of regression parameters. Write θ = (α′, β′)′ and let
q = dim(θ).

Measurement error model

For i = 1, . . . , n and j = 1, . . . , m, let Wij be the observed measurements of the covariates Xij. Covariates
Xij and their observed measurements Wij are assumed to follow a classical additive measurement
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error model:
Wij = Xij + eij, (5)

where the eij are independent of Xi , Zi and Yi. And eij follows N(0, Σe) with the covariance matrix Σe.
This model has been widely used in the context of handling measurement error problems. Yi (2008)
assumed that Σe is known or can be estimated from replication experiments (e. g. , Carroll et al., 2006;
Yi, 2017).

Methodology

Weighted estimation function

The inverse probability weighted generalized estimating equations method is often employed to
accommodate the missing data effects (e. g. , Robins et al., 1995; Preisser et al., 2002; Qu et al., 2011)
when primary interest lies in the estimation of the marginal mean parameters β in the model (1).
For i = 1, . . . , n, let Mi be the random dropout time for subject i and mi be a realization. Define
Li(α) = (1− λimi )∏mi−1

t=2 λit, where λit is determined by model (4). Let Si(α) = ∂logLi(α)/∂α be
the vector of score functions contributed from subject i. Let Di = ∂µ′i/∂β be the matrix of the
derivatives of the mean vector µi = (µi1, . . . , µim)

′ with respect to β and let ∆i = diag(I(Oij =
1)/πij, j = 1, 2, . . . , m) be the weighted matrix accommodating missingness, where I(·) is the indicator

function. Let Vi = A1/2
i CiA

1/2
i be the conditional covariance matrix of Yi, given Xi and Zi, where

Ai = diag(vij, j = 1, 2, . . . , m) and Ci = [ρi;jk] is the correlation matrix with diagonal elements equal
1 and ρi;jk being the conditional correlation coefficient of response components Yij and Yik for j 6= k,
given Xi and Zi. Define

Ui(θ) = DiV
−1
i ∆i(Yi − µi)

and
Hi(θ) = (U′i(θ), S′i(α))

′. (6)

In the absence of measurement error, that is, covariates Xij are precisely observed, we have
E[Hi(θ)] = 0. Hence, H(θ) = ∑n

i=1 Hi(θ) are unbiased estimation functions for θ (e. g. , Yi, 2017,
Chapter 1). Under regularity conditions, the consistent estimator θ̂ of θ can be obtained by solving

H(θ) = 0, (7)

where the weight matrix ∆i is used to adjust for the contributions of subject i with his/her missingness
probabilities incorporated. Specifically, the probability πij is determined by (3) in conjunction with
(4). Correlation matrix Ci can be replaced by the moment estimate, or alternatively, a working
independence matrix Ai may be used to replace Vi (Liang and Zeger, 1986). A detail discussion can
be found in Yi (2017, Chapter 4).

SIMEX approach

When measurement error is present in covariates Xij, H(θ) is no longer unbiased if naively replacing Xij
with its observed measurement Wij. Yi (2008) developed a simulation-extrapolation (SIMEX) method
to adjust for the bias induced by using Wij, as well as the missingness effects in the response variables.
This method originates from the SIMEX method by Cook and Stefanski (1994) who considered cross-
sectional data with measurement error alone. The basic idea of the SIMEX method is to first add
additional variability to the observed measurement Wij, then establish the trend how different degrees
of measurement error may induce bias in estimation of the model parameters, and finally extrapolate
this trend to the case of no measurement error.

Now, we describe the SIMEX method developed by Yi (2008). Let B be a given positive integer
and Λ = {λ1, λ2, . . . , λM} be a sequence of nonnegative numbers taken from [0, λM] with λ1 = 0.

• Step 1: Simulation For i = 1, . . . , n and j = 1, . . . , m, generate eijb ∼ N(0, Σe) for b = 1, 2, . . . , B.
For a given λ ∈ Λ, set

Wij(b, λ) = Wij +
√

λeijb.

