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ipwErrorY: An R Package for Estimation
of Average Treatment Effect with
Misclassified Binary Outcome
by Di Shu and Grace Y. Yi

Abstract It has been well documented that ignoring measurement error may result in severely biased
inference results. In recent years, there has been limited but increasing research on causal inference
with measurement error. In the presence of misclassified binary outcome variable, Shu and Yi (2017)
considered the inverse probability weighted estimation of the average treatment effect and proposed
valid estimation methods to correct for misclassification effects for various settings. To expedite the
application of those methods for situations where misclassification in the binary outcome variable
is a real concern, we implement correction methods proposed by Shu and Yi (2017) and develop
an R package ipwErrorY for general users. Simulated datasets are used to illustrate the use of the
developed package.

Introduction

Causal inference methods have been widely used in empirical research (e.g., Rothman et al., 2008;
Imbens and Rubin, 2015; Hernán and Robins, 2019). The propensity score, defined to be the probability
of an individual to receive the treatment, plays an important role in conducting causal inference
(Rosenbaum and Rubin, 1983). Many causal inference methods have been developed based on the
propensity score (e.g., Rosenbaum, 1987, 1998; Robins et al., 2000; Lunceford and Davidian, 2004).
These methods commonly require modeling the treatment assignment, which can be difficult in some
applications. To protect against misspecification of the treatment model, various methods have been
proposed (e.g., Robins et al., 1994; Scharfstein et al., 1999; Bang and Robins, 2005). Among them,
doubly robust methods are often advocated since the resulting estimators are still consistent when
either the treatment model or the outcome model (but not both) is misspecified; such an attractive
property is referred to as double robustness.

Although many methods are available for causal inference such as for the estimation of average
treatment effects (ATE), those methods are vulnerable to poor quality data. Typically when data are
error-contaminated, most existing methods would be inapplicable. It has been well documented that
measurement error in variables can often lead to seriously biased inference results in many settings
(e.g., Fuller, 1987; Gustafson, 2003; Carroll et al., 2006; Buonaccorsi, 2010; Yi, 2017).

In the context of causal inference with error-prone data, there has been limited but increasing
research on the impact of measurement error on causal inference and the development of correction
methods to deal with measurement error. For instances, McCaffrey et al. (2013) proposed a correction
estimation method when baseline covariates are error-prone. Babanezhad et al. (2010) examined the
bias arising from ignoring misclassification in the treatment variable. Braun et al. (2016) developed a
correction method to correct for treatment misclassification using validation data.

In settings with misclassification in the binary outcome variable, Shu and Yi (2017) explored the
estimation of ATE using the inverse probability weighted (IPW) method. They derived the asymp-
totic bias caused by misclassification and developed consistent estimation methods to eliminate the
misclassification effects. Their development covers practical scenarios where (1) the misclassification
probabilities are known, or (2) the misclassification probabilities are unknown but validation data or
replicates of outcome measurements are available for their estimation. They further propose a doubly
robust estimator to provide protection against possible misspecification of the treatment model.

The methods developed by Shu and Yi (2017) enjoy wide applications, because misclassified binary
outcome data arise commonly in practice. For example, the self-reported smoking status without
being confirmed by biochemical tests is subject to misclassification; results of screening tests are often
subject to false positive error and/or false negative error. For datasets with outcome misclassification,
ignoring misclassification effects may lead to severely biased results. To expedite the application of
the correction methods for general users, we develop an R package, called ipwErrorY (Shu and Yi,
2019), to implement the methods by Shu and Yi (2017) for practical settings where the commonly-used
logistic regression model is employed for the treatment model and the outcome model. The package
focuses on measurement error in the outcome Y only but not on other types of measurement error, such
as measurement error in covariates.

The remainder is organized as follows. First, we introduce the notation and framework. Secondly,
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we describe the methods to be implemented in R. Thirdly, we present the implementation steps
and illustrate the use of the package with examples. Finally, a discussion is given. The developed
R package ipwErrorY is available from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/package=ipwErrorY.

Notation and framework

Let Y1 be the binary potential outcome that would have been observed had the individual been treated,
and Y0 be the binary potential outcome that would have been observed had the individual been
untreated. Let X be the vector of baseline covariates; T be the observed binary treatment variable; and
Y be the observed binary outcome.

Being consistent with the usual causal inference framework (e.g., Lunceford and Davidian, 2004),
we make the following standard assumptions:

Assumption 1 (Consistency): Y = TY1 + (1− T)Y0;

Assumption 2 (No Unmeasured Confounding): (Y1, Y0) ⊥⊥ T|X;

Assumption 3 (Positivity): 0 < P(T = 1|X) < 1.

The objective is to estimate the ATE, defined as τ0 = E(Y1)− E(Y0). Suppose we have a sample
of size n. For i = 1, · · · , n, we add subscript i to notations X, T and Y to denote the corresponding
variable for individual i.

In the presence of outcome misclassification, instead of Y, its surrogate version Y∗ is observed. We
assume that

P(Y∗ = a|Y = b, X, T) = P(Y∗ = a|Y = b) for a, b = 0, 1. (1)

That is, conditional on the true value of the outcome, the misclassification probability is assumed to
be homogeneous for all the individuals, regardless of their covariate information or treatment status.
For ease of exposition, write pab = P(Y∗ = a|Y = b). Then the sensitivity and the specificity are
expressed by p11 and p00, respectively, and the misclassification probabilities are p01 = 1− p11 and
p10 = 1− p00.

Estimation methods

In this section we present estimation methods for τ0 under three scenarios. We first start with the
case where misclassification probabilities are given, and then consider settings where misclassification
probabilities are unknown but can be estimated by using additional data sources.

Estimation with known misclassification probabilities

In this subsection we assume that misclassification probabilities p11 and p10 are known. For i = 1, . . . , n,
let ei = P(Ti = 1|Xi) be the conditional probability for individual i to receive the treatment, also
termed as the propensity score (e.g., Rosenbaum and Rubin, 1983), a quantity that plays an important
role in causal inference. To correct for outcome misclassification effects, Shu and Yi (2017) proposed an
estimator of τ0 given by

τ̂ =
1

p11 − p10

{
1
n

n

∑
i=1

TiY∗i
êi
− 1

n

n

∑
i=1

(1− Ti)Y∗i
1− êi

}
, (2)

where êi is an estimate of the propensity score ei = P(Ti = 1|Xi) obtained by fitting the treatment
model relating T to X.

The estimator τ̂, given by (2), is a consistent estimator of τ0, provided regularity conditions
including Assumptions 1-3. The sandwich variance estimate of τ̂ can be obtained using the theory of
estimating functions (e.g., Newey and McFadden, 1994; Heyde, 1997; Yi, 2017, Ch.1).

To estimate the propensity score ei for i = 1, . . . , n, we specifically characterize ei using the
widely-used logistic regression model. That is, the treatment model is given by

logit P(Ti = 1|Xi) = γ0 + γ>X Xi, (3)

for i = 1, . . . , n, where γ = (γ0, γ>X )> is the vector of parameters. As a result, an unbiased estimating
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function of γ is taken as the score function{
Ti −

1
1 + exp(−γ0 − γ>X Xi)

}
(1, X>i )>. (4)

Let θ = (τ, γ>)>. Shu and Yi (2017) showed that

Ψ(Y∗i , Ti, Xi; θ) =


{

Ti −
1

1 + exp(−γ0 − γ>X Xi)

}
(1, X>i )>

TiY∗i
ei
−

(1− Ti)Y∗i
1− ei

− (p11 − p10)τ

 (5)

is an unbiased estimating function of θ. Solving ∑n
i=1 Ψ(Y∗i , Ti, Xi; θ) = 0 for θ yields an estimator of θ,

denoted by θ̂.

Let θ0 = (τ0, γ>0 )> be the true value of θ. Define A(θ0) = E
{
−(∂/∂θ>)Ψ(Y∗, T, X; θ)|θ=θ0

}
and

B(θ0) = E{Ψ(Y∗, T, X; θ)Ψ>(Y∗, T, X; θ)|θ=θ0}. Under regularity conditions, we have that

√
n(θ̂ − θ0)

d−→ N
(

0, A(θ0)
−1B(θ0)A(θ0)

−1>
)

as n→ ∞. (6)

Consequently, the variance of θ̂ can be estimated by the empirical sandwich estimator:

V̂ar(θ̂) =
1
n

An(θ̂)
−1Bn(θ̂)An(θ̂)

−1>, (7)

where

An(θ̂) = −
1
n

n

∑
i=1

∂

∂θ>
Ψ(Y∗i , Ti, Xi; θ)|

θ=θ̂
(8)

and

Bn(θ̂) =
1
n

n

∑
i=1

Ψ(Y∗i , Ti, Xi; θ)Ψ>(Y∗i , Ti, Xi; θ)|
θ=θ̂

. (9)

Then the variance estimate of τ̂ in (2) is given by V̂ar(τ̂) = v̂11, where v̂11 is the element of the first row

and the first column of V̂ar(θ̂). A (1− α)100% confidence interval of τ0 is given by τ̂± zα/2×
√

V̂ar(τ̂),
where α is a specified value between 0 and 1, and zα/2 is the upper α/2 quantile of the standard normal
distribution.

Estimation with validation data

In this subsection we assume that misclassification probabilities p11 and p10 are unknown and that
there is an internal validation subsample V of size nV which collects measurements of variables X, T,
Y and Y∗.

With the validation data, p11 and p10 can be estimated as

p̂11 =
∑i∈V YiY∗i

∑i∈V Yi
and p̂10 =

∑i∈V (1−Yi)Y∗i
∑i∈V (1−Yi)

, (10)

respectively.

To estimate τ0, one may use error-free outcome data of the validation subsample to construct an
estimator

τ̂V =
1

nV
∑
i∈V

TiYi
êi
− 1

nV
∑
i∈V

(1− Ti)Yi
1− êi

, (11)

of τ0, or alternatively, one may apply (2) to estimate τ0 using non-validation data with the resulting
estimator given by

τ̂N =
1

p̂11 − p̂10

{
1

n− nV
∑
i/∈V

TiY∗i
êi
− 1

n− nV
∑
i/∈V

(1− Ti)Y∗i
1− êi

}
, (12)

where p̂11 and p̂10 are given by (10).