• Step 2: Estimation For given λ and b, we obtain an estimate θ̂(b, λ) by solving equation (7)
with Xij replaced by Wij(b, λ). Let Γ̂(b, λ) = ∑n

i=1 [∂H′i(θ; b, λ)/∂θ]|
θ=θ̂(b,λ) and Σ̂(b, λ) =

∑n
i=1 [Hi(θ; b, λ)H′i(θ; b, λ)]|

θ=θ̂(b,λ), then the covariance matrix of θ̂(b, λ) is estimated by:

Ω̂(b, λ) = n ·
{
[Γ̂(b, λ)]−1 · Σ̂(b, λ) · [Γ̂(b, λ)]−1′

}
|θ=θ̂(b,λ).
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Let θ̂r(b, λ) be the rth component of θ̂(b, λ) and let Ω̂r(b, λ) be the rth diagonal element of
Ω̂(b, λ) for r = 1, 2, . . . , q. We then calculate the average of those estimates over b for each λ:

θ̂r(λ) = B−1
B

∑
b=1

θ̂r(b, λ);

Ω̂r(λ) = B−1
B

∑
b=1

Ω̂r(b, λ);

Ŝr(λ) = (B− 1)−1
B

∑
b=1

(θ̂r(b, λ)− θ̂r(λ))
2;

τ̂r(λ) = Ω̂r(λ)− Ŝr(λ).

• Step 3: Extrapolation For r = 1, 2, . . . , q, fit a regression model to each of the sequences
{(λ, θ̂r(λ)) : λ ∈ Λ} and {(λ, τ̂r(λ)) : λ ∈ Λ}, respectively, and extrapolate it to λ = −1,
let θ̂r(−1) and τ̂r(−1) denote the resulting predicted values. Then, θ̂ = (θ̂1, θ̂2, . . . , θ̂q)′ is
the SIMEX estimator of θ and

√
τ̂r is the associated standard error for the estimator θ̂r for

r = 1, 2, . . . , q.

The SIMEX approach is very appealing because of its simplicity of implementation and no require-
ment of modeling the true covariates Xi. However, to use this method, several aspects need to be
considered. As suggested by Carroll et al. (2006), the specification of Λ is not unique; a typical choice
of grid Λ is the equal cut points of interval [0, 2] with M = 5 or 9. Choosing B = 100 or 200 is often
sufficient for many applications. The quadratic regression function is commonly used for Step 3 to
yield reasonable results. (e. g. , He et al., 2012).

Finally, we extend the method by Yi (2008) to accommodating the case where the covariance matrix
Σe for model (5) is unknown but repeated surrogate measurements of Xij are available. Let Wijk
denote the repeated surrogate measurements of Xij for i = 1, . . . , n; j = 1, . . . , m; and k = 1, . . . , K. The
surrogate measurements Wijk and the true covariate Xij are linked by the model

Wijk = Xij + eijk, (8)

where the eijk are independent of Xi , Zi and Yi, and eijk follows N(0, Σe) with the covariance matrix
Σe. We now adapt the arguments of Devanarayan and Stefanski (2002) to modify the simulation step
of the preceding SIMEX method. For a given b and λ ∈ Λ, set

Wij(b, λ) = Wij +
√

λ/K
K

∑
k=1

cijk(b)Wijk, (9)

where Wij = K−1 ∑K
k=1 Wijk and cij(b) = (cij1(b), . . . , cijk(b))′ is a normalized contrast satisfying

∑K
k=1 cijk = 0 and ∑K

k=1 c2
ijk = 1.

A simple way to generate a contrast cij(b) can be done by independently generating K variates,
dijk(b), from N(0, 1) for k = 1, . . . , K and a given b. Let dij(b) = K−1 ∑K

k=1 dijk(b). Then cijk(b) is set as

cijk(b, λ) =
dijk(b)− dij(b)√

∑K
k=1{dijk(b)− dij(b)}2

.

Once Wij(b, λ) of (9) is available, we repeat Steps 2 and 3 to obtain the SIMEX estimator and the
associated standard error.

Implementation in R

We implement the SIMEX procedure described in Section Methodology in R and develop the package,
called swgee. Our package swgee takes the advantage of existing R packages geepack (Hojsgaard
et al., 2016) and mvtnorm (Genz and Bretz, 2009; Genz et al., 2018). Specifically, the function swgee
produces the estimates for elements of the parameter vector β, which are of primary interest, the
associated standard errors, and P-values.

Our R function swgee requires the input data set to be sorted by subject i and visit time j for
i = 1, . . . , n and j = 1, . . . , m. If a subject is missing at a certain time, the corresponding measurements
should be recorded as NAs. As long as the user provides the missing data model (4), the function
swgee can internally generate the missing data indicators Oij for i = 1, . . . , n and j = 1, . . . , m, and then
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apply the user specified model (4) to fit the data. The missingness probabilities πij are calculated by
(3) and then used to construct the weight matrix ∆i for the estimating equation (6). The estimate of the
missing data model (4) parameter α can also be retrieved from the function swgee output.

The form of calling function swgee is given by

swgee(formula, data, id, family, corstr, missingmodel, SIMEXvariable,
SIMEX.err, repeated = FALSE, repind = NULL, B, lambda)

where the arguments are described as follows:

• formula: This argument specifies the model to be fitted, with the variables coming with data.
See the documentation of geeglm and its formula for details.

• data: This is the same as the data argument in the R function geeglm, which specifies the data
frame showing how variables occur in the formula, along with the id variable.

• id: This is the vector which identifies the labels of subjects. i.e., the id for subject i is i, using the
notation of Section Response model, where i = 1, 2, . . . , n. Data are arranged so that observations
for the same subject are listed in consecutive rows in order of time, and consequently, the id for
a subject would repeat the same number of times as the observation times.

• family: This argument describes the error distribution together with the link function for model
(1). See the documentation of geeglm and its argument family for details.

• corstr: This is a character string specifying the correlation structure. See the documentation of
geeglm and its argument corstr for details.

• missingmodel: This argument specifies the formula to be fitted for the missing data model (4).
See the documentation of geeglm and its formula for details.

• SIMEXvariable: This is the vector of characters containing the names of the covariates which
are subject to measurement error.

• SIMEX.err: This argument specifies the covariance matrix of measurement errors in the mea-
surement error model (5).

• repeated: This is the indicator whether measurement error model is given by (5) or by (8). The
default value FALSE corresponding to model (5).

• repind: This is the index of the repeated surrogate measurements Wijk for each covariate Xij. It
has an R list form. If repeated = TRUE, repind must be specified.

• B: This argument sets the number of simulated samples for the simulation step. The default is
set to be 50.

• lambda: This is the vector {λ1, λ2, . . . , λM} we describe in Step 1 of Section SIMEX approach. Its
values need to be specified by the user.

Examples

An example data set

To illustrate the usage of the developed R package swgee, we apply the package to a subset of GWA13
(Genetic Analysis Workshops) data arising from the Framingham Heart Study. The data set consists
of measurements of 100 patients from a series of exams with 5 assessments for each individual.
Measurements such as height, weight, age, systolic blood pressure (SBP) and cholesterol level (CHOL)
are collected at each assessment, and 14% patients dropped out of the study. The original data were
analyzed by Yi (2008). It is of interest to study how an individual’s obesity may change with age (Zij)
and how it is associated with SBP (Xij1) and CHOL (Xij2), where i = 1, . . . , 100, and j = 1, . . . , 5. The
response Yi is the indicator of obesity status of subject i as in Yi (2008); SBP is rescaled as log(SBP− 50)
as in Carroll et al. (2006); and CHOL is standardized. The response and the covariates are postulated
by the logistic regression model:

logit µij = β0 + βx1Xij1 + βx2Xij2 + βzZij,

where β0, βx1, βx2 and βz are regression coefficients of interest. We assume that errors in both risk
factors Xij1 and Xij2 can be represented by model (5). The missing data process is characterized by the
logistic regression model:

logitλij = α1 + α2Yi,j−1 + α3Xi,j−1,1 + α4Xi,j−1,2 + α5czi,j−1,

for j = 2, . . . , 5.
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We now apply the developed R package swgee, which can be downloaded from CRAN and then
loaded in R:

R> library("swgee")

Next, load the data that are properly organized with the variable names specified. In the example
here, the data set, named as bmidata, is included by issuing

R> data("BMI")
R> bmidata <- BMI

We are concerned how measurement error in SBP and CHOL impacts estimation of parameter
β = (β0, βx1, βx2, βz)′. For illustrative purposes, we use setting with B = 100, λM = 2 and M = 5. In

this example, we assume that parameters in Σe =

(
σ2

1 σ12
σ21 σ2

2

)
with σ12 = σ21 are known. This is a

typical case when conducting sensitivity analysis. Here we set σ1 = σ2 = 0.5 and σ12 = σ21 = 0 as an
example.

The naive GEE approach without considering missingness and measurement error effects in
covariates gives the output:

R> output1 <- gee(bbmi~sbp+chol+age, id=id, data=bmidata,
+ family=binomial(link="logit"), corstr="independence")

R> summary(output1)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, version 4.13 modified 98/01/27 (1998)

Model:
Link: Logit
Variance to Mean Relation: Binomial
Correlation Structure: Independent

Call:
gee(formula = bbmi ~ sbp + chol + age, id = id, data = bmidata,

family = binomial(link = "logit"), corstr = "independence")

Summary of Residuals:
Min 1Q Median 3Q Max

-0.26533967 -0.11385369 -0.08572483 -0.06279540 0.95475735

Coefficients:
Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) -5.43746374 1.42090827 -3.8267521 1.64320527 -3.3090593
sbp 0.59071183 0.30643396 1.9276970 0.24338420 2.4270755
chol 0.11109496 0.13654324 0.8136247 0.23086218 0.4812177
age 0.01297337 0.01339946 0.9682008 0.01814546 0.7149652

Estimated Scale Parameter: 1.017131
Number of Iterations: 1
Working Correlation

[,1] [,2] [,3] [,4] [,5]
[1,] 1 0 0 0 0
[2,] 0 1 0 0 0
[3,] 0 0 1 0 0
[4,] 0 0 0 1 0
[5,] 0 0 0 0 1

To adjust for possible effects of missingness as well as measurement error in variables SBP and
CHOL, we call the developed function swgee for the analysis:

R> set.seed(1000)
R> sigma <- diag(rep(0.25, 2))
R> output2 <- swgee(bbmi~sbp+chol+age, data=bmidata, id=id,
+ family=binomial(link="logit"), corstr="independence",
+ missingmodel=O~bbmi+sbp+chol+age, SIMEXvariable=c("sbp","chol"),
+ SIMEX.err=sigma, repeated=FALSE, B=100, lambda=seq(0, 2, 0.5))
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> summary(output2)
Call: beta

Estimate StdErr t.value p.value
(Intercept) -8.004577 2.060967 -3.8839 0.0001028 ***
sbp 1.196363 0.356868 3.3524 0.0008011 ***
chol 0.099984 0.264180 0.3785 0.7050810
age 0.012718 0.017201 0.7394 0.4596520
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Call: alpha
Estimate StdErr t.value p.value

alpha1 9.019084 3.086533 2.9221 0.003477 **
alpha2 -0.786135 0.656843 -1.1968 0.231370
alpha3 -0.568740 0.732885 -0.7760 0.437732
alpha4 -0.128941 0.247757 -0.5204 0.602761
alpha5 -0.064257 0.025982 -2.4731 0.013395 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The function swgee can store individual estimated coefficients in the simulation step, and this
enables us to show the extrapolation curve through the developed R function plot.swgee. The
plot.swgee function plots the extrapolation of the estimate of each covariate effect with the quadratic
extrapolants. Figure 1 displays the graph for the variable SBP in the example for which the quadratic
extrapolation function is applied from the following command:

R> plot(output2,"sbp")

Figure 1: Display of the SIMEX estimate for the example: the dot is the SIMEX estimate obtained
from the quadratic extrapolation.

Simulation studies

In this section, we conduct simulation studies to investigate the impact of ignoring covariate mea-
surement error and response missingness on estimation, where the implementation is carried out
using the usual GEE method. Furthermore, we assess the performance of the swgee method which
accommodates the effects induces from error-prone covariates and missing responses. We set n = 200
and m = 3, and generate 500 simulations for each parameter configuration. Consider the logistic
regression model

logit(µij) = β0 + βx1xij1 + βx2xij2 + βzzij, (10)

where β0 = 0, βx1 = log(1.5), βx2 = log(1.5), βz = log(0.75) and zij is generated independently
from Bin(1, 0.5) to represent a balanced design. The true covariate Xij = (xij1, xij2)

′ is generated
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σ1 σ2 Method βx1 βx2 βz

Bias SE CR Bias SE CR Bias SE CR

0.25 0.25 gee -0.0310 0.1228 92.6 -0.0158 0.1246 92.6 0.0063 0.2121 94.6
0.25 0.25 swgee -0.0062 0.1420 95.0 0.0104 0.1425 95.2 0.0036 0.2354 95.6
0.25 0.50 gee -0.0019 0.1212 95.4 -0.0997 0.1156 83.4 0.0082 0.2110 94.2
0.25 0.50 swgee -0.0003 0.1415 95.0 -0.0087 0.1543 93.0 0.0035 0.2361 95.6
0.25 0.75 gee 0.0328 0.1189 95.4 -0.1841 0.1022 51.0 0.0101 0.2100 94.0
0.25 0.75 swgee 0.0205 0.1407 95.8 -0.0660 0.1562 86.4 0.0046 0.2359 95.6

0.50 0.25 gee -0.1156 0.1114 78.2 0.0139 0.1236 94.2 0.0078 0.2113 94.6
0.50 0.25 swgee -0.0282 0.1520 93.2 0.0177 0.1431 95.4 0.0031 0.2362 95.2
0.50 0.50 gee -0.0948 0.1114 81.8 -0.0780 0.1161 85.6 0.0102 0.2099 94.2
0.50 0.50 swgee -0.0228 0.1510 93.8 -0.0022 0.1542 93.6 0.0030 0.2370 95.4
0.50 0.75 gee -0.0629 0.1103 87.8 -0.1727 0.1036 55.6 0.0125 0.2088 94.2
0.50 0.75 swgee -0.0052 0.1499 94.8 -0.0608 0.1570 87.2 0.0042 0.2369 95.2

0.75 0.25 gee -0.1991 0.0966 45.6 0.0484 0.1216 94.2 0.0092 0.2107 94.6
0.75 0.25 swgee -0.0870 0.1508 86.4 0.0395 0.1430 93.6 0.0034 0.2366 95.2
0.75 0.50 gee -0.1889 0.0976 50.0 -0.0458 0.1154 89.8 0.0121 0.2091 94.0
0.75 0.50 swgee -0.0831 0.1509 87.8 0.0165 0.1539 94.0 0.0034 0.2375 95.4
0.75 0.75 gee -0.1636 0.0974 58.8 -0.1468 0.1039 66.4 0.0147 0.2077 94.2
0.75 0.75 swgee -0.0678 0.1505 90.0 -0.0442 0.1574 88.8 0.0046 0.2374 95.2