Although the validation data based estimator τ̂V given by (11) and the non-validation data based
estimator τ̂N given by (12) are both consistent estimators of τ0, they both incur efficiency loss due to
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the inability of utilizing all the available data.

Shu and Yi (2017) considered the linear combination of τ̂V and τ̂N

τ̂(c) = cτ̂V + (1− c)τ̂N, (13)

where c is a constant between 0 and 1.

For any c, the consistency of τ̂(c) is immediate due to the consistency of τ̂V and τ̂N. However, the
efficiency of τ̂(c) depends on the choice of c. Typically, Var{τ̂(c)} is minimized at

cOPT =
Var(τ̂N)− Cov(τ̂V, τ̂N)

Var(τ̂V) + Var(τ̂N)− 2Cov(τ̂V, τ̂N)
, (14)

suggesting that τ̂(cOPT) = cOPTτ̂V + (1− cOPT)τ̂N is the optimal estimator among the linear combination
estimators formulated as (13). Furthermore, cOPT can be estimated by

ĉOPT =
V̂ar(τ̂N)− Ĉov(τ̂V, τ̂N)

V̂ar(τ̂V) + V̂ar(τ̂N)− 2Ĉov(τ̂V, τ̂N)
, (15)

where V̂ar(τ̂N), Ĉov(τ̂V, τ̂N) and V̂ar(τ̂V) are the estimates for Var(τ̂N), Cov(τ̂V, τ̂N) and Var(τ̂V), respec-
tively.

To obtain V̂ar(τ̂N), Ĉov(τ̂V, τ̂N) and V̂ar(τ̂V), Shu and Yi (2017) constructed an unbiased estimating
function by combining the estimating functions (11) and (12), where they introduced different symbols,
say τV and τN, to denote the parameter τ for which (11) and (12), respectively, are used to estimate;
both τV and τN have the true value τ0. Let θ = (τV, τN, γ>, p11, p10)

>. Define

Ψc(Y∗i , Ti, Xi, Yi; θ) =



{
Ti −

1
1 + exp(−γ0 − γ>X Xi)

}
(1, X>i )>

(YiY∗i − p11Yi) · I(i ∈ V) ·
n
nV

{(1−Yi)Y∗i − p10(1−Yi)} · I(i ∈ V) ·
n
nV{

TiYi
ei
− (1− Ti)Yi

1− ei
− τV

}
· I(i ∈ V) · n

nV{
TiY∗i

ei
−

(1− Ti)Y∗i
1− ei

− (p11 − p10)τN

}
I(i /∈ V) · n

n− nV



, (16)

where I(·) is the indicator function. Then Ψc(Y∗i , Ti, Xi, Yi; θ) is an unbiased combined estimating
function of θ. Solving ∑n

i=1 Ψc(Y∗i , Ti, Xi, Yi; θ) = 0 for θ yields an estimator of θ, denoted by θ̂. The
variance of θ̂ can be estimated by the empirical sandwich estimator, denoted as V̂ar(θ̂). Let v̂i,j be
the element of the ith row and the jth column of V̂ar(θ̂). Then V̂ar(τ̂V) = v̂1,1, Ĉov(τ̂V, τ̂N) = v̂1,2, and
V̂ar(τ̂N) = v̂2,2.

Finally, Shu and Yi (2017) pointed out the two associated conditions: Var(τ̂V)+Var(τ̂N)− 2Cov(τ̂V, τ̂N) ≥
0 and 0 ≤ c ≤ 1. If one or both conditions are violated with empirical estimates, ĉOPT is then set to be 1
if τ̂V has smaller variance than τ̂N and 0 otherwise. The resulting optimal linear combination estimator
τ̂(ĉOPT) is

τ̂OPT = ĉOPTτ̂V + (1− ĉOPT)τ̂N, (17)

with the variance estimate given by

V̂ar(τ̂OPT) = {V̂ar(τ̂V) + V̂ar(τ̂N)− 2Ĉov(τ̂V, τ̂N)}ĉ2
OPT − {2V̂ar(τ̂N)− 2Ĉov(τ̂V, τ̂N)}ĉOPT + V̂ar(τ̂N).

(18)

A (1− α)100% confidence interval of τ0 is given by τ̂OPT ± zα/2 ×
√

V̂ar(τ̂OPT), where α is a specified
value between 0 and 1, and zα/2 is the upper α/2 quantile of the standard normal distribution.

Estimation with replicates

In this subsection we assume that misclassification probabilities p11 and p10 are unknown and that
two repeated outcome measurements are available for each individual. Suppose Y∗i (1) and Y∗i (2) are
two independent replicates of Yi. Let η denote the prevalence P(Y = 1) and πr be the probability of
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obtaining r outcome observations equal to 1 among two repeated outcome measurements for r = 0, 1.
Then

π0 = η(1− p11)
2 + (1− η)(1− p10)

2; (19)

π1 = 2η(1− p11)p11 + 2(1− η)(1− p10)p10. (20)

Let θ = (τ, γ>, η, p11, p10)
>. Shu and Yi (2017) considered an unbiased estimating function of θ, given

by

Ψr{Y∗i (1), Y∗i (2), Ti, Xi; θ} =



{
Ti −

1
1 + exp(−γ0 − γ>X Xi)

}
(1, X>i )>

{1−Y∗i (1)} · {1−Y∗i (2)} − π0

Y∗i (1) · {1−Y∗i (2)}+ Y∗i (2) · {1−Y∗i (1)} − π1

TiY∗i
ei
−

(1− Ti)Y∗i
1− ei

− (p11 − p10)τ



, (21)

where Y∗i = {Y∗i (1) + Y∗i (2)}/2, together with a constraint imposed for achieving parameters identifi-
ability (e.g., White et al., 2001; Yi and He, 2017).