Table 1: Simulation Results

from the normal distribution N(µx, Σx), where µx = (0.5, 0.5)′ and Σx =

(
σ2

x1 ρxσx1σx2
ρxσx1σx2 σ2

x2

)
with σx1 = σx2 = 1. The surrogate value Wij = (Wij1, Wij2)

′ is generated from N(Xij, Σe) with

Σe =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
. ρ and ρx are set to 0.50 to represent moderate correlations. To feature

minor, moderate and severe degrees of measurement error, we consider σ1, σ2 = 0.25, 0.50 or 0.75. The
missing data indicator is generated from model (4), where α0 = α1 = 0.5, α2 = α3 = 0.1, and αz = 0.2.
In implementing the swgee method, we choose B = 100, λM = 2, M = 5, and a quadratic regression
for each extrapolation step.

In Table 1, we report on the results of the biases of the estimates (Bias), the empirical standard
error (SE), and the coverage rate (CR in percent) for 95% confidence intervals. When measurement
error is minor, (i.e. σ1 = σ2 = 0.25), both gee and swgee provide reasonable results with fairly small
finite sample biases and coverage rates close to the nominal level 95%. When there is moderate or
substantial measurement error in covariates Xij, the performance of the gee method deteriorates
remarkably in estimation of error-prone covariate effects, leading to considerably biased estimates
for βx1 and βx2. The corresponding coverage rates for 95% confidence intervals can be quite low. In
contrast, the swgee method remarkably improve the performance, providing a lot smaller biases and
much higher coverage rates. The estimates for βz are not subject to much impact of measurement error,
which is partially attributed by that the precisely observed covariates zij are generated independently
of error-prone covairates Xij under the current simulation study.

In summary, ignoring measurement error may lead to substantially biased results. Properly
addressing covariate measurement error in estimation procedures is necessary. The proposed swgee
method performs reasonably well under various configurations. As expected, its performance may
become less satisfactory when measurement error becomes substantial. However, the swgee method
does significantly improve the performance of the gee analysis.

Summary and discussion

Missing observations and covariate measurement error commonly arise in longitudinal data. How-
ever, there has been relatively little work on simultaneously accounting for the effects of response
missingness and covariate measurement error on estimation of response model parameters for longi-
tudinal data. Yi (2008) described a simulation based marginal method to adjust for the biases induced
by both missingness and covariate measurement error. The proposed method does not require the
full specification of the distribution of the response vector but only requires modeling its mean and
covariance structure. In addition, the distribution of covariates is left unspecified, which is desirable
for many practical problems. These features make the proposed method flexible.

Here we not only develop the R package swgee to implement the method by Yi (2008), but also
include an extended setting in the package. Our aim is to provide analysts an accessible tool for the
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analysis of longitudinal data with missing responses and error-prone covariates. Our illustrations
show that the developed package has the advantages of simplicity and versatility.

Acknowledgments

Juan Xiong was supported by the Natural Science Foundation of SZU (grant no.2017094). Grace Y. Yi
was supported by the Natural Sciences and Engineering Research Council of Canada. The authors
thanks Boston University and the National Heart, Lung, and Blood Institute (NHLBI) for providing the
data set from the Framingham Heart Study (No. N01-HC-25195) in the illustration. The Framingham
Heart Study is conducted and supported by the NHLBI in collaboration with Boston University. This
manuscript was not prepared in collaboration with investigators of the Framingham Heart Study and
does not necessarily reflect the opinions or views of the Framingham Heart Study, Boston University,
or NHLBI.

Conflict of Interest: None declared.