Let τ̂R denote the estimator of τ0 obtained by solving

n

∑
i=1

Ψr{Y∗i (1), Y∗i (2), Ti, Xi; θ} = 0 (22)

for θ. The variance of τ̂R can be estimated by the empirical sandwich estimator V̂ar(τ̂R). A (1− α)100%

confidence interval of τ0 is given by τ̂R ± zα/2 ×
√

V̂ar(τ̂R), where α is a specified value between 0 and
1, and zα/2 is the upper α/2 quantile of the standard normal distribution.

Finally, we comment that when implementing (22), one of the following constraints is often used
in applications: (C1) sensitivity equals specificity (i.e., p11 = p00), (C2) sensitivity p11 is known, (C3)
specificity p00 is known, and (C4) prevalence η is known. These four constraints are implemented in
our R package.

Choosing a suitable identifiability constraint is primarily driven by the nature of data. When the
false positive rate p10 and the false negative rate p01 are close, it is reasonable to impose the constraint
that the sensitivity equals the specificity. When there is prior information on the value of the sensitivity,
the specificity, or the prevalence, it is plausible to add the identifiability constraint (C2), (C3) or (C4).
For example, in smoking cessation studies, patients who quit smoking (with Y = 1) are unlikely
to report that they still smoke, so it may be reasonable to set the constraint p11 = 1. Sometimes,
researchers may use the disease prevalence reported from another similar study for their own study,
when such a prevalence is perceived to be close to that of the target population.

Doubly robust estimation

To protect against model misspecification, Shu and Yi (2017) proposed a doubly robust estimator of τ0:

τ̂DR = Ê(Y1)− Ê(Y0), (23)

where

Ê(Y1) =
1
n

n

∑
i=1

{
TiY∗i

êi(p11 − p10)
− Ti − êi

êi
q̂i1 −

Ti
êi

(
p10

p11 − p10

)}
, (24)

Ê(Y0) =
1
n

n

∑
i=1

{
(1− Ti)Y∗i

(1− êi)(p11 − p10)
+

Ti − êi
1− êi

q̂i0 −
1− Ti
1− êi

(
p10

p11 − p10

)}
, (25)

q̂i1 is an estimate of qi1 = P(Yi = 1|Ti = 1, Xi) and q̂i0 is an estimate of qi0 = P(Yi = 1|Ti = 0, Xi).

The estimator τ̂DR enjoys the double robustness property in the sense that it is still consistent if one
of the treatment model and the outcome model is incorrectly specified. In our developed R package,
we particularly implement the following two scenarios.
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Scenario 1 (Shared covariate effects for the treated and untreated groups):

Suppose the outcome model is postulated as

logit P(Yi = 1|Ti, Xi) = β0 + βTTi + β>Xi, (26)

where β0, βT and β are the parameters. The model reflects the setting where the treated and untreated
groups share the same covariate effect β on the outcome.

By (1) and (26), the observed likelihood function contributed from individual i is

Li(β0, βT, β)

= P(Y∗i |Xi, Ti)

= P(Yi = 1|Xi, Ti)P(Y∗i |Xi, Ti, Yi = 1) + P(Yi = 0|Xi, Ti)P(Y∗i |Xi, Ti, Yi = 0)

=
1

1 + exp{−β0 − βTTi − β>Xi}
· {p11Y∗i + (1− p11)(1−Y∗i )}

+
exp{−β0 − βTTi − β>Xi}

1 + exp{−β0 − βTTi − β>Xi}
· {p10Y∗i + (1− p10)(1−Y∗i )}. (27)

With regularity conditions, maximizing the observed likelihood ∏n
i=1 Li(β0, βT, β) with respect to

(β0, βT, β>)> gives a consistent estimator of (β0, βT, β>)>, denoted as (β̂0, β̂T, β̂>)>. It follows that qi1
and qi0, are, respectively, estimated by

q̂i1 =
1

1 + exp(−β̂0 − β̂T − β̂>Xi)
(28)

and
q̂i0 =

1
1 + exp(−β̂0 − β̂>Xi)

. (29)

Scenario 2 (Possibly different covariate effects for the treated and untreated groups):

Suppose that the outcome model is postulated as

logit P(Yi = 1|Ti = 1, Xi) = β01 + β>1 Xi (30)

for the treated group and

logit P(Yi = 1|Ti = 0, Xi) = β00 + β>0 Xi (31)

for the untreated group, where the parameters (β01, β>1 )
> for the treated group may differ from the

parameters (β00, β>0 )
> for the untreated group.