Bibliography

J. P. Buonaccorsi. Measurement Error: Models, Methods, and Applications. Chapman & Hall/CRC, Boca
Raton, Florida, 2010. [p1]

V. J. Carey. yags: Yet Another GEE Solve, 2011. R package version 6.1-13. [p1]

V. J. Carey. gee: Generalized Estimation Equation Solver, 2015. R package version 4.13-19. [p1]

R. J. Carroll, D. Ruppert, L. A. Stefanski, and C. M. Crainiceanu. Measurement Error in Nonlinear Models:
A Modern Perspective. Chapman & Hall/CRC, Boca Raton, Florida, 2nd edition, 2006. [p1, 3, 4, 5]

J. R. Cook and L. A. Stefanski. Simulation-extrapolation estimation in parametric measurement
error models. Journal of the American Statistical Association, 89(428):1314–1328, 1994. URL https:
//doi.org/10.1080/01621459.1994.10476871. [p3]

V. Devanarayan and L. A. Stefanski. Empirical simulation extrapolation for measurement error
models with replicate measurements. Statistics and Probability Letters, 59(3):219–225, 2002. URL
https://doi.org/10.1016/S0167-7152(02)00098-6. [p4]

P. J. Diggle and M. G. Kenward. Informative drop-out in longitudinal data analysis (with discussion).
Applied Statistics, 43(1):49–93, 1994. URL https://doi.org/10.2307/2986113. [p2]

W. A. Fuller. Measurement Error Models. John Wiley & Sons, New York, 1987. [p1]

A. Genz and F. Bretz. Computation of Multivariate Normal and t Probabilities. Springer-Verlag, New York,
2009. [p4]

A. Genz, F. Bretz, T. Miwa, X. Mi, and T. Hothorn. mvtnorm: Multivariate Normal and t Distributions,
2018. R package version 1.0-7. [p4]

P. Gustafson. Measurement Error and Misclassification in Statistics and Epidemiology. Chapman &
Hall/CRC, Boca Raton, Florida, 2003. [p1]

W. He, J. Xiong, and G. Y. Yi. Simex R package for accelerated failure time models with covariate
measurement error. Journal of Statistical Software, 46(1):1–14, 2012. URL https://doi.org/10.18637/
jss.v046.c01. [p4]

S. Hojsgaard, U. Halekoh, and J. Yan. geepack: Generalized Estimating Equation Package, 2016. R package
version 1.2-1. [p1, 4]

M. G. Kenward. Selection models for repeated measurements with non-random dropout: An illustra-
tion of sensitivity. Statistics in Medicine, 17(23):2723–2732, 1998. URL https://doi.org/10.1002/
(SICI)1097-0258(19981215)17:23<2723::AID-SIM38>3.0.CO;2-5. [p1]

T. L. Lai and D. S. Small. Marginal regression analysis of longitudinal data with time-dependent
covariates: A generalized method-of-moments approach. Journal of The Royal Statistical Society
Series B-statistical Methodology, 69(1):79–99, 2007. URL https://doi.org/10.1111/j.1467-9868.
2007.00578.x. [p2]

K. Y. Liang and S. L. Zeger. Longitudinal data analysis using generalized linear models. Biometrika, 73
(1):13–22, 1986. URL https://doi.org/10.2307/2336267. [p3]

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859

https://doi.org/10.1080/01621459.1994.10476871
https://doi.org/10.1080/01621459.1994.10476871
https://doi.org/10.1016/S0167-7152(02)00098-6
https://doi.org/10.2307/2986113
https://doi.org/10.18637/jss.v046.c01
https://doi.org/10.18637/jss.v046.c01
https://doi.org/10.1002/(SICI)1097-0258(19981215)17:23<2723::AID-SIM38>3.0.CO;2-5
https://doi.org/10.1002/(SICI)1097-0258(19981215)17:23<2723::AID-SIM38>3.0.CO;2-5
https://doi.org/10.1111/j.1467-9868.2007.00578.x
https://doi.org/10.1111/j.1467-9868.2007.00578.x
https://doi.org/10.2307/2336267


CONTRIBUTED RESEARCH ARTICLE 10

G. Lin and R. N. Rodriguez. Weighted methods for analyzing missing data with the gee procedure.
Paper SAS166-2015, pages 1–8, 2015. [p1]