To obtain a consistent estimator (β̂01, β̂>1 )
> of (β01, β>1 )

> and a consistent estimator (β̂00, β̂>0 )
>

of (β00, β>0 )
>, we employ the observed likelihood for the treated group and the untreated group

separately. For example, the observed likelihood function contributed from individual l in the treated
group (i.e., Tl = 1) is

L1,l(β01, β1)

= P(Y∗l |Tl = 1, Xl)

= P(Yl = 1|Tl = 1, Xl)P(Y∗l |Yl = 1) + P(Yl = 0|Tl = 1, Xl)P(Y∗l |Yl = 0)

=
1

1 + exp{−β01 − β>1 Xl}
· {p11Y∗l + (1− p11)(1−Y∗l )}

+
exp{−β01 − β>1 Xl}

1 + exp{−β01 − β>1 Xl}
· {p10Y∗l + (1− p10)(1−Y∗l )}. (32)

Maximizing the observed likelihood ∏l:Tl=1 L1,l(β01, β1) with respect to β01 and β1 gives us a con-
sistent estimator (β̂01, β̂>1 )

>, provided regularity conditions. Similarly, we calculate the observed
likelihood function L0,k(β00, β0) for individual k in the untreated group (i.e., Tk = 0), and then obtain
the estimator (β̂00, β̂>0 )

> by maximizing the observed likelihood ∏l:Tk=0 L0,k(β00, β0) with respect to
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β00 and β0. Thus, qi1 and qi0 are estimated by

q̂i1 =
1

1 + exp(−β̂01 − β̂>1 Xi)
(33)

and
q̂i0 =

1
1 + exp(−β̂00 − β̂>0 Xi)

, (34)

respectively.

Variance estimator of τ̂DR:

Consistency and asymptotic normality of τ̂DR can be established using the theory of estimating func-
tions. Below we derive the sandwich variance estimator of τ̂DR by constructing an unbiased estimating
function using the “delta method” in the M-estimator framework (Stefanski and Boos, 2002).

Define βF to be the vector of parameters for the outcome models. Under Scenario 1 with shared
covariate effects for the treated and untreated groups, βF = (β0, βT, β>)>. Under Scenario 2 with
possibly different covariate effects for the treated and untreated groups, βF = (β>F1, β>F0)

> with βF1 =

(β01, β>1 )
> and βF0 = (β00, β>0 )

>. Let θ = (γ>, β>F , µ1, µ0, τ)>, where µ1 and µ0 represent E(Y1) and
E(Y0), respectively.

We construct the following unbiased estimating function for θ:

Ψdr{Y∗i , Ti, Xi; θ} =



{
Ti −

1
1 + exp(−γ0 − γ>X Xi)

}
(1, X>i )>

ψ(Y∗i , Ti, Xi; βF){
TiY∗i

êi(p11 − p10)
− Ti − êi

êi
q̂i1 −

Ti
êi

(
p10

p11 − p10

)}
− µ1{

(1− Ti)Y∗i
(1− êi)(p11 − p10)

+
Ti − êi
1− êi

q̂i0 −
1− Ti
1− êi

(
p10

p11 − p10

)}
− µ0

µ1 − µ0 − τ



, (35)

where ψ(Y∗i , Ti, Xi; βF) is the unbiased estimating equation for βF derived from the observed likelihood.
Specifically, under Scenario 1,

ψ(Y∗i , Ti, Xi; βF) = ∂log{Li(β0, βT, β)}/∂(β0, βT, β), (36)

and under Scenario 2,

ψ(Y∗i , Ti, Xi; βF) = (ψ1(Y∗i , Ti, Xi; βF1)
>, ψ0(Y∗i , Ti, Xi; βF0)

>)> (37)

with
ψ1(Y∗i , Ti, Xi; βF1) = ∂log{L1,i(β01, β1)}/∂(β01, β1) · I(Ti = 1) · n

nT
(38)

and
ψ0(Y∗i , Ti, Xi; βF0) = ∂log{L0,i(β00, β0)}/∂(β00, β0) · I(Ti = 0) · n

n− nT
, (39)

where nT is the size of the treated group.

By the theory of estimating functions (e.g., Newey and McFadden, 1994; Heyde, 1997; Yi, 2017,
Ch.1), solving ∑n

i=1 Ψdr{Y∗i , Ti, Xi; θ} = 0 for θ yields an estimator of θ, denoted by θ̂. Let θ0 be the
true value of θ. Define

A(θ0) = E
{
−(∂/∂θ>)Ψdr(Y∗, T, X; θ)|θ=θ0

}
and

B(θ0) = E{Ψdr(Y∗, T, X; θ)Ψ>dr(Y
∗, T, X; θ)|θ=θ0}.

Under regularity conditions, we have that

√
n(θ̂ − θ0)

d−→ N
(

0, A(θ0)
−1B(θ0)A(θ0)

−1>
)

as n→ ∞. (40)
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The sandwich variance estimator of θ̂ is given by

V̂ar(θ̂) =
1
n

An(θ̂)
−1Bn(θ̂)An(θ̂)

−1>, (41)

where

An(θ̂) = −
1
n

n

∑
i=1

∂

∂θ>
Ψdr(Y

∗
i , Ti, Xi; θ)|

θ=θ̂
(42)

and

Bn(θ̂) =
1
n

n

∑
i=1

Ψdr(Y
∗
i , Ti, Xi; θ)Ψ>dr(Y

∗
i , Ti, Xi; θ)|

θ=θ̂
. (43)

Then V̂ar(τ̂DR) is the element of the last row and the last column of V̂ar(θ̂).
Finally, we comment that Scenario 2 allows for different covariates-outcome associations for the

treated and untreated groups and provides more flexibility than Scenario 1. However, implementing
Scenario 2 involves separately estimating parameters of the outcome model for the treated and
untreated groups. When one group has a small size, estimation results may be unsatisfactory. In this
case, imposing common covariate effects for the treated and untreated groups as in Scenario 1 can
help achieve reasonable estimation results.