R. J. A. Little and D. B. Rubin. Statistical Analysis with Missing Data. John Wiley & Sons, New Jersey,
2nd edition, 2002. [p1, 2]

W. Liu and L. Wu. Simultaneous inference for semiparametric nonlinear mixed-effects models
with covariate measurement errors and missing responses. Biometrics, 63(2):342–350, 2007. URL
https://doi.org/10.1111/j.1541-0420.2006.00687.x. [p1]

J. S. Preisser, K. K. Lohman, and P. J. Rathouz. Performance of weighted estimating equations for
longitudinal binary data with drop-outs missing at random. Statistics in Medicine, 21(20):3035–3054,
2002. URL https://doi.org/10.1002/sim.1241. [p3]

A. Qu, G. Y. Yi, P. X. K. Song, and P. Wang. Assessing the validity of weighted generalized estimating
equations. Biometrika, 98(1):215–224, 2011. URL https://doi.org/10.1093/biomet/asq078. [p3]

J. M. Robins, A. Rotnitzky, and L. Zhao. Analysis of semiparametric regression models for repeated
outcomes in the presence of missing data. Journal of the American Statistical Association, 90(429):
106–121, 1995. URL https://doi.org/10.1080/01621459.1995.10476493. [p3]

SAS Institute Inc. SAS/STAT Software, Version 13.2. Cary, NC, 2014. URL http://www.sas.com/. [p1]

C. Y. Wang, Y. Huang, E. C. Chao, and M. K. Jeffcoat. Expected estimating equations for missing data,
measurement error, and misclassification, with application to longitudinal nonignorable missing
data. Biometrics, 64(1):85–95, 2008. URL https://doi.org/10.1111/j.1541-0420.2007.00839.x.
[p1]

C. Xu, Z. Li, and M. Wang. wgeesel: Weighted Generalized Estimating Equations and Model Selection, 2018.
R package version 1.5. [p1]

G. Y. Yi. A simulation-based marginal method for longitudinal data with dropout and mismeasured
covariates. Biostatistics, 9(3):501–512, 2008. URL https://doi.org/10.1093/biostatistics/kxm054.
[p1, 2, 3, 4, 5, 8]

G. Y. Yi. Statistical Analysis with Measurement Error or Misclassification. Springer-Verlag, New York, 2017.
[p1, 2, 3]

G. Y. Yi, Y. Ma, and R. J. Carroll. A functional generalized method of moments approach for longitudinal
studies with missing responses and covariate measurement error. Biometrika, 99(1):151–165, 2012.
URL https://doi.org/10.1093/biomet/asr076. [p1]

Juan Xiong
Department of Preventive Medicine
School of Medicine
Shenzhen University
3688 Nanhai Avenue, Shenzhen, China 518060
jxiong@szu.edu.cn

Grace Y. Yi
Department of Statistics and Actuarial Science
University of Waterloo
200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
yyi@uwaterloo.ca

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859

https://doi.org/10.1111/j.1541-0420.2006.00687.x
https://doi.org/10.1002/sim.1241
https://doi.org/10.1093/biomet/asq078
https://doi.org/10.1080/01621459.1995.10476493
http://www.sas.com/
https://doi.org/10.1111/j.1541-0420.2007.00839.x
https://doi.org/10.1093/biostatistics/kxm054
https://doi.org/10.1093/biomet/asr076
mailto:jxiong@szu.edu.cn
mailto:yyi@uwaterloo.ca

	swgee: An R Package for Analyzing Longitudinal Data with Response Missingness and Covariate Measurement Error
	Introduction
	Notation and framework
	Response model
	Missing data model
	Measurement error model

	Methodology
	Weighted estimation function
	SIMEX approach

	Implementation in R
	Examples
	An example data set
	Simulation studies

	Summary and discussion
	Acknowledgments