Implementation in R and Examples

We develop an R package ipwErrorY, which implements the methods (Shu and Yi, 2017) described in
the previous section. The developed package imports R packages stats and nleqslv (Hasselman, 2016).
To illustrate the use of ipwErrorY, for each method, we simulate a dataset and then apply a function
to analyze the dataset. To make sure users can reproduce the results, we use the function set.seed to
generate data. Moreover, the simulated data provide users a clear sense about the data structure.

Implementation and example with known error

The function KnownError produces the ATE estimate using the correction method with known mis-
classification probabilities along with the sandwich-variance-based standard error and (1− α)100%
confidence interval. Specifically, KnownError is defined as

KnownError(data, indA, indYerror, indX, sensitivity, specificity, confidence=0.95)

with arguments described in detail in ipwErrorY documentation. Below is an example to illustrate the
use of KnownError.

We first load the package in R:

R> library("ipwErrorY")

Using sensitivity 0.95 and specificity 0.85, we create da, a dataset of size 2000 with “X1”, “A” and
“Yast” being the column names for the covariate, treatment and misclassified outcome, respectively:

R> set.seed(100)
R> X1 = rnorm(2000)
R> A = rbinom(2000, 1, 1/(1 + exp(-0.2 - X1)))
R> Y = rbinom(2000, 1, 1/(1 + exp(-0.2 - A - X1)))
R> y1 = which(Y == 1)
R> y0 = which(Y == 0)
R> Yast = Y
R> Yast[y1] = rbinom(length(y1), 1, 0.95)
R> Yast[y0] = rbinom(length(y0), 1, 0.15)
R> da = data.frame(X1 = X1, A = A,Yast = Yast)

By using the function head, we print the first six observations of dataset da so that the data structure is
clearly shown as follows:

R> head(da)
X1 A Yast

1 -0.50219235 1 1
2 0.13153117 1 1
3 -0.07891709 1 1
4 0.88678481 0 1
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5 0.11697127 1 1
6 0.31863009 1 1

We call the developed function KnownError with sensitivity 0.95 and specificity 0.85, and obtain a
list of the estimate, the sandwich-variance-based standard error and a 95% confidence interval:

R> KnownError(data = da, indA = "A", indYerror = "Yast", indX = "X1",
+ sensitivity = 0.95, specificity = 0.85, confidence=0.95)
$Estimate
[1] 0.1702513

$Std.Error
[1] 0.02944824

$`95% Confidence Interval`
[1] 0.1125338 0.2279688

Implementation and example with validation data

The function EstValidation produces the results for the method with validation data; they include
the optimal linear combination estimate, the sandwich-variance-based standard error, (1− α)100%
confidence interval and the estimated sensitivity and specificity. Specifically, EstValidation is defined
as

EstValidation(maindata, validationdata, indA, indYerror, indX, indY, confidence=0.95)

with arguments described in detail in ipwErrorY documentation. Below is an example to illustrate the
use of EstValidation.

Using sensitivity 0.95 and specificity 0.85, we create mainda which is the non-validation main data
of size 1200, and validationda which is the validation data of size 800:

R> set.seed(100)
R> X1= rnorm(1200)
R> A = rbinom(1200, 1, 1/(1 + exp(-0.2 - X1)))
R> Y= rbinom(1200, 1, 1/(1 + exp(-0.2 - A - X1)))
R> y1 = which(Y == 1)
R> y0 = which(Y==0)
R> Yast = Y
R> Yast[y1] = rbinom(length(y1), 1, 0.95)
R> Yast[y0] = rbinom(length(y0), 1, 0.15)
R> mainda = data.frame(A = A, X1 = X1, Yast = Yast)
R> X1 = rnorm(800)
R> A = rbinom(800, 1, 1/(1 + exp(-0.2 - X1)))
R> Y = rbinom(800, 1, 1/(1 + exp(-0.2 - A - X1)))
R> y1 = which(Y == 1)
R> y0 = which(Y == 0)
R> Yast = Y
R> Yast[y1] = rbinom(length(y1), 1, 0.95)
R> Yast[y0] = rbinom(length(y0), 1, 0.15)
R> validationda = data.frame(A = A, X1 = X1, Y = Y, Yast = Yast)

We print the first six observations of non-validation data mainda and validation data validationda:

R> head(mainda)
A X1 Yast

1 1 -0.50219235 0
2 0 0.13153117 0
3 1 -0.07891709 1
4 1 0.88678481 1
5 0 0.11697127 1
6 1 0.31863009 1
R> head(validationda)
A X1 Y Yast

1 0 -0.0749961081 0 0
2 1 -0.9470827924 1 1
3 1 0.0003758095 1 1
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4 0 -1.5249574007 0 0
5 1 0.0983516474 0 0
6 0 -1.5266078213 1 1

The preceding output clearly reveals that the non-validation data and validation data differ in the
data structure. The non-validation data mainda record measurements of the treatment, covariate
and misclassified outcome, indicated by the column names “A”, “X1” and “Yast”, respectively. In
comparison, the validation data validationda record measurements of the treatment, covariate,
misclassified outcome and the true outcome, indicated by the column names “A”, “X1”, “Yast”, and
“Y”, respectively.

To apply the optimal linear combination method with validation data, we call the developed
function EstValidation and obtain a list of the estimate, the sandwich-variance-based standard error,
a 95% confidence interval, and the estimated sensitivity and specificity:

R> EstValidation(maindata = mainda, validationdata = validationda, indA = "A",
+ indYerror = "Yast", indX = "X1", indY = "Y", confidence=0.95)
$Estimate
[1] 0.1714068

$Std.Error
[1] 0.02714957

$`95% Confidence Interval`
[1] 0.1181946 0.2246189

$`estimated sensitivity and estimated specificity`
[1] 0.9482072 0.8557047

Implementation and example with replicates

The function Est2Replicates produces the results for the method with replicates; they include the
estimate, the sandwich-variance-based standard error, (1 − α)100% confidence interval, and the
imposed constraint(s), and the information on sensitivity and specificity. Specifically, Est2Replicates
is defined as

Est2Replicates(data, indA, indYerror, indX, constraint=c("sensitivity equals
specificity", "known sensitivity", "known specificity", "known prevalence"),
sensitivity = NULL, specificity = NULL, prevalence = NULL, confidence=0.95)

with arguments described in detail in ipwErrorY documentation. Below is an example to illustrate the
use of Est2Replicates.

Using sensitivity 0.95 and specificity 0.85, we create da, a dataset of size 2000 with “A”, “X1”, and
{“Yast1”, “Yast2”} being the column names for the treatment, covariate, and two replicates of outcome,
respectively:

R> set.seed(100)
R> X1 = rnorm(2000)
R> A = rbinom(2000, 1, 1/(1 + exp(-0.2 - X1)))
R> Y = rbinom(2000, 1, 1/(1 + exp(-0.2 - A - X1)))
R> y1 = which(Y == 1)
R> y0 = which(Y == 0)
R> Yast1 = Y
R> Yast1[y1] = rbinom(length(y1), 1, 0.95)
R> Yast1[y0] = rbinom(length(y0), 1, 0.15)
R> Yast2 = Y
R> Yast2[y1] = rbinom(length(y1), 1, 0.95)
R> Yast2[y0] = rbinom(length(y0), 1, 0.15)
R> da = data.frame(A = A, X1 = X1, Yast1 = Yast1, Yast2 = Yast2)

By using the function head, we print the first six observations of dataset da so that the data structure is
clearly shown as follows:

R> head(da)
A X1 Yast1 Yast2

1 1 -0.50219235 1 1
2 1 0.13153117 1 1
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3 1 -0.07891709 1 1
4 0 0.88678481 1 0
5 1 0.11697127 1 1
6 1 0.31863009 1 1

To apply the method with replicates, we call the developed function Est2Replicates with the
imposed constraint that specificity equals 0.85. The following list of the estimate, the sandwich-
variance-based standard error, a 95% confidence interval, the imposed constraint and the information
on sensitivity and specificity is returned:

R> Est2Replicates(data = da, indA = "A", indYerror = c("Yast1", "Yast2"),
+ indX = "X1", constraint = "known specificity", sensitivity = NULL,
+ specificity = 0.85, prevalence = NULL, confidence=0.95)
$Estimate
[1] 0.1908935

$Std.Error
[1] 0.02687287

$`95% Confidence Interval`
[1] 0.1382236 0.2435634

$`imposed constraint`
[1] "known specificity"

$`estimated sensitivity and assumed specificity`
[1] 0.95 0.85

Implementation and example of doubly robust estimation

The function KnownErrorDR produces the ATE estimate using the doubly robust correction method
along with the sandwich-variance-based standard error and (1− α)100% confidence interval. Specifi-
cally, KnownErrorDR is defined as

KnownErrorDR(data, indA, indYerror, indXtrt, indXout, sensitivity, specificity,
sharePara=FALSE, confidence=0.95)

with arguments described in detail in ipwErrorY documentation. Below is an example to illustrate the
use of KnownErrorDR.

Using sensitivity 0.95 and specificity 0.85, we create da, a dataset of size 2000 with “A”, {“X”,
“xx”} and “Yast” being the column names for the treatment, covariates and misclassified outcome,
respectively:

R> set.seed(100)
R> X = rnorm(2000)
R> xx = X^2
R> A = rbinom(2000, 1, 1/(1 + exp(-0.1 - X - 0.2*xx)))
R> Y = rbinom(2000, 1, 1/(1 + exp(1 - A - 0.5*X - xx)))
R> y1 = which(Y == 1)
R> y0 = which(Y == 0)
R> Y[y1] = rbinom(length(y1), 1, 0.95)
R> Y[y0] = rbinom(length(y0), 1, 0.15)
R> Yast = Y
R> da = data.frame(A = A, X = X, xx = xx, Yast = Yast)

By using the function head, we print the first six observations of dataset da so that the data structure is
clearly shown as follows:

R> head(da)
A X xx Yast

1 1 -0.50219235 0.252197157 1
2 1 0.13153117 0.017300447 1
3 1 -0.07891709 0.006227907 1
4 0 0.88678481 0.786387298 0
5 1 0.11697127 0.013682278 1
6 1 0.31863009 0.101525133 0
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When applying the doubly robust method with sensitivity 0.95 and specificity 0.85, covariates
indicated by column names “X” and “xx” are both included in the treatment model and the outcome
model. Let the outcome model be fit for the treated and untreated groups separately. We call the
developed function KnownErrorDR and obtain a list of the estimate, the sandwich-variance-based
standard error, and a 95% confidence interval:

R> KnownErrorDR(data = da, indA = "A", indYerror = "Yast", indXtrt = c("X", "xx"),
+ indXout = c("X", "xx"), sensitivity = 0.95, specificity = 0.85,
+ sharePara = FALSE, confidence=0.95)
$Estimate
[1] 0.2099162

$Std.Error
[1] 0.02811472

$`95% Confidence Interval`
[1] 0.1548124 0.2650201

Discussion

Misclassified binary outcome data arise frequently in practice and present a challenge in conducting
causal inference. Discussion on addressing this issue is rather limited in the literature. Shu and Yi (2017)
developed the IPW estimation methods for ATE with mismeasured outcome effects incorporated.
To expedite the application of these correction methods, we develop an R package ipwErrorY. For
practical settings where the treatment model and the outcome model are specified as logistic regression
models, we implement the correction methods developed by Shu and Yi (2017) for settings with known
misclassification probabilities, validation data, or replicates of the outcome data as well as the doubly
robust method with known misclassification probabilities. Our package offers a useful and convenient
tool for data analysts to perform valid inference about ATE when the binary outcome variable is
subject to misclassification.

For each function of ipwErrorY, we implement the sandwich variance estimate to construct a
normality-based confidence interval. Confidence intervals can also be constructed by bootstrapping
(Efron, 1982; Efron and Tibshirani, 1993), which can be done by leveraging available functions of ipw-
ErrorY. Below we provide example code to produce normality-based and percentile-based bootstrap
confidence intervals for a doubly robust estimate with 200 bootstrap replicates.

R> drFUN<-function(dt) {
+ KnownErrorDR(data = dt, indA = "A", indYerror = "Yast", indXtrt = c("X", "xx"),
+ indXout = c("X", "xx"), sensitivity = 0.95, specificity = 0.85,
+ sharePara = FALSE, confidence=0.95)$`Estimate`
+ }
R> EST=drFUN(dt=da)
R> set.seed(100)
R> resultsBoot=replicate(200,drFUN(dt=da[sample(1:nrow(da),replace=TRUE),]))
R> STD=sd(resultsBoot)
R> lowN=EST-qnorm(1-(1-0.95)/2)*STD
R> upN=EST+qnorm(1-(1-0.95)/2)*STD
R> CIn=c(lowN,upN)
R> lowP=as.numeric(quantile(resultsBoot,probs=0.025))
R> upP=as.numeric(quantile(resultsBoot,probs=0.975))
R> CIp=c(lowP,upP)

We print the resultant bootstrap normality-based and percentile-based confidence intervals, respec-
tively, as follows.

R> CIn
[1] 0.1562355 0.2635969
R> CIp
[1] 0.1610038 0.2655065

To make sure the users can reproduce the results, here we call the function set.seed before KnownErrorDR.
If set.seed is not used, then the variance estimates generated at different times can differ due to the
inner randomness of the bootstrap method.

This example code can be easily modified to produce bootstrap confidence intervals for an estimate
obtained from a different method; one needs only to replace KnownErrorDR with the function in
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ipwErrorY that corresponds to the method.

Package ipwErrorY requires the data be complete (i.e., no missing values). An error message is
shown when NAs in the dataset are detected. For example, if we artificially introduce an NA in dataset
da and call the developed function KnownErrorDR, an error message is displayed:

R> da[1,1]=NA
R> KnownErrorDR(data = da, indA = "A", indYerror = "Yast", indXtrt = c("X", "xx"),
+ indXout = c("X", "xx"), sensitivity = 0.95, specificity = 0.85,
+ sharePara = FALSE, confidence=0.95)
Error in KnownErrorDR(data = da, indA = "A", indYerror = "Yast", indXtrt = c("X", :
invalid dataset with NAs (missing data detected)

Once seeing this error message, users need to check their dataset to see if the NAs can be replaced
with suitable values. If missing values do occur, the easiest way is to take the subsample of complete
observations to conduct analysis. The resulting point estimates can be reasonable if the missing
data mechanism is missing completely at random (MCAR) (Little and Rubin, 2002); in this instance,
efficiency loss can occur. However, when missing data are not MCAR, this procedure often yields
biased results.

Our implementation uses a logistic regression model with a linear function of covariates for both
the treatment and the outcome processes, as it is perhaps the most widely-used parametric tool to
model a binary variable. Such a logistic regression model can be generalized to include additional
terms, such as higher order terms, nonlinear functions, or interactions of the covariates. In this case, the
users need only to first create an expanded dataset with those terms included as additional columns of
new “covariates", and then use the ipwErrorY package to analyze the expanded dataset.
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